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h(p, q)
= {x : |zp| < |xql}

2-15 Tamara Mchledidze - Darren Strash - Computational Geometry Voronoi-Diagrams



he Post Office Problem QAT

tttttttttttttttttttttttttttttt

h(p, q)
= {x : |zp| < |xql}

2-16 Tamara Mchledidze - Darren Strash - Computational Geometry Voronoi-Diagrams



he Post Office Problem QAT

tttttttttttttttttttttttttttttt

h(p, q) h(q,p)
= {x : |zp| < |xql} = {z : |zq| < |zp|}
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P = {p17p27 R 7pn}
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Vor(P) = Vorghoi diagram of P

2-21 Tamara Mchledidze - Darren Strash - Computational Geometry Voronoi-Diagrams



rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

he Post Office Problem QAT

Vor(P) = Vorghoi diagram of P

2-22 Tamara Mchledidze - Darren Strash - Computational Geometry Voronoi-Diagrams



rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

he Post Office Problem QAT

Vor(P) = Vorghoi diagram of P

2-23 Tamara Mchledidze - Darren Strash - Computational Geometry Voronoi-Diagrams



rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

he Post Office Problem QAT

I \ /

1) Define Voronoi cells, edges, and vertices!
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I \ i
1) Define Voronoi cells, edges, and vertices!

2) Are Voronoi cells convex?
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Let P be a set of points in the plane and let p,p’,p” € P.
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V({p}) =
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Let P be a set of points in the plane and let p,p’,p” € P.
pe /

Voronoi Diagram Vor(P)

a Voronoi cell

V({r}) =V(p) =
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Let P be a set of points in the plane and let p,p’,p” € P.
pe /

Voronoi Diagram Vor(P)

®

p

s Voronoi cell
V({p}) =V(p) = {z € R? : |zp| < |zg| Vg € P\ {p}}
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s Voronoi cell
V({p}) =V(p) = {z € R? : |zp| < |zg| Vg € P\ {p}}

= (gp 1P q)

= Voronoi edges

V({p,p'}) =
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s Voronoi cell
V({p}) =V(p) = {z € R? : |zp| < |zg| Vg € P\ {p}}

= (gp 1P q)

= Voronoi edges
V({p,p'}) = {x: [ap| = |xp

|

and |zp| < |xq| Vg # p,p'}
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s Voronoi cell
V({p}) =V(p) = {z € R? : |zp| < |zg| Vg € P\ {p}}

= (Ngzp MP:0)
= Voronoi edges

V(p,p'y)  =Ax:|op| = |zp] and [zp] <|zq| Vg 7 p,p'}
= V(p)nav(Q')

|
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s Voronoi cell
V({p}) =V(p) = {z € R? : |zp| < |zg| Vg € P\ {p}}

= (Ngzp MP:0)
= Voronoi edges

V({p,p'}) = {z : |zp| = |zp'| and |zp| <|zq| Yq # p,p'}
= int( OV(p) N OV(p')), d.h. without endpoints

|
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= Voronoi cell

V({p}) =V(p) = {z € R® : |ap| < |zq| Vg € P\ {p}}
= (Ngzp MP:0)

= Voronoi edges

V({p,p'}) = {z: |zp| = [zp'] and |zp| <|zq| Yq # p,p'}
= int( OV(p) N OV(p')), d.h. without endpoints

= Voronol vertices

V({p,p',p"})
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Properties AT
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Theorem 1: Let P C R? be a set of n points. If all points are
collinear, then Vor(P) consists of n — 1 parallel
lines. Otherwise Vor(P) is connected and its
edges are either segments or half lines.
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Theorem 1: Let P C R? be a set of n points. If all points are
collinear, then Vor(P) consists of n — 1 parallel
lines. Otherwise Vor(P) is connected and its

edges are either segments or half lines.

How many edges and vertices Vor(P) has?
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Theorem 1: Let P C R? be a set of n points. If all points are
collinear, then Vor(P) consists of n — 1 parallel
lines. Otherwise Vor(P) is connected and its

edges are either segments or half lines.

