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Motivation

Given a position p = (px, py)
in a map, determine in which
country p lies.

more precisely:
Find a data structure for
efficiently answering such
point location queries.

The map is modeled as a
subdivision of the plane into
disjoint polygons.
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construct data structure for fast point location queries.

Think for 2 minutes!
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Goal: Given subdivision S of the plane with n segments,
construct data structure for fast point location queries.
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time
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Problem Setting

Goal: Given subdivision S of the plane with n segments,
construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

Query:

search this slab
find correct slab

} O(log n)
time

But: Space? Θ(n2)

2 binary
searches
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Problem Setting

Goal: Given subdivision S of the plane with n segments,
construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

Query:

search this slab
find correct slab

} O(log n)
time

But: Space? Θ(n2) Question: lower bound example?

2 binary
searches
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Reducing the Complexity
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Reducing the Complexity

Observation: Slab partition is a refinement S ′ of S into
(possibly degenerate) trapezoids.

Goal: Find a suitable refinement of S with lower
complexity!

Solution: Trapezoidal map T (S)

R

Compare to slab
partition
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Reducing the Complexity

Observation: Slab partition is a refinement S ′ of S into
(possibly degenerate) trapezoids.

Goal: Find a suitable refinement of S with lower
complexity!

Solution: Trapezoidal map T (S)

Assumption: S is in general position, i.e., no two segment
endpoints have the same x-coordinate

R
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one or two vertical sides
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Notation

Definition: A side of a face of T (S) is a segment of maximal
length contained in face boundary.

Observation: S in general position ⇒ each face ∆ of T (S) has:

one or two vertical sides
two non-vertical sides

top(∆)

bot(∆)

∆

Left side:

R

∆ ∆ ∆ ∆ ∆

leftp(∆)
analogous: rightp(∆)
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Complexity of the Trapezoidal Map

Obs.: A trapezoid ∆ is uniquely defined by bot(∆), top(∆),
leftp(∆) and rightp(∆).

leftp(∆) rightp(∆)

top(∆)

bot(∆)
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Search Structure

Goal: Compute the trapzoidal map T (S) and simultaneously a
data structure D(S) for point location in T (S).

A

B

C

D E

F

G

p1 q1

p2

q2

s1

s2

T (S)

A

B

C

D

E

F

G

p1

q1

p2

q2s1

s2

s2

D(S)

D(S) is a DAG with:

x-node for point p tests left/right of p

y-node for segment s tests above/below s

leaf node for trapezoid ∆

p

∆

s
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Incremental Algorithm

TrapezoidalMap(S)

Input: set S = {s1, . . . , sn} of crossing-free segments
Output: trapezoidal map T (S) and search structure D(S)
initialize T and D for R = BBox(S)
S ← RandomPermutation(S)
for i← 1 to n do

H ← {∆ ∈ T | ∆ ∩ si 6= ∅}
T ← T \H
T ← T ∪ newly created trapezoids of si
D ← replace leaves for H by nodes and leaves for new trapezoids

return (T ,D)
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Incremental Algorithm

TrapezoidalMap(S)

Input: set S = {s1, . . . , sn} of crossing-free segments
Output: trapezoidal map T (S) and search structure D(S)
initialize T and D for R = BBox(S)
S ← RandomPermutation(S)
for i← 1 to n do

H ← {∆ ∈ T | ∆ ∩ si 6= ∅}
T ← T \H
T ← T ∪ newly created trapezoids of si
D ← replace leaves for H by nodes and leaves for new trapezoids

return (T ,D)

Problem: Size of D and query time depend on insertion order

Solution: Randomization!
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Invariant: T is trapezoidal map for Si = {s1, . . . , si} and
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qi
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Randomized Incremental Algorithm

Invariant: T is trapezoidal map for Si = {s1, . . . , si} and
D is corresponding search structure

Initialization: T = T (∅) = R and D = (R, ∅)
Step 1: H ← {∆ ∈ T | ∆ ∩ si 6= ∅}

Task: How do you find the set H of
trapezoids from left to right?

pi

qi
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Randomized Incremental Algorithm

Invariant: T is trapezoidal map for Si = {s1, . . . , si} and
D is corresponding search structure

Initialization: T = T (∅) = R and D = (R, ∅)
Step 1: H ← {∆ ∈ T | ∆ ∩ si 6= ∅}

Task: How do you find the set H of
trapezoids from left to right?

