SKIT

Karlsruhe Institute of Technology

Computational Geometry e Lecture
Linear Programming

INSTITUTE FOR THEORETICAL INFORMATICS - FACULTY OF INFORMATICS

Tamara Mchedlidze - Darren Strash
09.11.2015

T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Profit optimization AT

tttttttttttttttttttttttttttttt

= You are the boss of a company, that produces two products P;
und P> from three raw materials R, R2 und Rs.

» Let's assume you produce x; items of the product P; and x5 items of
product P;.

s Assume that items P;, P> get profit of 300€ and 500€, respectively.
Then the total profit is:

G(SUl,SUQ) = 3005171 + 5002172

= Assume that the amout of raw material you need for P; and P is:

Pll 4R1 —|_R2
P>: 11R1 + Ry + Rj3

= And in your warehouse there are 880R;, 150R5 and 60R3. So:
Ri: 4x1 + 11z, < 880
Ry r1 + x9 < 150
Rgi L2 < 60

= Which choice for (z1,x2) maximizes your profit?

2 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Solution Linear constraints:

To Ry: 4x1 + 11z < 880
A Ro: 1+ a9 <150| Az <b
Rgi i) S 60
X1 Z 0 > ()
i) 2 0 -

Linear objective function: max ¢tz
G(CIJl, 5132) = 30021 + 500x5 ¢ - normal
= (300, 500) (371) vector

L2

15.00500 /4 <3, G(110,40) = 53.000
) ~ .,<300, 506)\ = maximum valu_e of the
objective function under
the constraints.

- max{cltz | Az < b,z > 0}
o0 100 150 200 1

,Isocost line* (orthogonal to (37))

3 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Linear programming AT

stitute of Technology

Definition: Given a set of linear constraints H and a linear
objective function ¢ in R?, a linear program (LP)
Is formulated as follows:

maximize c1T1+ coxo + -+ cqgxry

under constr. a1,1T1 + -+ 41,44 < b \
a2 121+ -+ agqtqa < b2
» H
Ap, 121 + - Ap, dLd < bn J

» H is a set of half-spaces in R?.

= We are searching for a point x € (), h, that maximizes
cl'z, ie. max{ctz | Az < b,z > 0}.

a Linear programming is a central method in operations
research.

4 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Algorithms for LPs AT

tttttttttttttttttttttttttttttt

There are many algorithms to solve LPs:

= Simplex-Algorithm [Dantzig, 1947]
= Ellipsoid-Method [Khatchiyan, 1979]
= Interior-Point-Method [Karmarkar, 1979

They work well in practice, especially for large values of n
(number of constraints) and d (number of variables).

Today: Special case d = 2

Possibilities for the solution space
feasible region (| H is bounded

NH=10 (N H is unbounded solution is not unique solution
infeasible In the direction ¢ unique

S T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

First approach AT

tttttttttttttttttttttttttttttt

Idea: Compute the feasible region () H and search for the
angle p, that maximizes ¢! p.

= The half-planes are convex
a Let's try a simple Divide-and-Conquer Algorithm

IntersectHalfplanes(H)

if |[H| =1 then
| '+ H
else

(H1, Hs) < SplitInHalves(H)
C'7 < IntersectHalfplanes(H)
(5 < IntersectHalfplanes(H>)
C' < IntersectConvexRegions(C, C5)

return C

6 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Intersect convex regions A\‘(IT

tttttttttttttttttttttttttttttt

IntersectConvexRegions(C, C5) can be implemented using a
sweep line method:

= consider the left and the right boundaries of C'; and C5

= move the sweep line £ from top to bottom and save the
crossed edges (< 4)

a The nodes of 1 U 5 define events. We process every
event in O(1) time, dependent on the type of the edges
Incident to the event vertex.

C'y C2 Theorem 1:

The intersection of two convex
polygonal regions in the plane
with n1 + no = n nodes can be
computed in O(n) time.

7 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Running time of IntersectHalfplanes(H) QAT

IntersectHalfplanes(H)

if |[H| =1 then
| '+ H
else

(Hl,HQ) < Splltlnl-
C'1 < IntersectHalfp

C'5 < IntersectHalfp

return C

alves(H)
anes(H)
anes(H>)

C' < IntersectConvexRegions(C, C5)

tttttttttttttttttttttttttttttt

Task: What is the running time of IntersectHalfplanes(H)?

