Computational Geometry · Lecture
Range Searching II: Windowing Queries

Tamara Mchedlidze · Darren Strash
23.11.2015
Object types in range queries

Setting so far:
- Input: set of points P
 (here $P \subset \mathbb{R}^2$)
- Output: all points in $P \cap [x, x'] \times [y, y']$
- Data structures: kd-trees or range trees
Object types in range queries

Setting so far:
- Input: set of points P (here $P \subseteq \mathbb{R}^2$)
- Output: all points in $P \cap [x, x'] \times [y, y']$
- Data structures: kd-trees or range trees

Further variant
- Input: set of line segments S (here in \mathbb{R}^2)
- Output: all segments in $S \cap [x, x'] \times [y, y']$
- Data structures: ?
Axis-parallel line segments

special case (e.g., in VLSI design): all line segments are axis-parallel
Axis-parallel line segments

special case (e.g., in VLSI design): all line segments are axis-parallel

Problem:

Given \(n \) vertical and horizontal line segments and an axis-parallel rectangle \(R = [x, x'] \times [y, y'] \), find all line segments that intersect \(R \).
Axis-parallel line segments

Problem:

Given n vertical and horizontal line segments and an axis-parallel rectangle $R = [x, x'] \times [y, y']$, find all line segments that intersect R.

How to approach this case?
Axis-parallel line segments

special case (e.g., in VLSI design): all line segments are axis-parallel

Problem:
Given \(n \) vertical and horizontal line segments and an axis-parallel rectangle \(R = [x, x'] \times [y, y'] \), find all line segments that intersect \(R \).

Case 1: \(\geq 1 \) endpoint in \(R \)
→ use range tree

Case 2: both endpoints \(\notin R \)
→ intersect left or top edge of \(R \)
Case 2 in detail

Problem:
Given a set H of n horizontal line segments and a vertical query segment s, find all line segments in H that intersect s. (Vertical segments and a horizontal query are analogous.)
Case 2 in detail

Problem:
Given a set H of n horizontal line segments and a vertical query segment s, find all line segments in H that intersect s. (Vertical segments and a horizontal query are analogous.)

One level simpler: vertical line $s := (x = q_x)$

Given n intervals $I = \{[x_1, x'_1], [x_2, x'_2], \ldots, [x_n, x'_n]\}$ and a point q_x, find all intervals that contain q_x.
Case 2 in detail

Problem:
Given a set H of n horizontal line segments and a vertical query segment s, find all line segments in H that intersect s. (Vertical segments and a horizontal query are analogous.)

One level simpler: vertical line $s := (x = q_x)$

Given n intervals $I = \{[x_1, x_1'], [x_2, x_2'], \ldots, [x_n, x_n']\}$ and a point q_x, find all intervals that contain q_x.

What do we need for an appropriate data structure?
Interval Trees

Construction of an interval tree T

- if $I = \emptyset$ then T is a leaf
- else let x_{mid} be the median of the endpoints of I and define

$$
 I_{\text{left}} = \{ [x_j, x'_j] \mid x'_j < x_{\text{mid}} \}
$$

$$
 I_{\text{mid}} = \{ [x_j, x'_j] \mid x_j \leq x_{\text{mid}} \leq x'_j \}
$$

$$
 I_{\text{right}} = \{ [x_j, x'_j] \mid x_{\text{mid}} < x_j \}
$$

T consists of a node v for x_{mid} and

- lists $L(v)$ and $R(v)$ for I_{mid} sorted by left and right interval endpoints, respectively
- left child of v is an interval tree for I_{left}
- right child of v is an interval tree for I_{right}

\[
\begin{align*}
L &= s_3, s_4, s_5 & R &= s_5, s_3, s_4 \\
L &= s_1, s_2 & R &= s_5, s_3, s_4 \\
L &= s_6, s_7 & R &= s_7, s_6
\end{align*}
\]
Properties of interval trees

Lemma 1: An interval tree for \(n \) intervals needs \(O(n) \) space and has depth \(O(\log n) \). It can be constructed in time \(O(n \log n) \).
Properties of interval trees

Lemma 1: An interval tree for \(n \) intervals needs \(O(n) \) space and has depth \(O(\log n) \). It can be constructed in time \(O(n \log n) \).