∆0 ← FindTrapezoid(pi,D); j ← 0
while right endpoint qi right of rightp(∆j) do

if rightp(∆j) above si then
∆j+1 ← lower right neighbor of ∆j

else
∆j+1 ← upper right neighbor of ∆j

j ← j + 1

return ∆0, . . . ,∆j

pi

qi
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Updating T (S) and D(S)
Step 2: Update T and D

Case 1: si ⊂ ∆0

∆0
A

B

C D

T (Si−1) T (Si)

pi si

qi
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Updating T (S) and D(S)
Step 2: Update T and D

Case 1: si ⊂ ∆0

D(Si−1)

∆0

D(Si)

pi

qi
si

A

B C
D

∆0
A

B

C D

T (Si−1) T (Si)

pi si

qi
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Updating T (S) and D(S)
Step 2: Update T and D

Case 1: si ⊂ ∆0

Case 2: |T ∩ si| ≥ 2

∆0 ∆1
∆2

∆3 A
B C

D E F

T (Si−1) T (Si)

pi
si

qi
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Updating T (S) and D(S)
Step 2: Update T and D

Case 1: si ⊂ ∆0

Case 2: |T ∩ si| ≥ 2

∆0 ∆1
∆2

∆3 A
B C

D E F

T (Si−1) T (Si)

D(Si−1)

∆2∆0 ∆1 ∆3

D(Si)

?

pi
si

qi
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Updating T (S) and D(S)
Step 2: Update T and D

Case 1: si ⊂ ∆0

Case 2: |T ∩ si| ≥ 2

∆0 ∆1
∆2

∆3 A
B C

D E F

T (Si−1) T (Si)

D(Si−1)

∆2∆0 ∆1 ∆3

D(Si)

si si si

si

qi

A

B

C

D

E

F

pi
si

qi
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Analysis

Thm 1: The algorithm computes the trapezoidal map T (S)
and the search structure D for a set S of n segments
in expected O(n log n) time. The expected size of D
is O(n) and the expected query time is O(log n).



Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Point Location11

Analysis

Thm 1: The algorithm computes the trapezoidal map T (S)
and the search structure D for a set S of n segments
in expected O(n log n) time. The expected size of D
is O(n) and the expected query time is O(log n).

Observations:
worst case: size of D is quadratic and query time is linear
hope: that happens rarely!
consider expected time and size over all n! permutations of S
the theorem holds independently of the input set S
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Analysis

Thm 1: The algorithm computes the trapezoidal map T (S)
and the search structure D for a set S of n segments
in expected O(n log n) time. The expected size of D
is O(n) and the expected query time is O(log n).

Observations:
worst case: size of D is quadratic and query time is linear
hope: that happens rarely!
consider expected time and size over all n! permutations of S
the theorem holds independently of the input set S

Proof:
define random variables and consider their expected values
perform backward analysis

→ details on blackboard
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Worst-Case Consideration

So far: expected query time for arbitrary point is O(log n)

But: each permutation could have a very bad (worst
case) query point
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Worst-Case Consideration

So far: expected query time for arbitrary point is O(log n)

But: each permutation could have a very bad (worst
case) query point

Lemma 2: Let S be a set of n crossing-free segments, let q be
a query point and let λ > 0. Then
Pr[search path for q longer than 3λ ln(n+ 1)]
≤ 1/(n+ 1)λ ln 1.25−1.