How many edges and vertices Vor(P) has?

Find a set P so that a cell in Vor(P) has linear complexity.
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Theorem 1: Let P C R? be a set of n points. If all points are
collinear, then Vor(P) consists of n — 1 parallel

lines. Otherwise Vor(P) is connected and its
edges are either segments or half lines.

How many edges and vertices Vor(P) has?
Find a set P so that a cell in Vor(P) has linear complexity.

Can this happen with (almost) all cells?

Theorem 2: Let P C R? be a set on n points. Vor(P) has at
most 2n — 5 nodes and 3n — 6 edges.
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Theorem 1: Let P C R? be a set of n points. If all points are
collinear, then Vor(P) consists of n — 1 parallel

lines. Otherwise Vor(P) is connected and its
edges are either segments or half lines.

How many edges and vertices Vor(P) has?
Find a set P so that a cell in Vor(P) has linear complexity.

Can this happen with (almost) all cells?

Theorem 2: Let P C R? be a set on n points. Vor(P) has at
most 2n — 5 nodes and 3n — 6 edges.

Exercisel
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Definition: Let ¢ be a point. Define Cp(q) to be the points in
P that lie on the empty circle with center g.
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Definition: Let ¢ be a point. Define Cp(q) to be the points in
P that lie on the empty circle with center g.

, ¢r C.I).
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Characterization QAT
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Definition: Let ¢ be a point. Define Cp(q) to be the points in
P that lie on the empty circle with center g.

, ¢r C.I).

Theorem 3: = A point ¢ is a Voronoi vertex
= ‘Cp(q) ﬂP’ > 3,
= the bisector b(p;,p;) defines a Voronoi edge

& dq € b(pi,pj) with Cp(q) N P ={p;,p;}.

7 ./.

e
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Computing Vor(P) AT
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How can we calculate Vor(P) with
methods we already know?
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How can we calculate Vor(P) with
methods we already know?

For each p € P is V(p) = (1,4, h(p,p') is the intersection of
n — 1 half planes.
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How can we calculate Vor(P) with
methods we already know?

For each p € P is V(p) = (1,4, h(p,p') is the intersection of
n — 1 half planes.

foreach p € P do
L compute V(p) = (1,4, (P, p’)
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For each p € P is V(p) = (1,4, h(p,p') is the intersection of
n — 1 half planes.

foreach p € P do
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For each p € P is V(p) = (1,4, h(p,p') is the intersection of
n — 1 half planes.

foreach p € P do O(n?logn)
L compute V(p) = ﬂp,#p h(p,p") O(nlogn) [Lecture 4]

Is O(n?logn) running time for a linear-size object necessary?
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Problem: o

Vor(P) over ¢ depends on o
points under /!
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How can we calculate Vor(P) with
methods we already know?

For each p € P is V(p) = (1,4, h(p,p') is the intersection of
n — 1 half planes.

foreach p € P do O(n?logn)
L compute V(p) = ﬂp,#p h(p,p") O(nlogn) [Lecture 4]

Is O(n?logn) running time for a linear-size object necessary?

Idea 2: Sweep line

Problem: o

Vor(P) over £ depends on L o

points under /! /
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In the Direction of the Sweep Line QAT
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Obviously the intersection of Vor(P) and sweep line ¢ at the
current time point is not known yet.
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Obviously the intersection of Vor(P) and sweep line ¢ at the
current time point is not known yet.

Instead, we store the part above ¢ that is already fixed!
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Obviously the intersection of Vor(P) and sweep line ¢ at the
current time point is not known yet.

Instead, we store the part above ¢ that is already fixed!

What does it consist of?

P(Dxs Py)
o
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In the Direction of the Sweep Line QAT
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Obviously the intersection of Vor(P) and sweep line ¢ at the
current time point is not known yet.

Instead, we store the part above ¢ that is already fixed!

What does it consist of?

P(Dxs Py)
o

Points closer to p than £ are already processed.