Recursive formula

[0(1)
O(n) + 2T (n/2)

8-3 T. Mchedlidze - D. Strash - Computational Geometry

T(n) =<

when n =1

when n > 1

Master Theorem =
T(n) € O(nlogn)

Linear Programming

Running time of IntersectHalfplanes(H) AUT

tttttttttttttttttttttttttttttt

IntersectHalfplanes(H)
€ ITT1 1 slan

= feasible region () H can be found in O(nlogn) time

= () H has O(n) nodes

= the node p that maximizes ¢! p can therefore be found
in O(nlogn) time

Task: What is the running time of IntersectHalfplanes(H)?

Recursive formula

(O(l) when n =1 | Master Theorem =
O(n) +2T(n/2) whenn>1 T'(n) € O(nlogn)

8-4 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

T(n) =<

Bounded LPs AT

tttttttttttttttttttttttttttttt

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique wof the

/ current feasible polygon

When the optimal point is not
unique, select lexicographically
smallest one!

How to deal with the
unbounded feasible regions?

Define two half-planes for a big enough value M

r< M if c, >0 y< M if ¢, >0
mi = . ma =— .
—x < M otherwise —y < M otherwise

A mq

Ac |

9-5 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

ma

Bounded LPs AT

tttttttttttttttttttttttttttttt

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique wof the

/ current feasible polygon

When the optimal point is not
unique, select lexicographically
smallest one!

Define two half-planes for a big enough value M

r< M if c, >0 y < M if ¢, >0
mi = . ma =— .
—x < M otherwise —y < M otherwise

How to deal with the
unbounded feasible regions?

Consider a LP (H,c) with H = {h1,...,hy}, ¢ = (cz,cy). We
denote the first ¢ constraints by H; = {m1,mo, h1,...,h;},
and the feasible polygon defineed by them by
C’i:mlﬂmgﬂhlﬁ---ﬂhi

9-6 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Properties AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

= each region C; has a single optimal angle v;
m itholdsthat: Coy 2D Cy D ---DC,, =C

How the optimal angle v;_1 changes when the half plane A; is
added?

Lemma 1: For 1 < <n and bounding line ¢; of h; holds that:
(I) If v,_1 € h; then v; = v;_1,
(ii) otherwise, either C; =) or v; € 4;.

hs

U4

10 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

One-dimentional LP QAT

tttttttttttttttttttttttttttttt

In case(ii) of Lemma 1, we search for the best point on the
segment ¢; N C;_1:

= we parametrize ¢; : y =ax + b

= define new objective function f(’ﬁ(:v) =c! (awﬂb)

o forj <iv—1let 0,(¢;,¥;) denote the z-coordinate of £; N¥¢;

This gives us the following one-dimentional LP:

maximize f!(z) = cx + ¢y(ax + b)

with constr. * < o0,(l;,4;) if £; N hjis limited to the right
r > o0.(0;,4;) ifl;Nh;is limited to the left

Lemma 2: A one-dimentional LP can be solved in linear time. In
particular, in case (ii), one can compute the new
angle v; or decide whether C; = () in O(7) time.

11 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Incremental Algorithm QAT

2dBoundedLP(H, ¢, m1, mo) o
worst-case running time:

Co < m1 Nme T(n) = Z?:l O(i) = O(n?)
Vo < unique angle of Cj
for : < 1 to n do

if v,_1 € h; then

| v v O(1)
else
V; <].dBOUﬂdedLP(O'(Hi_l), fé’)
if v; = nil then O(1)
| return infeasible

return v,

Lemma 3: Algorithmus 2dBoundedLP needs ©(n?) time to
solve an LP with n contraints and 2 variables.

12 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

What else can we do? QAT

tttttttttttttttttttttttttttttt

Obs.: It is not the half-planes H that force the high running
time, but the order in which we consider them.

13 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Randomized incremental algorithm

2dRandomizedBoundedLP(H, ¢, m1, ms)

C() — mq MMmo
Vo < unique angle of Cj
H <+ RandomPermutation(H)
for : < 1 ton do
if v,_1 € h; then
| v < v
else
V; < 1dBOUﬂd€dLP(O‘(H7;_1), fé’)
if v; = nil then
| return infeasible

return v,

14 T. Mchedlidze - D. Strash - Computational Geometry

AT

tttttttttttttttttttttttttttttt

Random permutation AT

tttttttttttttttttttttttttttttt

RandomPermutation(A)

Input: Array A[l...n]
Output: Array A, rearranged into a random permutation

for £k < n to 2 do
L % Random num. between 1 and k

r < Random(k)
exchange A|r| and Alk]

Obs.: The running time of 2dRandomizedBoundedLP
depends on the random permutation computed by the
procedure RandomPermutation. In the following we
compute the expected running time.

