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Object types in range queries

Input: set of points P
(here P ⊂ R2)
Output: all points in
P ∩ [x, x′]× [y, y′]
Data structures: kd-trees
or range trees

Setting so far:

x x′
y

y′

2



Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching II

Object types in range queries

Input: set of points P
(here P ⊂ R2)
Output: all points in
P ∩ [x, x′]× [y, y′]
Data structures: kd-trees
or range trees

Setting so far:
Input: set of line segments S
(here in R2)
Output: all segments in
S ∩ [x, x′]× [y, y′]
Data structures: ?

Further variant

x x′
y

y′

x x′
y

y′
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Axis-parallel line segments

special case (e.g., in VLSI design):
all line segments are axis-parallel
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Axis-parallel line segments

special case (e.g., in VLSI design):
all line segments are axis-parallel

Problem:

Given n vertical and horizontal line segments and an
axis-parallel rectangle R = [x, x′]× [y, y′], find all line
segments that intersect R.
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Axis-parallel line segments

special case (e.g., in VLSI design):
all line segments are axis-parallel

Problem:

Given n vertical and horizontal line segments and an
axis-parallel rectangle R = [x, x′]× [y, y′], find all line
segments that intersect R.

How to approach this case?
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Axis-parallel line segments

special case (e.g., in VLSI design):
all line segments are axis-parallel

Problem:

Given n vertical and horizontal line segments and an
axis-parallel rectangle R = [x, x′]× [y, y′], find all line
segments that intersect R.

Case 1: ≥ 1 endpoint in R
→ use range tree

Case 2: both endpoints 6∈ R
→ intersect left or top edge of R
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Case 2 in detail

Problem:
Given a set H of n horizontal line segments and a vertical
query segment s, find all line segments in H that intersect s.
(Vertical segments and a horizontal query are analogous.)
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Case 2 in detail

Problem:
Given a set H of n horizontal line segments and a vertical
query segment s, find all line segments in H that intersect s.
(Vertical segments and a horizontal query are analogous.)

One level simpler: vertical line s := (x = qx)

line

Given n intervals I = {[x1, x′1], [x2, x′2], . . . , [xn, x′n]} and a
point qx, find all intervals that contain qx.

s
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Case 2 in detail

Problem:
Given a set H of n horizontal line segments and a vertical
query segment s, find all line segments in H that intersect s.
(Vertical segments and a horizontal query are analogous.)

One level simpler: vertical line s := (x = qx)

line

Given n intervals I = {[x1, x′1], [x2, x′2], . . . , [xn, x′n]} and a
point qx, find all intervals that contain qx.

What do we need for an
appropriate data structure?

s
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Interval Trees

Construction of an interval tree T
if I = ∅ then T is a leaf
else let xmid be the median of the endpoints of I and define

Ileft = {[xj , x′j ] | x′j < xmid}
Imid = {[xj , x′j ] | xj ≤ xmid ≤ x′j}
Iright = {[xj , x′j ] | xmid < xj}

T consists of a node v for xmid and
lists L(v) and R(v) for Imid sorted by left and right interval
endpoints, respectively
left child of v is an interval tree for Ileft
right child of v is an interval tree for Iright

s1

s2 s3

s4

s5

s6
s7

L = s3, s4, s5

L = s1, s2 L = s6, s7

R = s5, s3, s4

R = s7, s6R = s1, s2

v

Ileft

Imid

Iright
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Properties of interval trees

Lemma 1: An interval tree for n intervals needs O(n) space and has
depth O(log n). It can be constructed in time O(n log n).
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Properties of interval trees

Lemma 1: An interval tree for n intervals needs O(n) space and has
depth O(log n). It can be constructed in time O(n log n).

How does the query work?
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Properties of interval trees

Lemma 1: An interval tree for n intervals needs O(n) space and has
depth O(log n). It can be constructed in time O(n log n).

QueryIntervalTree(v, qx)

if v no leaf then
if qx < xmid(v) then

search in L from left to right for intervals containing qx
QueryIntervalTree(lc(v), qx)

else
search in R from right to left for intervals containing qx
QueryIntervalTree(rc(v), qx)
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Properties of interval trees

Lemma 1: An interval tree for n intervals needs O(n) space and has
depth O(log n). It can be constructed in time O(n log n).

QueryIntervalTree(v, qx)

if v no leaf then
if qx < xmid(v) then

search in L from left to right for intervals containing qx
QueryIntervalTree(lc(v), qx)

else
search in R from right to left for intervals containing qx
QueryIntervalTree(rc(v), qx)

Lemma 2: Using an interval tree we can find all k intervals containing a
query point qx in O(log n+ k) time.
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From lines to line segments

How can we adapt the idea of an interval tree for query segments
qx × [qy, q

′
y] instead of a query line x = qx?

xmid

qx
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From lines to line segments

How can we adapt the idea of an interval tree for query segments
qx × [qy, q

′
y] instead of a query line x = qx?

