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Projects
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Project Specifications

Groups:
2 or 3 students, assigned to a supervisor

Tools:
Use any programming language, should run with little effort
on Linux

Due date:
08.02.2016

Visualization:
Need to visualize output; ipe, svg, video? This is also
helpful for debugging output
Do not need to use graphics APIs, unless you really want to

Group Presentations:
Each groups gives a 20-minute presentation (last 2 weeks
of class)
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Project—Next Steps

Project proposals: due in 2 weeks (16.11.2015):
No more than 1 page
Formalize your problem
Describe geometric primitives
State any simplifying assumptions
Describe the algorithms / data structures you will use
Avoid brute force algorithms

Supervisor:
Assigned supervisor (Tamara, Darren, or Benjamin)
Meet with supervisor in two weeks to discuss proposal.
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Project proposals: due in 2 weeks (16.11.2015):
No more than 1 page
Formalize your problem
Describe geometric primitives
State any simplifying assumptions
Describe the algorithms / data structures you will use
Avoid brute force algorithms

Supervisor:
Assigned supervisor (Tamara, Darren, or Benjamin)
Meet with supervisor in two weeks to discuss proposal.

Now, form groups and sit by each other!
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Project—Next Steps

Project proposals: due in 2 weeks (16.11.2015):
No more than 1 page
Formalize your problem
Describe geometric primitives
State any simplifying assumptions
Describe the algorithms / data structures you will use
Avoid brute force algorithms

Supervisor:
Assigned supervisor (Tamara, Darren, or Benjamin)
Meet with supervisor in two weeks to discuss proposal.

Now, form groups and sit by each other!

Time to present the projects...
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Pacman

Scenario: Development of the game Pacman.

Pacman

THE Ghosts.

Pacman is strolling through a large city with many buildings,
gathering items. However, incredibly many ghosts want to
hinder Pacman by eating him.

Story:

5



Dr. Tamara Mchedlidze· Dr. Darren Strash· Computational Geometry Lecture Polygon Triangulation

Pacman

Project 1: Collision Detection

moving objects ↔ moving objects

moving objects ↔ buildings
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Pacman

Project 1: Collision Detection

moving objects ↔ moving objects

moving objects ↔ buildings

Project 2: Artifical Intelligence I

Ghosts seeing Pacman follow him
until they lose eye contact.

Fast visibility check:

Is Pacman visible from point p?
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Pacman

Project 1: Collision Detection

moving objects ↔ moving objects

moving objects ↔ buildings

Project 2: Artifical Intelligence I

Ghosts seeing Pacman follow him
until they lose eye contact.

Fast visibility check:

Is Pacman visible from point p?

Project 3: Artifical Intelligence II

Ghosts smelling Pacman follow
him until they lose the track.

Fast smell check:

Can Packman be smelled from point p?
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Secret Agent
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Shooting Secret Agent
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Shooting Secret Agent
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Shooting Secret Agent

The ray of the laser can
reflect only d times!
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Shooting Secret Agent

The ray of the laser can
reflect only d times!

Can the agent shoot the
target?
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Shooting Secret Agent

The ray of the laser can
reflect only d times!

Can the agent shoot the
target?

1

2

3

d

...

...
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Shooting Secret Agent

OOPS!

The ray of the laser can
reflect only d times!

Can the agent shoot the
target?

1

2

3

d

...

...
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Secret Agent’s Robot
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Secret Agent’s Robot

The robot can travel
distance d without
getting charged.
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Secret Agent’s Robot

Can the robot escape
the warehouse?

The robot can travel
distance d without
getting charged.
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Secret Agent Protects Jewels
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Secret Agent Protects Jewels

Recruit the small
number of guards.
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Secret Agent Protects Jewels

Recruit the small
number of guards.