Theorem 2: A two-dimentional LP with n constraints can be
solved in O(n) randomized expected time.

15 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Unbounded LPs AT

tttttttttttttttttttttttttttttt

Till now: Artificial contraints to bound C' by m; and my

Next: recongnize and deal with an unbonded LP

c
}/’< () H unbounded in the direction ¢

Def.: A LP (H,c) is called unbounded, if there exists a ray

p={p+Ad|X>0}inC=()H, such that the value
of the objective function f. becomes arbitrarily large

along p.
It must be that:
& <d, C> > ()

= (d,n(h)) >0 for all h € H where n(h) is the normal
vector of h oriented towards the feasible side of h

16 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Characterization AT

tttttttttttttttttttttttttttttt

Lemma 4: A LP (H,c) is unbounded iff there is a vector d € R?
such that
o <d, C> > ()
= (d,n(h)) >0forall he H
» LP (H',c) with H' ={h € H | (d,n(h)) =0} is
feasible.
Test whether (H, ¢) is unbounded with a one-dimentional LP:
Step 1:
= rotate coordinate system till ¢ = (0, 1)
= normalize vector d with (d,c) >0 as d = (d,, 1)
= For normal vector n(h) = (9x,7,) it should hold that

o Let H={dwn, +ny, >0he H}
a Check whether this one-dim. LP H is feasible

17 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

est auf Unbeschrinktheit AUT

tttttttttttttttttttttttttttttt

Step 2: If Step 1 returns a feasible solution d;
» compute H ={h € H | din,(h) +n,(h) =0}
= Normals to H' are orthogonal to d = (d,,1) = lines
bounding half-planes of H' are parallel to d
= intersect the bounding lines of H' with x-axis — 1d-LP

If the two steps result in a feasible solution, the LP (H,c) is
unbounded and we can construct the ray p.

If the LP H’ in Step 2 is infeasible, then then so is the initial
LP (H,c).

If the LP H of the Step 1 is infeasible, then by Lemma 4,
(H,c) is bounded.

18 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Certificates of boundness QAT

tttttttttttttttttttttttttttttt

Obs.: When the LP H = {d,n, +n, > 0|h € H} of the
Step 1 is infeasible, we can use this information
further!

> > €—<<d <

right left
d:c d:c

1d-LP H is infeasible < the interval [d'f, d"&ht] = ()

r 77X

= let by and hy be the half planes corresponding to d'™ and
drxight

There is no vector d that would “satisfy” h; and hg, thus
the LP ({h1, h2},c) is already bounded

h1 and ho are certificates of the boundness

use hq1 and ho In 2dRandomizedBoundedLP as my and ms»

19 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Algorithms AT

2dRandomizedLP(H, c¢)

37 Vector d with (d,c) > 0 and (d,n(h)) >0 for all h € H
if d exists then

H' < {h e H | (d,n(h)) = 0;

if H' feasible then

return (ray p, unbounded)

else

return infeasible

else
(h1, hs) < Certificates for the boundness of (H, c)

E — H \ {hl, hg}
return 2dRandomizedBoundedLP(H, c, hi, hs)

Theorem 3: A two-dimentional LP with n constraints can be
solved in O(n) randomized expected time.

20 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

Discussion &‘(lT

stitute of Technology

Can the two-dimentional algorithms be generalized to more
dimentions?

Yes! The same way as the two-dimentional LP is solved incrementally
with reduction to a one-dimentional LP, a d-dimentional LP can be
solved by a randomized incremental algorithm with a reduction to

(d — 1)-dimentional LP. The expected running time is then O(c%d!n) for
a constant c. The algorithm is therefore usefull only for small values on d.

The simple randomized incremental algorithm for two and more
dimentions given in this lecture is due to Seidel (1991).

21 T. Mchedlidze - D. Strash - Computational Geometry Linear Programming

	Profit optimization
	Solution
	Linear programming
	Algorithms for LPs
	First approach
	Intersect convex regions
	Running time of IntersectHalfplanes(H)
	Bounded LPs
	Properties
	One-dimentional LP
	Incremental Algorithm
	What else can we do?
	Randomized incremental algorithm
	Random permutation
	Unbounded LPs
	Characterization
	Test auf Unbeschränktheit
	Certificates of boundness
	Algorithms
	Discussion