[−∞, qx]× [qy, q
′
y]

xmid

qx
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From lines to line segments

How can we adapt the idea of an interval tree for query segments
qx × [qy, q

′
y] instead of a query line x = qx?

[−∞, qx]× [qy, q
′
y]

xmid

The correct line segments in Imid can easily be found using a range tree
instead of simple lists.

qx
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From lines to line segments

How can we adapt the idea of an interval tree for query segments
qx × [qy, q

′
y] instead of a query line x = qx?

[−∞, qx]× [qy, q
′
y]

xmid

The correct line segments in Imid can easily be found using a range tree
instead of simple lists.

Theorem 1: Let S be a set of horizontal (axis-parallel) line segments in
the plane. All k line segments that intersect a vertical query
segment (an axis-parallel rectangle R) can be found in
O(log2(n) + k) time. The data structure requires O(n log n)
space and construction time.

qx
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Arbitrary line segments

Map data often contain
arbitrarily oriented line segments.

How to proceed?

Problem:

Given n disjoint line segments and an axis-parallel rectangle
R = [x, x′]× [y, y′], find all line segments that intersect R.
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Arbitrary line segments

Map data often contain
arbitrarily oriented line segments.

How to proceed?

Problem:

Given n disjoint line segments and an axis-parallel rectangle
R = [x, x′]× [y, y′], find all line segments that intersect R.

Case 1: ≥ 1 endpoint in R → use range tree

Case 2: both endpoints 6∈ R → intersect at least one edge of R
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Decomposition into elementary intervals

[−∞, qx]× [qy, q
′
y]

xmid

Interval trees don’t really help here
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Decomposition into elementary intervals

[−∞, qx]× [qy, q
′
y]

xmid

Interval trees don’t really help here

Given n intervals I = {[x1, x′1], [x2, x′2], . . . , [xn, x′n]} and a
point qx, find all intervals that contain qx.

Identical 1d base problem:

sort all xi and x′i in list p1, . . . , p2n
create sorted elementary intervals
(−∞, p1), [p1, p1], (p1, p2), [p2, p2], . . . , [p2n, p2n], (p2n,∞)
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Segment trees

s1

s2 s3
s4

Idea for data structure:
create binary search tree with elementary intervals in leaves
for all points qx in the same elementary interval the answer is the
same
leaf µ for elementary interval e(µ) stores interval set I(µ)
query requires O(log n+ k) time

s5
10



Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching II

Segment trees

s1

s2 s3
s4

Idea for data structure:
create binary search tree with elementary intervals in leaves
for all points qx in the same elementary interval the answer is the
same
leaf µ for elementary interval e(µ) stores interval set I(µ)
query requires O(log n+ k) time

s5

Any problem?
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Segment trees

s1

s2 s3
s4

Idea for data structure:
create binary search tree with elementary intervals in leaves
for all points qx in the same elementary interval the answer is the
same
leaf µ for elementary interval e(µ) stores interval set I(µ)
query requires O(log n+ k) time

s5

Problem: Storage space is worst-case quadratic

→ store intervals as high up in the tree as possible

10
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Segment trees

s1

s2 s3
s4

Idea for data structure:
create binary search tree with elementary intervals in leaves
for all points qx in the same elementary interval the answer is the
same
leaf µ for elementary interval e(µ) stores interval set I(µ)
query requires O(log n+ k) time

s5

Problem: Storage space is worst-case quadratic

→ store intervals as high up in the tree as possible

node v represents interval e(v) = e(lc(v)) ∪ e(rc(v))
input interval si ∈ I(v)⇔ e(v) ⊆ si and e(parent(v)) 6⊆ si
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Segment trees

s1

s2 s3
s4

Idea for data structure:
create binary search tree with elementary intervals in leaves
for all points qx in the same elementary interval the answer is the
same
leaf µ for elementary interval e(µ) stores interval set I(µ)
query requires O(log n+ k) time

s5

Problem: Storage space is worst-case quadratic

→ store intervals as high up in the tree as possible

s1

s1

s1

s2

s2

s3

s3, s5

s3

s4

s4

s5

s5

node v represents interval e(v) = e(lc(v)) ∪ e(rc(v))
input interval si ∈ I(v)⇔ e(v) ⊆ si and e(parent(v)) 6⊆ si
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Properties of segment trees

Lemma 3: A segment tree for n intervals requires O(n log n)
space and can be constructed in O(n log n) time.
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Properties of segment trees

Lemma 3: A segment tree for n intervals requires O(n log n)
space and can be constructed in O(n log n) time.