How does the query work?
Properties of interval trees

Lemma 1: An interval tree for n intervals needs $O(n)$ space and has depth $O(\log n)$. It can be constructed in time $O(n \log n)$.

```plaintext
QueryIntervalTree(v, qx)

if v no leaf then
    if qx < x_{mid}(v) then
        search in $\mathcal{L}$ from left to right for intervals containing $qx$
        QueryIntervalTree(lc(v), qx)
    else
        search in $\mathcal{R}$ from right to left for intervals containing $qx$
        QueryIntervalTree(rc(v), qx)
```


Properties of interval trees

Lemma 1: An interval tree for \(n \) intervals needs \(O(n) \) space and has depth \(O(\log n) \). It can be constructed in time \(O(n \log n) \).

```plaintext
QueryIntervalTree(v, qx)
    if v no leaf then
        if qx < x_{mid}(v) then
            search in \( \mathcal{L} \) from left to right for intervals containing \( qx \)
            QueryIntervalTree(lc(v), qx)
        else
            search in \( \mathcal{R} \) from right to left for intervals containing \( qx \)
            QueryIntervalTree(rc(v), qx)
    else
```

Lemma 2: Using an interval tree we can find all \(k \) intervals containing a query point \(qx \) in \(O(\log n + k) \) time.
From lines to line segments

How can we adapt the idea of an interval tree for query segments $q_x \times [q_y, q_y']$ instead of a query line $x = q_x$?
From lines to line segments

How can we adapt the idea of an interval tree for query segments $q_x \times [q_y, q'_y]$ instead of a query line $x = q_x$?
From lines to line segments

How can we adapt the idea of an interval tree for query segments $q_x \times [q_y, q'_y]$ instead of a query line $x = q_x$?

The correct line segments in I_{mid} can easily be found using a range tree instead of simple lists.
From lines to line segments

How can we adapt the idea of an interval tree for query segments $q_x \times [q_y, q'_y]$ instead of a query line $x = q_x$?

The correct line segments in I_{mid} can easily be found using a range tree instead of simple lists.

Theorem 1: Let S be a set of horizontal (axis-parallel) line segments in the plane. All k line segments that intersect a vertical query segment (an axis-parallel rectangle R) can be found in $O(\log^2(n) + k)$ time. The data structure requires $O(n \log n)$ space and construction time.
Arbitrary line segments

Map data often contain arbitrarily oriented line segments.

Problem:
Given n disjoint line segments and an axis-parallel rectangle $R = [x, x'] \times [y, y']$, find all line segments that intersect R.

How to proceed?
Arbitrary line segments

Map data often contain arbitrarily oriented line segments.

Problem:
Given \(n \) disjoint line segments and an axis-parallel rectangle \(R = [x, x'] \times [y, y'] \), find all line segments that intersect \(R \).

Case 1: \(\geq 1 \) endpoint in \(R \) \(\rightarrow \) use range tree
Case 2: both endpoints \(\notin R \) \(\rightarrow \) intersect at least one edge of \(R \)
Decomposition into elementary intervals

Interval trees don’t really help here

\([-\infty, q_x] \times [q_y, q'_y]\)
Decomposition into elementary intervals

Interval trees don’t really help here

\[[−∞, q_x] \times [q_y, q'_y] \]

Identical 1d base problem:
Given \(n \) intervals \(I = \{[x_1, x'_1], [x_2, x'_2], \ldots, [x_n, x'_n]\} \) and a point \(q_x \), find all intervals that contain \(q_x \).