£(ty)
y

7 Tamara Mchledidze - Darren Strash - Computational Geometry Voronoi-Diagrams



In the Direction of the Sweep Line QAT
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Obviously the intersection of Vor(P) and sweep line ¢ at the
current time point is not known yet.

Instead, we store the part above ¢ that is already fixed!

What does it consist of?

not fixed
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In the Direction of the Sweep Line QAT
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Obviously the intersection of Vor(P) and sweep line ¢ at the
current time point is not known yet.

Instead, we store the part above ¢ that is already fixed!

What does it consist of?

not fixed
DN N D l é(éy)
Enforcing the equality |pq| = |gf| gives
1 Dy + £
f L) = L — Px ’ L . .
)= oy =) TP T
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In the Direction of the Sweep Line QAT

tttttttttttttttttttttttttttttt

Obviously the intersection of Vor(P) and sweep line ¢ at the
current time point is not known yet.

Instead, we store the part above ¢ that is already fixed!

What does it consist of?

not fixed
DN N D l é(éy)
Enforcing the equality |pq| = |gf| gives
1 Dy + £
O\ — () — z—p, )2 Py
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Definition: The beach line 5, is the lower envelope of
parabolas f]f for the points already found.
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Definition: The beach line 5, is the lower envelope of
parabolas f]f for the points already found.

What does it have to do with Vor(P)?
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he Beach Line

tttttttttttttttttttttttttttttt

Definition: The beach line 5, is the lower envelope of
parabolas f]f for the points already found.

What does it have to do with Vor(P)?

Obs.: = The beach line is z-monotone
a [ntersection points in the beach line lie on Voronol
edges

= As the sweep-line goes down, intersection points
run along Vor(P)
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he Beach Line

tttttttttttttttttttttttttttttt

Definition: The beach line 5, is the lower envelope of
parabolas f]f for the points already found.

What does it have to do with Vor(P)?

Obs.: = The beach line is z-monotone
a [ntersection points in the beach line lie on Voronol
edges

= As the sweep-line goes down, intersection points
run along Vor(P)

Goal: Store (implicit) contour 3, instead of Vor(P) N/
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Before we proceed... AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Demo
http:/ /www.diku.dk /hjemmesider/studerende/duff/Fortune/
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Point Events AUT

Karlsruhe Institute of Technology
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Point Events QAT

stitute of Technology

= |f / meets a point, then a new parabola is added to 3,
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Point Events QAT

stitute of Technology

= |f / meets a point, then a new parabola is added to 3,
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Point Events

= |f / meets a point, then a new parabola is added to 3,

= The two intersection points generate a new part of an edge.
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Point Events

= |f / meets a point, then a new parabola is added to 3,

= The two intersection points generate a new part of an edge.

Lemma 1: New arcs on 5, only come from point events.
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Point Events

= |f / meets a point, then a new parabola is added to 3,

= The two intersection points generate a new part of an edge.
Lemma 1: New arcs on 5, only come from point events.

Corollary: 5, is at most 2n — 1 parabolic arcs
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Point Events

= |f / meets a point, then a new parabola is added to 3,

= The two intersection points generate a new part of an edge.
Lemma 1: New arcs on 5, only come from point events.

Corollary: 5, is at most 2n — 1 parabolic arcs

More about this in exercises...
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Circle Events AT

Karlsruhe Institute of Technology
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Circle Events AT

stitute of Technology

= A parabolic arc disappears from fﬂ, ij,fsz at a common
point ¢
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Circle Events AT

tttttttttttttttttttttttttttttt

= A parabolic arc disappears from fﬂ, ij,fsz at a common
point ¢

» The circle Cp(q) that touches p;, p;, pr and ¢
= q is a Voronoi vertex
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Circle Events

o
= A parabolic arc disappears from fﬂ, ij,fsz at a common

point ¢

» The circle Cp(q) that touches p;, p;, pr and ¢
= q is a Voronoi vertex
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Circle Events

= A parabolic arc disappears from fﬂ, ij,fsz at a common
point ¢

» The circle Cp(q) that touches p;, p;, pr and ¢
= q is a Voronoi vertex

Def.: The lowest point of the circle defined by three points
of consecutive arcs in 3, defines a circle event.
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Circle Events

= A parabolic arc disappears from fﬂ, ij,fsz at a common
point ¢

» The circle Cp(q) that touches p;, p;, pr and ¢
= q is a Voronoi vertex

Def.: The lowest point of the circle defined by three points
of consecutive arcs in 3, defines a circle event.

