

Computational Geometry · **Lecture** Range Searching II: Windowing Queries

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Tamara Mchedlidze · Darren Strash 23.11.2015

Object types in range queries

Setting so far:

- Input: set of points P (here $P \subset \mathbb{R}^2$)
- Output: all points in $P \cap [x, x'] \times [y, y']$
- Data structures: kd-trees or range trees

Further variant

- Input: set of line segments S (here in \mathbb{R}^2)
- Output: all segments in $S \cap [x, x'] \times [y, y']$
- Data structures: ?

Axis-parallel line segments

special case (e.g., in VLSI design): all line segments are axis-parallel

Problem:

Given n vertical and horizontal line segments and an axis-parallel rectangle $R = [x, x'] \times [y, y']$, find all line segments that intersect R.

Case 1: ≥ 1 endpoint in R

ightarrow use range tree

Case 2: both endpoints $\notin R$

ightarrow intersect left or top edge of R

Case 2 in detail

Problem:

Given a set H of n horizontal line segments and a vertical query segment s, find all line segments in H that intersect s. (Vertical segments and a horizontal query are analogous.)

One level simpler: vertical line $s := (x = q_x)$

Given n intervals $I = \{[x_1, x_1'], [x_2, x_2'], \dots, [x_n, x_n']\}$ and a point q_x , find all intervals that contain q_x .

What do we need for an appropriate data structure?

Interval Trees

Construction of an interval tree \mathcal{T}

- if $I=\emptyset$ then $\mathcal T$ is a leaf
- else let x_{mid} be the median of the endpoints of I and define

$$\begin{array}{lcl} I_{\mathsf{left}} & = & \{[x_j, x_j'] \mid x_j' < x_{\mathsf{mid}}\} \\ I_{\mathsf{mid}} & = & \{[x_j, x_j'] \mid x_j \leq x_{\mathsf{mid}} \leq x_j'\} \\ I_{\mathsf{right}} & = & \{[x_j, x_j'] \mid x_{\mathsf{mid}} < x_j\} \end{array}$$

 \mathcal{T} consists of a node v for x_{mid} and

- lists $\mathcal{L}(v)$ and $\mathcal{R}(v)$ for I_{mid} sorted by left and right interval endpoints, respectively
- left child of v is an interval tree for I_{left}
- right child of v is an interval tree for I_{right}

Properties of interval trees

Lemma 1: An interval tree for n intervals needs O(n) space and has depth $O(\log n)$. It can be constructed in time $O(n \log n)$.

QueryIntervalTree (v, q_x)

if v no leaf then

if $q_x < x_{\mathsf{mid}}(v)$ then search in \mathcal{L} from left to right for intervals containing q_x QueryIntervalTree($lc(v), q_x$)

else

search in \mathcal{R} from right to left for intervals containing q_x QueryIntervalTree $(rc(v), q_x)$

Lemma 2: Using an interval tree we can find all k intervals containing a query point q_x in $O(\log n + k)$ time.

From lines to line segments

How can we adapt the idea of an interval tree for query segments $q_x \times [q_y, q_y']$ instead of a query line $x = q_x$?

The correct line segments in $I_{\rm mid}$ can easily be found using a range tree instead of simple lists.

Theorem 1: Let S be a set of horizontal (axis-parallel) line segments in the plane. All k line segments that intersect a vertical query segment (an axis-parallel rectangle R) can be found in $O(\log^2(n) + k)$ time. The data structure requires $O(n \log n)$ space and construction time.

Arbitrary line segments

Map data often contain arbitrarily oriented line segments.

Problem:

Given n disjoint line segments and an axis-parallel rectangle $R = [x, x'] \times [y, y']$, find all line segments that intersect R.

How to proceed?

Case 1: ≥ 1 endpoint in $R \rightarrow$ use range tree

Case 2: both endpoints $\not\in R \to \text{intersect}$ at least one edge of R

Decomposition into elementary intervals

Interval trees don't really help here

Identical 1d base problem:

Given n intervals $I = \{[x_1, x_1'], [x_2, x_2'], \dots, [x_n, x_n']\}$ and a point q_x , find all intervals that contain q_x .