Find the regions they
must patrol.
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Puzzles
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Puzzles

Puzzle # 1: Food fit

Given:
A region representing an ant colony’s
home
A “picnic” containing food items

Output:
Which food items can the ants fit in
their home?
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Puzzles

Puzzle # 1: Food fit

?
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Puzzles

Puzzle # 1: Food fit

?
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Puzzles

Puzzle # 1: Food fit

Does not fit!
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Puzzles

Puzzle # 2: Protect the colony

Given:
A region representing an ant colony’s
home
A nail of length l, to be hammered
into the home

Output:
Will the nail break the home apart?
How can we make “small” changes to
protect the home?

l
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Puzzles

Puzzle # 3: Keep away

Given:
A collection of ant colonies that
grow over time
A keep-away distance k

Output:
The state of the colonies after t
time steps

k
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Project Selection

14



Dr. Tamara Mchedlidze· Dr. Darren Strash· Computational Geometry Lecture Polygon Triangulation

Projects

1. Pacman: Collision detection

2. Pacman: Ghosts activate on sight

3. Pacman: Ghosts activate on smell

4. Secret Agent: Shoot the laser

5. Secret Agent: Save the robot

6. Secret Agent: Guard the jewels

7. Puzzle: Food fit

8. Puzzle: Protect the colony

9. Puzzle: Keep away
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Polygon Triangulation
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The Art-Gallery-Problem

Task: Install a number of cameras in an art gallery so that every part of
the galery is visible to at least one of them.
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the galery is visible to at least one of them.

Assumption: Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)

P
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The Art-Gallery-Problem

Task: Install a number of cameras in an art gallery so that every part of
the galery is visible to at least one of them.

Observation: each camera observes a star-shaped region

Definition: Point p ∈ P is visible from c ∈ P if cp ∈ P

X
7

Assumption: Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)

P
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P
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X
7

Goal: Use as few cameras as possible!

Assumption: Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)

P

→ The number depends on the number of corners n and on the shape of P
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The Art-Gallery-Problem

Task: Install a number of cameras in an art gallery so that every part of
the galery is visible to at least one of them.

Observation: each camera observes a star-shaped region

Definition: Point p ∈ P is visible from c ∈ P if cp ∈ P

X
7

Goal: Use as few cameras as possible!

Assumption: Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)

P

→ The number depends on the number of corners n and on the shape of P

NP-hard!

17



Dr. Tamara Mchedlidze· Dr. Darren Strash· Computational Geometry Lecture Polygon Triangulation

Problem Simplification

Observation: It is easy to guard a triangle
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Problem Simplification

Observation: It is easy to guard a triangle

Idea: Decompose P into triangles and guard each of them
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Problem Simplification

Observation: It is easy to guard a triangle

Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n− 2 triangles.
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Problem Simplification

Observation: It is easy to guard a triangle

Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n− 2 triangles.

The proof implies a recursive O(n2)-Algorithm!
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Problem Simplification

Observation: It is easy to guard a triangle

Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n− 2 triangles.

P could be guarded by n− 2 cameras placed in the triangles

Can we do better?
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P can be observed by even smaller number of cameras placed on the
corners
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The Art-Gallery-Theorem

Theorem 2: For a simple polygon with n vertices, bn/3c cameras are
sometimes necessary and always sufficient to guard it.

[Chvátal ’75]
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The Art-Gallery-Theorem

Theorem 2: For a simple polygon with n vertices, bn/3c cameras are
sometimes necessary and always sufficient to guard it.

Proof:

Find a simple polygon with n corners that requires ≈ n/3 cameras!

Discuss it with your neighbour for 2 minutes

[Chvátal ’75]
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The Art-Gallery-Theorem

Theorem 2: For a simple polygon with n vertices, bn/3c cameras are
sometimes necessary and always sufficient to guard it.

Proof:

Find a simple polygon with n corners that requires ≈ n/3 cameras!

7 X

[Chvátal ’75]

19



Dr. Tamara Mchedlidze· Dr. Darren Strash· Computational Geometry Lecture Polygon Triangulation

The Art-Gallery-Theorem

Theorem 2: For a simple polygon with n vertices, bn/3c cameras are
sometimes necessary and always sufficient to guard it.

Proof:

Find a simple polygon with n corners that requires ≈ n/3 cameras!