- sort all \(x_i \) and \(x'_i \) in list \(p_1, \ldots, p_{2n} \)
- create sorted elementary intervals
 \((−∞, p_1), [p_1, p_1], (p_1, p_2), [p_2, p_2], \ldots, [p_{2n}, p_{2n}], (p_{2n}, ∞) \)
Segment trees

Idea for data structure:
- create binary search tree with elementary intervals in leaves
- for all points q_x in the same elementary interval the answer is the same
- leaf μ for elementary interval $e(\mu)$ stores interval set $I(\mu)$
- query requires $O(\log n + k)$ time
Segment trees

Idea for data structure:

- create binary search tree with elementary intervals in leaves
- for all points \(q_x \) in the same elementary interval the answer is the same
- leaf \(\mu \) for elementary interval \(e(\mu) \) stores interval set \(I(\mu) \)
- query requires \(O(\log n + k) \) time

Any problem?
Segment trees

Idea for data structure:
- create binary search tree with elementary intervals in leaves
- for all points \(q_x \) in the same elementary interval the answer is the same
- leaf \(\mu \) for elementary interval \(e(\mu) \) stores interval set \(I(\mu) \)
- query requires \(O(\log n + k) \) time

Problem: Storage space is worst-case quadratic
→ store intervals as high up in the tree as possible
Segment trees

Idea for data structure:
- create binary search tree with elementary intervals in leaves
- for all points \(q_x \) in the same elementary interval the answer is the same
- leaf \(\mu \) for elementary interval \(e(\mu) \) stores interval set \(I(\mu) \)
- query requires \(O(\log n + k) \) time

Problem: Storage space is worst-case quadratic

→ store intervals as high up in the tree as possible

- node \(v \) represents interval \(e(v) = e(lc(v)) \cup e(rc(v)) \)
- input interval \(s_i \in I(v) \iff e(v) \subseteq s_i \) and \(e(parent(v)) \nsubseteq s_i \)
Segment trees

Idea for data structure:
- create binary search tree with elementary intervals in leaves
- for all points q_x in the same elementary interval the answer is the same
- leaf μ for elementary interval $e(\mu)$ stores interval set $I(\mu)$
- query requires $O(\log n + k)$ time

Problem: Storage space is worst-case quadratic

→ store intervals as high up in the tree as possible

- node v represents interval $e(v) = e(lc(v)) \cup e(rc(v))$
- input interval $s_i \in I(v) \iff e(v) \subseteq s_i$ and $e(parent(v)) \not\subseteq s_i$
Properties of segment trees

Lemma 3: A segment tree for n intervals requires $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.
Properties of segment trees

Lemma 3: A segment tree for \(n \) intervals requires \(O(n \log n) \) space and can be constructed in \(O(n \log n) \) time.

Sketch of proof:

\[\text{InsertSegmentTree}(v, [x, x']) \]

\[
\begin{align*}
\text{if } & e(v) \subseteq [x, x'] \text{ then} \\
& \quad \text{store } [x, x'] \text{ in } I(v) \\
\text{else} & \\
& \quad \text{if } e(lc(v)) \cap [x, x'] \neq \emptyset \text{ then} \\
& \quad \quad \text{InsertSegmentTree}(lc(v), [x, x']) \\
& \quad \text{if } e(rc(v)) \cap [x, x'] \neq \emptyset \text{ then} \\
& \quad \quad \text{InsertSegmentTree}(rc(v), [x, x'])
\end{align*}
\]
Queries in segment trees

QuerySegmentTree(v, q_x)

return all intervals in $I(v)$

if v no leaf then

 if $q_x \in e(lc(v))$ then
 QuerySegmentTree($lc(v), q_x$)
 else
 QuerySegmentTree($rc(v), q_x$)

Lemma 4: All k intervals that contain a query point q_x can be computed in $O(\log n + k)$ time using a segment tree.
Queries in segment trees

```python
QuerySegmentTree(v, qx)
    return all intervals in \( I(v) \)
    if v no leaf then
        if \( qx \in e(lc(v)) \) then
            QuerySegmentTree(lc(v), qx)
        else
            QuerySegmentTree(rc(v), qx)
```

Lemma 4: All \(k \) intervals that contain a query point \(qx \) can be computed in \(O(\log n + k) \) time using a segment tree.