Lemma 2: Arcs of 8, only disappear through circle events.
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Circle Events

= A parabolic arc disappears from fﬂ, ij,fsz at a common
point ¢

» The circle Cp(q) that touches p;, p;, pr and ¢
= q is a Voronoi vertex

Def.: The lowest point of the circle defined by three points
of consecutive arcs in 3, defines a circle event.

Lemma 2: Arcs of 8, only disappear through circle events.

Lemma 3: For each Voronoi vertex there is a circle event.
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Data Structures AT

tttttttttttttttttttttttttttttt

= Double-connected edge list (DCEL) D for Vor(P)

Warning: Include a bounding box to avoid half-lines
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Data Structures AUT
= Double-connected edge list (DCEL) D for Vor(P)

Warning: Include a bounding box to avoid half-lines

= Balanced binary search tree 7 for implicit beach line

— Leaves represent parabolic arcs from left to right
— Interior nodes (p;, pj) represent intersection points of f,, and f,.
— Pointers from interior nodes to the corresponding edges in D

<p4 p5>

!<p2,p3>/ \<p5,p4>

T (p1,p2)| |{P3,Dp4)

@ B O O
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Data Structures AUT
= Double-connected edge list (DCEL) D for Vor(P)

Warning: Include a bounding box to avoid half-lines

= Balanced binary search tree 7 for implicit beach line

— Leaves represent parabolic arcs from left to right
— Interior nodes (p;, pj) represent intersection points of f,, and f,.
— Pointers from interior nodes to the corresponding edges in D

<p4 p5>

!<p2,p3>/ \<p5,p4>

T (p1,p2)| |{P3,Dp4)

@ B O O

» Priority queue Q for the point and circle events
— Pointer from circle event to corresponding leaf in 7 and vice versa
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Fortune's Sweep Algorithm QAT

tttttttttttttttttttttttttttttt

VoronoiDiagram(P C R?)

Q < new PriorityQueue(P) // Point events sorted by y

T < new BalancedBinarySearchTree() // sweep status (/3)
D < new DCEL() // DS for Vor(P)

while not Q.empty() do
p < Q.ExtractMax()

if p point event then
| HandlePointEvent(p)

else
« < arcs of 8 to be removed
. HandleCircleEvent(a)

Handle interior remaining nodes of 7 (half-lines of Vor(P))
return D
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Fortune's Sweep Algorithm QAT

tttttttttttttttttttttttttttttt

VoronoiDiagram(P C R?)

Q < new PriorityQueue(P) // Point events sorted by y

T < new BalancedBinarySearchTree() // sweep status (/3)
D < new DCEL() // DS for Vor(P)

while not Q.empty() do
p < Q.ExtractMax()

if p point event then
| HandlePointEvent(p)

else
« < arcs of 8 to be removed
. HandleCircleEvent(«)

Handle interior remaining nodes of 7 (half-lines of Vor(P))
return D
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Handing Point Events AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

HandlePointEvent(point p)

p
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Handing Point Events

tttttttttttttttttttttttttttttt

HandlePointEvent(point p)

= Search in 7T for the arc o above p.
If o has a pointer to a circle event in Q, remove it from Q.

p
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Handing Point Events

. . HOW? tttttttttttttttttttttttttttttt
HandlePointEvent(point p) 7

= Search in 7T for the arc o above p.
If o has a pointer to a circle event in Q, remove it from Q.

p
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Handing Point Events QAT

tttttttttttttttttttttttttttttt

HandlePointEvent(point p)

= Search in 7T for the arc o above p.