No proof. (or see Chapter 6.4)
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Worst-Case Consideration

So far: expected query time for arbitrary point is O(log n)

But: each permutation could have a very bad (worst
case) query point

Lemma 2: Let S be a set of n crossing-free segments, let q be
a query point and let λ > 0. Then
Pr[search path for q longer than 3λ ln(n+ 1)]
≤ 1/(n+ 1)λ ln 1.25−1.

Lemma 3: Let S be a set of n crossing-free segments and
λ > 0. Then
Pr[max. search path in D longer than 3λ ln(n+ 1)]
≤ 2/(n+ 1)λ ln 1.25−3.
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Worst-Case Consideration

So far: expected query time for arbitrary point is O(log n)

But: each permutation could have a very bad (worst
case) query point

Lemma 2: Let S be a set of n crossing-free segments, let q be
a query point and let λ > 0. Then
Pr[search path for q longer than 3λ ln(n+ 1)]
≤ 1/(n+ 1)λ ln 1.25−1.

Lemma 3: Let S be a set of n crossing-free segments and
λ > 0. Then
Pr[max. search path in D longer than 3λ ln(n+ 1)]
≤ 2/(n+ 1)λ ln 1.25−3.

Thm 2: Let S be a subdivision of the plane with n edges.
There is a search structure for point location within
S that has O(n) space and O(log n) query time.



Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Point Location13

Degenerate Inputs

Two assumptions:
no two segment endpoints have the same x-coordinates
always unique answers (left/right) on the search path
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Degenerate Inputs

Two assumptions:
no two segment endpoints have the same x-coordinates
always unique answers (left/right) on the search path

solution: symbolic shear transformation
ϕ : (x, y) 7→ (x+ εy, y)

ϕ

x

y

x

y
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Degenerate Inputs

Two assumptions:
no two segment endpoints have the same x-coordinates
always unique answers (left/right) on the search path

solution: symbolic shear transformation
ϕ : (x, y) 7→ (x+ εy, y)

ϕ

x

y

x

y

Here ε > 0 is chosen such that the x-order < of the points
does not change.
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Degenerate Inputs

Effect 1: lexicographic order

Effect 2: affine map ϕ maintains point–line relations
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Degenerate Inputs

Run algorithm for ϕS = {ϕs | s ∈ S} and ϕp.

Two basic operations for constructing T and D:
1. is q left or right of the vertical line through p?
2. is q above or below the segment s?

Effect 1: lexicographic order

Effect 2: affine map ϕ maintains point–line relations
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Degenerate Inputs

Run algorithm for ϕS = {ϕs | s ∈ S} and ϕp.

Two basic operations for constructing T and D:
1. is q left or right of the vertical line through p?
2. is q above or below the segment s?

Locating a point q in T (S) works by locating ϕq in T (ϕS).

Effect 1: lexicographic order

Effect 2: affine map ϕ maintains point–line relations

→ see Chapter 6.3 in [De Berg et al. 2008]
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Discussion

Are there similar methods for higher dimensions?

The currently best three-dimensional data structure uses O(n log n)
space and O(log2 n) query time [Snoeyink ’04]. Whether linear space
and O(log n) query time is possible is an open question. In even higher
dimensions efficient methods are known only for special hyper plane
subdivisions.
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and O(log n) query time is possible is an open question. In even higher
dimensions efficient methods are known only for special hyper plane
subdivisions.

Are there dynamic data structures that allow insertions and
deletions?
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Discussion

Are there similar methods for higher dimensions?

The currently best three-dimensional data structure uses O(n log n)
space and O(log2 n) query time [Snoeyink ’04]. Whether linear space
and O(log n) query time is possible is an open question. In even higher
dimensions efficient methods are known only for special hyper plane
subdivisions.

Are there dynamic data structures that allow insertions and
deletions?

Dynamic data structures for point location are well known, see the survey
by [Chiang, Tamassia ’92]. A more recent example by [Arge et al. ’06]
needs O(n) space, O(log n) query time and O(log n) update time
(insertions).
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