- sort all x_i and x_i' in list p_1, \ldots, p_{2n}
- create sorted elementary intervals

$$(-\infty, p_1), [p_1, p_1], (p_1, p_2), [p_2, p_2], \dots, [p_{2n}, p_{2n}], (p_{2n}, \infty)$$

Segment trees

Idea for data structure:

- create binary search tree with elementary intervals in leaves
- for all points q_x in the same elementary interval the answer is the same
- leaf μ for elementary interval $e(\mu)$ stores interval set $I(\mu)$
- query requires $O(\log n + k)$ time

Problem: Storage space is worst-case quadratic

- \rightarrow store intervals as high up in the tree as possible
 - node v represents interval $e(v) = e(lc(v)) \cup e(rc(v))$
 - input interval $s_i \in I(v) \Leftrightarrow e(v) \subseteq s_i$ and $e(\mathsf{parent}(v)) \not\subseteq s_i$

Properties of segment trees

Lemma 3: A segment tree for n intervals requires $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.

Sketch of proof:

```
\begin{split} & \text{InsertSegmentTree}(v,[x,x']) \\ & \text{if } e(v) \subseteq [x,x'] \text{ then} \\ & | \text{ store } [x,x'] \text{ in } I(v) \\ & \text{else} \\ & | \text{ if } e(lc(v)) \cap [x,x'] \neq \emptyset \text{ then} \\ & | \text{ InsertSegmentTree}(lc(v)),[x,x']) \\ & \text{ if } e(rc(v)) \cap [x,x'] \neq \emptyset \text{ then} \\ & | \text{ InsertSegmentTree}(rc(v)),[x,x']) \end{split}
```

Queries in segment trees


```
\begin{array}{c} \mathsf{QuerySegmentTree}(v,q_x) \\ \mathsf{return} \ \mathsf{all} \ \mathsf{intervals} \ \mathsf{in} \ I(v) \\ \mathsf{if} \ v \ \mathsf{no} \ \mathsf{leaf} \ \mathsf{then} \\ \mid \ \mathsf{if} \ q_x \in e(lc(v)) \ \mathsf{then} \\ \mid \ \mathsf{QuerySegmentTree}(lc(v),q_x) \\ \mathsf{else} \\ \mid \ \mathsf{QuerySegmentTree}(rc(v),q_x) \end{array}
```

Lemma 4: All k intervals that contain a query point q_x can be computed in $O(\log n + k)$ time using a segment tree.

Lemma 4 yields the same result as interval trees. What is different?

 \rightarrow all intervals stored in a positive node v contain q_x – in an interval tree one would have to continue searching

Back to arbitrary line segments

- ullet create segment tree for the x intervals of the line segments
- lacktriangle each node v corresponds to a vertical strip $e(v) imes \mathbb{R}$
- line segment s is in I(v) iff s crosses the strip of v but not the strip of $\operatorname{parent}(v)$
- at each node v on the search path for the vertical segment $s'=q_x\times [q_y,q_y']$ all segments in I(v) cover the x-coordinate q_x
- find segments in the strip that cross s^\prime using a vertically sorted auxiliary binary search tree

Summary

Theorem 2: Let S be a set of interior-disjoint line segments in the plane. All k segments that intersect a vertical query segment (an axis-parallel query rectangle R) can be found in time $O(k + \log^2 n)$. The corresponding data structure uses $O(n \log n)$ space and $O(n \log^2 n)$ construction time.

Remark:

The construction time for the data structure can be improved to $O(n \log n)$.

Discussion

Space requirement of interval trees

We have used range trees with $O(n \log n)$ space as auxiliary data structure in the interval trees. Using modified heaps this can be reduced to O(n), see Chapter 10.2 in [BCKO'08].

How can you efficiently count the intersected segments?

Segment and interval trees support efficient counting queries (independent of k) with minor modifications \rightarrow see exercises.

What to do for non-rectangular query regions?

By triangulating the query polygon, the problem can be reduced to triangular queries. Suitable data structures can be found, e.g., in chapter 16 of [BCKO'08].