

INSTITUTE FOR THEORETICAL INFORMATICS · FACULTY OF INFORMATICS

Tamara Mchedlidze · Darren Strash

Modelling a Terrain

Sample points $p = (x_p, y_p, z_p)$

Projection

$$\pi(p) = (p_x, p_y, 0)$$

Interpolation 1: each point gets the height of the nearest sample point

Modelling a Terrain

Sample points $p = (x_p, y_p, z_p)$

Projection

$$\pi(p) = (p_x, p_y, 0)$$

Interpolation 2: triangulate the set of sample points and interpolate on the triangles

Triangulation of a Point Set

A triangulation of a point set $P \subset \mathbb{R}^2$ is a maximal Def.: planar subdivision with a vertex set P.

Obs.:

- all internal faces are triangles
- outer face is the complement of the convex hull

Theorem 1: Let P be a set of n points, not all collinear. Let h be the number of points in CH(P).

> Then any triangulation of P has (2n-2-h)triangles and (3n-3-h) edges.

Back to Height Interpolation

Intuition: Avoid narrow triangles!

Or: maximize the smallest angle!

Angle-optimal Triangulations

Def.: Let $P \subset \mathbb{R}^2$ be a set of points, \mathcal{T} be a triangulation of P and m be the number of the triangles.

$$A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$$
 is called **angle-vector** of \mathcal{T} where $\alpha_1 \leq \dots \leq \alpha_{3m}$.

For two triangulations \mathcal{T} and \mathcal{T}' of P we define the **order** of the angle-vectors $A(\mathcal{T}) > A(\mathcal{T}')$ as lexicographic order of corresponding angle sequences.

 \mathcal{T} is called **angle-optimal**, if $A(\mathcal{T}) \geq A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.

Edge Flips

Def.: Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is called **illegal**, when the smallest angle incident to e increases after the flip of e.

Obs.: Let e be an illegal edge of \mathcal{T} and $\mathcal{T}' = \text{flip}(\mathcal{T}, e)$. Then $A(\mathcal{T}') > A(\mathcal{T})$.

 $\min_{i} \alpha_{i} = 60^{\circ} \qquad \qquad \min_{i} \alpha_{i} = 30^{\circ}$ $e' \qquad \qquad \text{flip}(\mathcal{T}, e) \qquad \qquad e$

Thales's Theorem

Theorem 2: If a, b and c are points on a circle where the segment ab is a diameter of the circle, then the a angle $\angle bca$ is a right angle.

Theorem 2': Consider a circle C through a,b,c. For any point c' on C on the same side of ab as c, holds that $\angle acb = \angle ac'b$. For any point d inside C holds that $\angle adb > \angle acb$, and for point e outside e, holds that e

Legal Triangulation

Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in \operatorname{int}(C)$. If p,q,r,s form a convex quadrilateral and do not lie on a common circle $(s \notin \partial C)$ then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

Sketch of proof:

$$\angle rsq > \angle rpq$$

 $\angle psr > \angle pqr$

$$\angle prs > \angle pqs$$

 $\angle srq > \angle spq$

Legal Triangulation

Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in \operatorname{int}(C)$. If p,q,r,s form a convex quadrilateral and do not lie on a common circle $(s \notin \partial C)$ then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

- Obs.:
- ullet The characterization is symmetric w.r.t. r and s
- $s \in \partial C \Rightarrow \overline{pq}$ and \overline{rs} are legal
- an illegal edge ⇒ quadrilateral is convex

Def.: A triangulation without illegal edges in called **legal**.

Is there always a legal triangulation?

Legal Triangulation

Lemma 1: Let Δpqr and Δpqs be two triangles in \mathcal{T} and let C be the circle through Δpqr . Then \overline{pq} is illegal iff $s \in \operatorname{int}(C)$. If p,q,r,s form a convex quadrilateral and do not lie on a common circle $(s \notin \partial C)$ then exactly one of \overline{pq} and \overline{rs} is an illegal edge.

- Obs.:
- ullet The characterization is symmetric w.r.t. r and s
- $s \in \partial C \Rightarrow \overline{pq}$ and \overline{rs} are legal
- an illegal edge ⇒ quadrilateral is convex

Def.: A triangulation without illegal edges in called **legal**.

Reverse statement?

It holds that: each angle-optimal triangulation is legal.

But is each legal triangulation also angle-optimal?

Tamara Mchedlidze · Darren Strash Delaunay-Triangulations

Delaunay-Triangulation

Let Vor(P) be the Voronoi-Diagram of a point set P.

