## NKIT



INSTITUTE FOR THEORETICAL INFORMATICS • FACULTY OF INFORMATICS


## Modelling a Terrain



Sample points $p=\left(x_{p}, y_{p}, z_{p}\right)$


> Projection
> $\pi(p)=\left(p_{x}, p_{y}, 0\right)$

Interpolation 1: each point gets the height of the nearest sample point

## Modelling a Terrain



Sample points $p=\left(x_{p}, y_{p}, z_{p}\right)$


$$
\begin{aligned}
& \text { Projection } \\
& \pi(p)=\left(p_{x}, p_{y}, 0\right)
\end{aligned}
$$

Interpolation 2: triangulate the set of sample points and interpolate on the triangles

## Triangulation of a Point Set

Def.: A triangulation of a point set $P \subset \mathbb{R}^{2}$ is a maximal planar subdivision with a vertex set $P$.


Obs.: - all internal faces are triangles

- outer face is the complement of the convex hull

Theorem 1: Let $P$ be a set of $n$ points, not all collinear. Let $h$ be the number of points in $C H(P)$.
Then any triangulation of $P$ has $(2 n-2-h)$ triangles and ( $3 n-3-h$ ) edges.

## Back to Height Interpolation



Height 985


Height 23

Intuition: Avoid narrow triangles!
Or: maximize the smallest angle!

## Angle-optimal Triangulations

Def.: Let $P \subset \mathbb{R}^{2}$ be a set of points, $\mathcal{T}$ be a triangulation of $P$ and $m$ be the number of the triangles. $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ is called angle-vector of $\mathcal{T}$ where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$.

For two triangulations $\mathcal{T}$ and $\mathcal{T}^{\prime}$ of $P$ we define the order of the angle-vectors $A(\mathcal{T})>A\left(\mathcal{T}^{\prime}\right)$ as lexicographic order of corresponding angle sequences.
$\mathcal{T}$ is called angle-optimal, if $A(\mathcal{T}) \geq A\left(\mathcal{T}^{\prime}\right)$ for all triangulations $\mathcal{T}^{\prime}$ of $P$.


## Edge Flips

Def.: Let $\mathcal{T}$ be a triangulation. An edge $e$ of $\mathcal{T}$ is called illegal, when the smallest angle incident to $e$ increases after the flip of $e$.

Obs.: Let $e$ be an illegal edge of $\mathcal{T}$ and $\mathcal{T}^{\prime}=\operatorname{flip}(\mathcal{T}, e)$. Then $A\left(\mathcal{T}^{\prime}\right)>A(\mathcal{T})$.
$\min _{i} \alpha_{i}=60^{\circ}$

flip $(\mathcal{T}, e)$

$$
\min _{i} \alpha_{i}=30^{\circ}
$$



## Thales's Theorem

Theorem 2: If $a, b$ and $c$ are points on a circle where the segment $a b$ is a diameter of the circle, then the angle $\angle b c a$ is a right angle.
Theorem 2': Consider a circle $C$ through $a, b, c$. For any point $c^{\prime}$ on $C$ on the same side of $a b$ as $c$, holds that $\angle a c b=\angle a c^{\prime} b$. For any point $d$ inside $C$ holds that $\angle a d b>\angle a c b$, and for point $e$ outside $C$, holds that $\angle a e b<\angle a c b$.


## Legal Triangulation

Lemma 1: Let $\Delta p q r$ and $\Delta p q s$ be two triangles in $\mathcal{T}$ and let $C$ be the circle through $\Delta p q r$. Then $\overline{p q}$ is illegal iff $s \in \operatorname{int}(C)$. If $p, q, r, s$ form a convex quadrilateral and do not lie on a common circle ( $s \notin \partial C$ ) then exactly one of $\overline{p q}$ and $\overline{r s}$ is an illegal edge.

## Sketch of proof:



$$
\begin{aligned}
& \angle r s q>\angle r p q \\
& \angle p s r>\angle p q r \\
& \angle p r s>\angle p q s \\
& \angle s r q>\angle s p q
\end{aligned}
$$

## Legal Triangulation

Lemma 1: Let $\Delta p q r$ and $\Delta p q s$ be two triangles in $\mathcal{T}$ and let $C$ be the circle through $\Delta p q r$. Then $\overline{p q}$ is illegal iff $s \in \operatorname{int}(C)$. If $p, q, r, s$ form a convex quadrilateral and do not lie on a common circle ( $s \notin \partial C$ ) then exactly one of $\overline{p q}$ and $\overline{r s}$ is an illegal edge.

Obs.: - The characterization is symmetric w.r.t. $r$ and $s$

- $s \in \partial C \Rightarrow \overline{p q}$ and $\overline{r s}$ are legal
- an illegal edge $\Rightarrow$ quadrilateral is convex

Def.: A triangulation without illegal edges in called legal.

## Is there always a legal triangulation?

## Legal Triangulation

Lemma 1: Let $\Delta p q r$ and $\Delta p q s$ be two triangles in $\mathcal{T}$ and let $C$ be the circle through $\Delta p q r$. Then $\overline{p q}$ is illegal iff $s \in \operatorname{int}(C)$. If $p, q, r, s$ form a convex quadrilateral and do not lie on a common circle ( $s \notin \partial C$ ) then exactly one of $\overline{p q}$ and $\overline{r s}$ is an illegal edge.