Lemma 4 yields the same result as interval trees. What is different?
Queries in segment trees

\[
\text{QuerySegmentTree}(v, q_x) \quad \text{return all intervals in } I(v) \\
\text{if } v \text{ no leaf then} \\
\quad \text{if } q_x \in e(lc(v)) \text{ then} \\
\quad \quad \text{QuerySegmentTree}(lc(v), q_x) \\
\quad \text{else} \\
\quad \quad \text{QuerySegmentTree}(rc(v), q_x)
\]

Lemma 4: All \(k \) intervals that contain a query point \(q_x \) can be computed in \(O(\log n + k) \) time using a segment tree.

Lemma 4 yields the same result as interval trees. What is different?

\(\rightarrow \) all intervals stored in a positive node \(v \) contain \(q_x \) – in an interval tree one would have to continue searching
Back to arbitrary line segments

- create segment tree for the x intervals of the line segments
- each node v corresponds to a vertical strip $e(v) \times \mathbb{R}$
- line segment s is in $I(v)$ iff s crosses the strip of v but not the strip of parent(v)
- at each node v on the search path for the vertical segment $s' = q_x \times [q_y, q'_y]$ all segments in $I(v)$ cover the x-coordinate q_x
Back to arbitrary line segments

- create segment tree for the x intervals of the line segments
- each node v corresponds to a vertical strip $e(v) \times \mathbb{R}$
- line segment s is in $I(v)$ iff s crosses the strip of v but not the strip of parent(v)
- at each node v on the search path for the vertical segment $s' = q_x \times [q_y, q_y']$ all segments in $I(v)$ cover the x-coordinate q_x
- find segments in the strip that cross s' using a vertically sorted auxiliary binary search tree
Summary

Theorem 2: Let S be a set of interior-disjoint line segments in the plane. All k segments that intersect a vertical query segment (an axis-parallel query rectangle R) can be found in time $O(k + \log^2 n)$. The corresponding data structure uses $O(n \log n)$ space and $O(n \log^2 n)$ construction time.
Summary

Theorem 2: Let S be a set of interior-disjoint line segments in the plane. All k segments that intersect a vertical query segment (an axis-parallel query rectangle R) can be found in time $O(k + \log^2 n)$. The corresponding data structure uses $O(n \log n)$ space and $O(n \log^2 n)$ construction time.

Remark:
The construction time for the data structure can be improved to $O(n \log n)$.
Discussion

Space requirement of interval trees
Discussion

Space requirement of interval trees

We have used range trees with $O(n \log n)$ space as auxiliary data structure in the interval trees. Using modified heaps this can be reduced to $O(n)$, see Chapter 10.2 in [BCKO’08].
Discussion

Space requirement of interval trees

We have used range trees with $O(n \log n)$ space as auxiliary data structure in the interval trees. Using modified heaps this can be reduced to $O(n)$, see Chapter 10.2 in [BCKO'08].

How can you efficiently count the intersected segments?
Discussion

Space requirement of interval trees

We have used range trees with $O(n \log n)$ space as auxiliary data structure in the interval trees. Using modified heaps this can be reduced to $O(n)$, see Chapter 10.2 in [BCKO’08].

How can you efficiently count the intersected segments?

Segment and interval trees support efficient counting queries (independent of k) with minor modifications → see exercises.
Discussion

Space requirement of interval trees

We have used range trees with $O(n \log n)$ space as auxiliary data structure in the interval trees. Using modified heaps this can be reduced to $O(n)$, see Chapter 10.2 in [BCKO'08].

How can you efficiently count the intersected segments?

Segment and interval trees support efficient counting queries (independent of k) with minor modifications → see exercises.

What to do for non-rectangular query regions?
Discussion

Space requirement of interval trees

We have used range trees with $O(n \log n)$ space as auxiliary data structure in the interval trees. Using modified heaps this can be reduced to $O(n)$, see Chapter 10.2 in [BCKO'08].

How can you efficiently count the intersected segments?

Segment and interval trees support efficient counting queries (independent of k) with minor modifications → see exercises.

What to do for non-rectangular query regions?

By triangulating the query polygon, the problem can be reduced to triangular queries. Suitable data structures can be found, e.g., in chapter 16 of [BCKO'08].