Sketch of proof:

InsertSegmentTree(v, [x, x′])

if e(v) ⊆ [x, x′] then
store [x, x′] in I(v)

else
if e(lc(v)) ∩ [x, x′] 6= ∅ then

InsertSegmentTree(lc(v)), [x, x′])

if e(rc(v)) ∩ [x, x′] 6= ∅ then
InsertSegmentTree(rc(v)), [x, x′])
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Queries in segment trees

QuerySegmentTree(v, qx)

return all intervals in I(v)
if v no leaf then

if qx ∈ e(lc(v)) then
QuerySegmentTree(lc(v), qx)

else
QuerySegmentTree(rc(v), qx)

Lemma 4: All k intervals that contain a query point qx can be
computed in O(log n+ k) time using a segment tree.
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Queries in segment trees

QuerySegmentTree(v, qx)

return all intervals in I(v)
if v no leaf then

if qx ∈ e(lc(v)) then
QuerySegmentTree(lc(v), qx)

else
QuerySegmentTree(rc(v), qx)

Lemma 4: All k intervals that contain a query point qx can be
computed in O(log n+ k) time using a segment tree.

Lemma 4 yields the same result as interval trees. What is different?
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Queries in segment trees

QuerySegmentTree(v, qx)

return all intervals in I(v)
if v no leaf then

if qx ∈ e(lc(v)) then
QuerySegmentTree(lc(v), qx)

else
QuerySegmentTree(rc(v), qx)

Lemma 4: All k intervals that contain a query point qx can be
computed in O(log n+ k) time using a segment tree.

Lemma 4 yields the same result as interval trees. What is different?

→ all intervals stored in a positive node v contain qx – in an interval tree
one would have to continue searching
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Back to arbitrary line segments

create segment tree for the x intervals of the line segments
each node v corresponds to a vertical strip e(v)× R
line segment s is in I(v) iff s crosses the strip of v but not the strip of
parent(v)
at each node v on the search path for the vertical segment
s′ = qx × [qy, q

′
y] all segments in I(v) cover the x-coordinate qx

s1
s2 s3

s4
s5

s6

{s4, s6} {s5}

{s1}
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Back to arbitrary line segments

σ1

σ2
σ3
σ4
σ5

σ6

σ1

σ2
σ3

σ4
σ5

σ6

create segment tree for the x intervals of the line segments
each node v corresponds to a vertical strip e(v)× R
line segment s is in I(v) iff s crosses the strip of v but not the strip of
parent(v)
at each node v on the search path for the vertical segment
s′ = qx × [qy, q

′
y] all segments in I(v) cover the x-coordinate qx

find segments in the strip that cross s′ using a vertically sorted auxiliary
binary search tree

s1
s2 s3

s4
s5

s6

{s4, s6} {s5}

{s1}
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Summary

Theorem 2: Let S be a set of interior-disjoint line segments in
the plane. All k segments that intersect a vertical
query segment (an axis-parallel query rectangle
R) can be found in time O(k + log2 n). The
corresponding data structure uses O(n log n)
space and O(n log2 n) construction time.
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Summary

Theorem 2: Let S be a set of interior-disjoint line segments in
the plane. All k segments that intersect a vertical
query segment (an axis-parallel query rectangle
R) can be found in time O(k + log2 n). The
corresponding data structure uses O(n log n)
space and O(n log2 n) construction time.

The construction time for the data structure can be improved to
O(n log n).

Remark:
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Discussion

Space requirement of interval trees

15
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Discussion

Space requirement of interval trees

We have used range trees with O(n log n) space as auxiliary data structure
in the interval trees. Using modified heaps this can be reduced to O(n), see
Chapter 10.2 in [BCKO’08].
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Discussion

Space requirement of interval trees

We have used range trees with O(n log n) space as auxiliary data structure
in the interval trees. Using modified heaps this can be reduced to O(n), see
Chapter 10.2 in [BCKO’08].

How can you efficiently count the intersected segments?
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Discussion

Space requirement of interval trees

We have used range trees with O(n log n) space as auxiliary data structure
in the interval trees. Using modified heaps this can be reduced to O(n), see
Chapter 10.2 in [BCKO’08].

How can you efficiently count the intersected segments?

Segment and interval trees support efficient counting queries (independent
of k) with minor modifications → see exercises.
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Discussion

Space requirement of interval trees

We have used range trees with O(n log n) space as auxiliary data structure
in the interval trees. Using modified heaps this can be reduced to O(n), see
Chapter 10.2 in [BCKO’08].

How can you efficiently count the intersected segments?

What to do for non-rectangular query regions?

Segment and interval trees support efficient counting queries (independent
of k) with minor modifications → see exercises.
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Discussion

Space requirement of interval trees

We have used range trees with O(n log n) space as auxiliary data structure
in the interval trees. Using modified heaps this can be reduced to O(n), see
Chapter 10.2 in [BCKO’08].

How can you efficiently count the intersected segments?

What to do for non-rectangular query regions?

By triangulating the query polygon, the problem can be reduced to
triangular queries. Suitable data structures can be found, e.g., in chapter 16
of [BCKO’08].

Segment and interval trees support efficient counting queries (independent
of k) with minor modifications → see exercises.
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