Def.: The graph $\mathcal{G} = (P, E)$ with $E = \{pq \mid \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ are adjacent}\}$ is called **dual graph** of $\mathrm{Vor}(P)$.

Def.: The straight-line drawing of \mathcal{G} is called **Delaunay-Graph** $\mathcal{DG}(P)$.

Georgy Voronoi (1868–1908)

Boris Delone (1890–1980)

Properties

Theorem. 3: $\mathcal{DG}(P)$ is crossing-free.

Sketch of proof:

The bisector b(p,q) defines a Voronoi-edge $\Leftrightarrow \exists r \in b(p,q)$ with $C_P(r) \cap P = \{p,q\}$.

or

The edge pq is in $\mathcal{DG}(P)$

 \Leftrightarrow there is an empty circle $C_{p,q}$ with p and q on the boundary.

Obs.: A Voronoi-vertex v in Vor(P) with degree k corresponds to a convex k-gon in $\mathcal{DG}(P)$.

If P is in general position (no four points on a circle), then all faces of $\mathcal{DG}(P)$ are triangles \to **Delaunay-triangulation**

Characterization

Theorem about Voronoi-Diagram:

- point q is a Voronoy-vertex $\Leftrightarrow |C_P(q) \cap P| \geq 3$,
- bisector $b(p_i, p_j)$ defines a Voronoi-edge $\Leftrightarrow \exists q \in b(p_i, p_j)$ with $C_P(q) \cap P = \{p_i, p_j\}$.

Theorem 4: Let P be a set of points.

- Points p,q,r are vertices of the same face of $\mathcal{DG}(P)\Leftrightarrow$ circle through p,q,r is empty
- Edge pq is in $\mathcal{DG}(P)\Leftrightarrow$ there is an empty circle $C_{p,q}$ through p and q

Theorem 5: Let P be a set of points and let \mathcal{T} be a triangulation of P. \mathcal{T} is Delaunay-Triangulation \Leftrightarrow the circumcircle of each triangle has an empty interior.

Legality and Delaunay-Triangulation

Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Sketch of proof:

"←" clear; use

14-1

Lemma 1: Let Δprq and Δpqs be two triangles of \mathcal{T} and C the circumcircle of Δprq . Edge \overline{pq} is illegal iff $s \in \text{int}(C)$.

Tamara Mchedlidze · Darren Strash Delaunay-Triangulations

Legality and Delaunay-Triangulation

Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Sketch of proof:

$$\Rightarrow$$
"

Legality and Delaunay-Triangulation

Theorem 6: Let P be a set of points and \mathcal{T} a triangulation of P. \mathcal{T} is legal $\Leftrightarrow \mathcal{T}$ is Delaunay-Triangulation.

Obs.: When P is in general position $\mathcal{DG}(P)$ is unique

⇒ legal triangulation is unique

I know that: $\mathcal T$ is angle-optimal $\Rightarrow \mathcal T$ is legal

 $\Rightarrow \mathcal{DG}(P)$ is angle-optimal!

14-9

If P is not in general position, then for any triangulation of a "bigger" face of $\mathcal{DG}(P)$ the minimal angles are equal (exercise!).

Tamara Mchedlidze · Darren Strash Delaunay-Triangulations

Summary

Theorem 7: For n points on the plane a Delaunay-triangulation can be computed in $O(n\log n)$ time (Voronoi-Diag. + Triangulation of "big" faces)

Corollary: For n points in general position an angle-optimal triangulation can be computed in $O(n \log n)$ time. If the points are not in general position, a triangulation with maximal smallest angle can be computed in the same $O(n \log n)$ time.

Outlook: In the general case the angle-optimal triangulation can be computed in $O(n \log n)$ time.

[Mount, Saalfeld '88]

Discussion

Are there alternative approaches for the height interpolation using triangulations?

The data-independent Delaunay-triangulations is an initial step of data-dependent triangulations, which start from $\mathcal{DG}(P)$ and perform edge-flips. Rippa (1990) showed that $\mathcal{DG}(P)$ minimizes roughness independently from the height information.

Has $\mathcal{DG}(P)$ other interesting properties?

Yes, Delaunay-Graph contains the edges of other interesting graphs on ${\cal P}$ (see exersices). For example it holds that

 $\mathsf{EMST}(P) \subseteq \mathsf{Gabriel}\text{-}\mathsf{Graph}(P) \subseteq \mathcal{DG}(P)$

Where to find further information on Voronoi-Diagrams und Delaunay-Triangulations?

Relatively new book (2013) of Aurenhammer, Klein, Lee!