If o has a pointer to a circle event in Q, remove it from Q.
= Split « into ag and as.

Let «v; be a new arc for p.
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Handing Point Events QAT

tttttttttttttttttttttttttttttt

HandlePointEvent(point p)

= Search in 7T for the arc o above p.

If o has a pointer to a circle event in Q, remove it from Q.
= Split « into ag and as.

Let «v; be a new arc for p.

In T
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Handing Point Events QAT
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HandlePointEvent(point p)
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If o has a pointer to a circle event in Q, remove it from Q.
= Split « into ag and as.

Let «v; be a new arc for p.

In T
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Handing Point Events QAT

tttttttttttttttttttttttttttttt

HandlePointEvent(point p)

= Search in 7T for the arc o above p.

If o has a pointer to a circle event in Q, remove it from Q.
= Split « into ag and as.

Let «v; be a new arc for p.

14  Tamara Mchledidze - Darren Strash - Computational Geometry Voronoi-Diagrams



Handing Point Events AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

HandlePointEvent(point p)

= Search in 7T for the arc o above p.

If o« has a pointer to a circle event in Q, remove it from Q.
= Split « into ag and as.

Let a; be a new arc for p.
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Handing Point Events QAT

tttttttttttttttttttttttttttttt

HandlePointEvent(point p)

= Search in 7T for the arc o above p.

If o has a pointer to a circle event in Q, remove it from Q.
= Split « into ag and as.

Let «v; be a new arc for p.

= Add edges {(q,p) and (p,q) to D.

Intersection points
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Handing Point Events AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

HandlePointEvent(point p)

= Search in 7T for the arc o above p.

If o« has a pointer to a circle event in Q, remove it from Q.
= Split « into ag and as.

Let a; be a new arc for p.
= Add edges {(q,p) and (p,q) to D.

= Check (p;,q,p) and (p,q, p.) for circle events.
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Handing Point Events AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

HandlePointEvent(point p)

= Search in 7T for the arc o above p.

If o« has a pointer to a circle event in Q, remove it from Q.
= Split « into ag and as.

Let a; be a new arc for p.
= Add edges {(q,p) and (p,q) to D.

= Check (p;,q,p) and (p,q, p.) for circle events.
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Handing Point Events AT

tttttttttttttttttttttttttttttt

HandlePointEvent(point p)

= Search in 7T for the arc o above p.

If o has a pointer to a circle event in Q, remove it from Q.
= Split « into ag and as.

Let «v; be a new arc for p.
= Add edges {(q,p) and (p,q) to D.

= Check (p;,q,p) and (p,q, p.) for circle events.

: / Intersection points
Neighbors of B3| |n T
(@f —
Q

Running time?

O(logn)
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Handling Circle Events AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

HandleCircleEvent(arc «)

left
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Handling Circle Events AT

tttttttttttttttttttttttttttttt

HandleCircleEvent(arc «)

= 7T.delete(ar); Update intersection points in T

left
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Handling Circle Events

tttttttttttttttttttttttttttttt

HandleCircleEvent(arc «)
= 7T.delete(ar); Update intersection points in T

s Remove all circle events with middle arc a from O.

left
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Handling Circle Events

HandleCircleEvent(arc «)
= 7T.delete(ar); Update intersection points in T

s Remove all circle events with middle arc a from O.

left
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false
alarms

Voronoi-Diagrams



Handling Circle Events AT

tttttttttttttttttttttttttttttt

HandleCircleEvent(arc «)
= 7T.delete(ar); Update intersection points in T
= Remove all circle events with middle arc o from Q.