Obs.: The characterization is symmetric w.r.t. $r$ and $s$

- $s \in \partial C \Rightarrow \overline{p q}$ and $\overline{r s}$ are legal
- an illegal edge $\Rightarrow$ quadrilateral is convex

Def.: A triangulation without illegal edges in called legal.
while $\mathcal{T}$ has an illegal edge $e$ do $\operatorname{flip}(\mathcal{T}, e)$ return $\mathcal{T}$
terminates, since $A(\mathcal{T})$ increases and \#Triangulations is finite ( $<30^{n}$, [Shair, Shefefer 2011])

## Reverse statement?

It holds that: each angle-optimal triangulation is legal.

But is each legal triangulation also angle-optimal?

## Delaunay-Triangulation

Let $\operatorname{Vor}(P)$ be the Voronoi-Diagram of a point set $P$.
Def.: The graph $\mathcal{G}=(P, E)$ with $E=\{p q \mid \mathcal{V}(p)$ and $\mathcal{V}(q)$ are adjacent $\}$ is called dual graph of $\operatorname{Vor}(P)$.

Def.: The straight-line drawing of $\mathcal{G}$ is called Delaunay-Graph $\mathcal{D} \mathcal{G}(P)$.


Georgy Voronoi (1868-1908)



Boris Delone (1890-1980)

## Properties

Theorem. 3: $\mathcal{D} \mathcal{G}(P)$ is crossing-free.

## Sketch of proof:

The bisector $b(p, q)$ defines a Voronoi-edge

$$
\Leftrightarrow \exists r \in b(p, q) \text { with } C_{P}(r) \cap P=\{p, q\} .
$$

or
The edge $p q$ is in $\mathcal{D G}(P)$
$\Leftrightarrow$ there is an empty circle $C_{p, q}$ with $p$ and $q$ on the boundary.
Obs.: A Voronoi-vertex $v$ in $\operatorname{Vor}(P)$ with degree $k$ corresponds to a convex $k$-gon in $\mathcal{D G}(P)$.


If $P$ is in general position (no four points on a circle), then all faces of $\mathcal{D} \mathcal{G}(P)$ are triangles $\rightarrow$ Delaunay-triangulation

## Characterization

Theorem about Voronoi-Diagram:

- point $q$ is a Voronoy-vertex
$\Leftrightarrow\left|C_{P}(q) \cap P\right| \geq 3$,

- bisector $b\left(p_{i}, p_{j}\right)$ defines a Voronoi-edge $\Leftrightarrow \exists q \in b\left(p_{i}, p_{j}\right)$ with $C_{P}(q) \cap P=\left\{p_{i}, p_{j}\right\}$.

Theorem 4: Let $P$ be a set of points.


- Points $p, q, r$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$ circle through $p, q, r$ is empty
- Edge $p q$ is in $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$
there is an empty circle $C_{p, q}$ through $p$ and $q$
Theorem 5: Let $P$ be a set of points and let $\mathcal{T}$ be a triangulation of $P . \mathcal{T}$ is Delaunay-Triangulation $\Leftrightarrow$ the circumcircle of each triangle has an empty interior.


## Legality and Delaunay-Triangulation

Theorem 6: Let $P$ be a set of points and $\mathcal{T}$ a triangulation of $P . \mathcal{T}$ is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Sketch of proof:
$„ \Leftarrow "$ clear; use

Lemma 1: Let $\Delta p r q$ and $\Delta p q s$ be two triangles of $\mathcal{T}$ and $C$ the circumcircle of $\Delta p r q$. Edge $\overline{p q}$ is illegal iff $s \in \operatorname{int}(C)$.

## Legality and Delaunay-Triangulation

Theorem 6: Let $P$ be a set of points and $\mathcal{T}$ a triangulation of $P . \mathcal{T}$ is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Sketch of proof:
" ${ }^{\prime \prime}$


## Legality and Delaunay-Triangulation

Theorem 6: Let $P$ be a set of points and $\mathcal{T}$ a triangulation of $P . \mathcal{T}$ is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Obs.: When $P$ is in general position $\mathcal{D G}(P)$ is unique $\Rightarrow$ legal triangulation is unique I know that: $\mathcal{T}$ is angle-optimal $\Rightarrow \mathcal{T}$ is legal $\Rightarrow \mathcal{D G}(P)$ is angle-optimal!
If $P$ is not in general position, then for any triangulation of a „bigger" face of $\mathcal{D G}(P)$ the minimal angles are equal (exercise!).

## Summary

Theorem 7: For $n$ points on the plane a Delaunay-triangulation can be computed in $O(n \log n)$ time (Voronoi-Diag. + Triangulation of „big" faces)
Corollary: For $n$ points in general position an angle-optimal triangulation can be computed in $O(n \log n)$ time. If the points are not in general position, a triangulation with maximal smallest angle can be computed in the same $O(n \log n)$ time.

Outlook: In the general case the angle-optimal triangulation can be computed in $O(n \log n)$ time.
[Mount, Saalfeld '88]

## Discussion

Are there alternative approaches for the height interpolation using triangulations?

The data-independent Delaunay-triangulations is an initial step of data-dependent triangulations, which start from $\mathcal{D G}(P)$ and perform edge-flips. Rippa (1990) showed that $\mathcal{D} \mathcal{G}(P)$ minimizes roughness independently from the height information.

## Has $\mathcal{D} \mathcal{G}(P)$ other interesting properties?

Yes, Delaunay-Graph contains the edges of other interesting graphs on $P$ (see exersices). For example it holds that
$\operatorname{EMST}(P) \subseteq$ Gabriel-Graph $(P) \subseteq \mathcal{D} \mathcal{G}(P)$
Where to find further information on Voronoi-Diagrams und Delaunay-Triangulations?

Relatively new book (2013) of Aurenhammer, Klein, Lee!