= Add node V({p,p',p"}) and edges (p,p”), (p",p) to D,

left
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Handling Circle Events AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

HandleCircleEvent(arc «)
= 7T.delete(ar); Update intersection points in T

. . . false
s Remove all circle events with middle arc a from O. |
alarms

= Add node V({p,p',p"}) and edges (p,p”), (p",p) to D,
= Add potential circle events (p;, p,p"”) and {(p,p"”,p,) to Q.

left
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Handling Circle Events AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

HandleCircleEvent(arc «)
= 7T.delete(ar); Update intersection points in T

. . . false
s Remove all circle events with middle arc a from O. |
alarms

= Add node V({p,p',p"}) and edges (p,p”), (p",p) to D,
= Add potential circle events (p;, p,p"”) and {(p,p"”,p,) to Q.

left
Running time?
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Handling Circle Events AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

HandleCircleEvent(arc «)
= 7T.delete(ar); Update intersection points in T

. . . false
s Remove all circle events with middle arc a from O. |
alarms

= Add node V({p,p',p"}) and edges (p,p”), (p",p) to D,
= Add potential circle events (p;, p,p"”) and {(p,p"”,p,) to Q.

left
Running time?

O(logn)
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Fortune's Sweep Algorithm QAT

tttttttttttttttttttttttttttttt

Theorem 4: For a set P of n points, Fortune's sweep
algorithm computes the Voronoi Diagram

Vor(P) in O(nlogn) time and O(n) space.
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Fortune's Sweep Algorithm QAT

tttttttttttttttttttttttttttttt

Theorem 4: For a set P of n points, Fortune's sweep
algorithm computes the Voronoi Diagram

Vor(P) in O(nlogn) time and O(n) space.

Proof sketch:
= Each event requires O(logn) time

= N point events
= < 2n — 5 circle events (= #nodes of Vor(P))
= False alarms are deleted from Q before they are processed.
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Fortune's Sweep Algorithm QAT

tttttttttttttttttttttttttttttt

Theorem 4: For a set P of n points, Fortune's sweep
algorithm computes the Voronoi Diagram

Vor(P) in O(nlogn) time and O(n) space.

Proof sketch:
= Each event requires O(logn) time

= N point events
= < 2n — 5 circle events (= #nodes of Vor(P))
= False alarms are deleted from Q before they are processed.
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Discussion AT

Karlsruhe Institute of Technology

Are there other variants of Voronoi diagrams?
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Discussion ﬂ(“.

stitute of Technology

Are there other variants of Voronoi diagrams?

Yes! For example, we can design an algorithm to compute the Voronoi
diagram for line segments with the same running time and space.

Other metrics like L,, or additive/multiplicative / ~
weighted Voronoi diagrams are possible. \ /
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Discussion AT

tttttttttttttttttttttttttttt gy

Are there other variants of Voronoi diagrams?

Yes! For example, we can design an algorithm to compute the Voronoi
diagram for line segments with the same running time and space.

Other metrics like L,, or additive/multiplicative / ~
weighted Voronoi diagrams are possible. \ /

Voronoi diagrams for polygons define the
so-called medial axis, (important in image
processing).

Also farthest-point Voronoi diagrams are
possible.
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Discussion AT

tttttttttttttttttttttttttttt gy

Are there other variants of Voronoi diagrams?

Yes! For example, we can design an algorithm to compute the Voronoi
diagram for line segments with the same running time and space.

Other metrics like L,, or additive/multiplicative / ~
weighted Voronoi diagrams are possible. \ /

Voronoi diagrams for polygons define the
so-called medial axis, (important in image
processing).

Also farthest-point Voronoi diagrams are
possible.

What happens in higher dimensions?
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Discussion AT

tttttttttttttttttttttttttttttt

Are there other variants of Voronoi diagrams?

Yes! For example, we can design an algorithm to compute the Voronoi
diagram for line segments with the same running time and space.

Other metrics like L,, or additive/multiplicative / ~
weighted Voronoi diagrams are possible. \ /

Voronoi diagrams for polygons define the
so-called medial axis, (important in image
processing).

Also farthest-point Voronoi diagrams are
possible.

What happens in higher dimensions?

The complexity of Vor(P) increases to ©(n!%/21) and the running time
to O(nlogn + nl¥/21).
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From Voronoi to Art... QAT

Karlsruhe Institute of Technology

Geogebra
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