7 X

Sufficiency on the board

[Chvátal ’75]
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The Art-Gallery-Theorem

Theorem 2: For a simple polygon with n vertices, bn/3c cameras are
sometimes necessary and always sufficient to guard it.

Proof:

Find a simple polygon with n corners that requires ≈ n/3 cameras!

7 X

Sufficiency on the board

[Chvátal ’75]

Conclusion: Given a triangulation, the bn/3c cameras that guard
the polygon can be placed in O(n) time.
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The Art-Gallery-Theorem

Theorem 2: For a simple polygon with n vertices, bn/3c cameras are
sometimes necessary and always sufficient to guard it.

Proof:

Find a simple polygon with n corners that requires ≈ n/3 cameras!

7 X

Sufficiency on the board

[Chvátal ’75]

Conclusion: Given a triangulation, the bn/3c cameras that guard
the polygon can be placed in O(n) time.

Can we do better than O(n2) described before?

19



Dr. Tamara Mchedlidze· Dr. Darren Strash· Computational Geometry Lecture Polygon Triangulation

Proof of Art-Gallery-Theorem: Overview

3-step process:

Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line `,
the interection ` ∩ P is connected.

7X

`

20
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Proof of Art-Gallery-Theorem: Overview

3-step process:

Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line `,
the interection ` ∩ P is connected.

7X

`

Step 2: Triangulate the resulting y-monotone polygons
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Proof of Art-Gallery-Theorem: Overview

3-step process:

Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line `,
the interection ` ∩ P is connected.

7X

`

Step 2: Triangulate the resulting y-monotone polygons

Step 3: use DFS to color the vertices of the polygon
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Partition into y-monotone Polygons

Idea: Five different types of vertices
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Idea: Five different types of vertices

– Turn vertices:
vertical change in direction

– regular vertices

start vertices
α

if α < 180◦
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Partition into y-monotone Polygons

Idea: Five different types of vertices

– Turn vertices:
vertical change in direction

– regular vertices

start vertices

split vertices

α

β

if α < 180◦

if β > 180◦
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split vertices

end vertices

α

γ
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if α < 180◦

if β > 180◦

if γ < 180◦
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Partition into y-monotone Polygons

Idea: Five different types of vertices

– Turn vertices:
vertical change in direction

– regular vertices

start vertices

split vertices

end vertices

merge vertices

α

δ

γ

β

if α < 180◦

if β > 180◦

if γ < 180◦

if δ > 180◦
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Characterization

Lemma 1: A polygon is y-monotone if it has no split vertices
or merge vertices.
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⇒ We need to eliminate all split and merge vertices by using
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Characterization

Lemma 1: A polygon is y-monotone if it has no split vertices
or merge vertices.

Proof: On the blackboard

⇒ We need to eliminate all split and merge vertices by using
diagonals

Observation: The diagonals should neither cross the
edges of P nor the other diagonals
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Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

v
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Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

v

left(v)

compute for each vertex v its left
adjacent edge left(v) with
respect to the horizontal sweep
line `
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Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

v

left(v)

connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)

e
helper(e)

for each edge e save the botommost vertex w such that
left(w) = e; notation helper(e) := w

`

compute for each vertex v its left
adjacent edge left(v) with
respect to the horizontal sweep
line `

w
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Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

v

left(v)

connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)

e
helper(e)

for each edge e save the botommost vertex w such that
left(w) = e; notation helper(e) := w

` v

compute for each vertex v its left
adjacent edge left(v) with
respect to the horizontal sweep
line `

w

when ` passes through a split vertex
v, we connect v with helper(left(v))
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Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices
when the vertex v is reached, we
set helper(left(v)) = v

v

left(v)
`
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Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices
when the vertex v is reached, we
set helper(left(v)) = v

v

when we reach a split vertex v′

such that left(v′) = left(v) the
diagonal (v, v′) is introduced

` v′
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when the vertex v is reached, we
set helper(left(v)) = v

v

when we reach a split vertex v′

such that left(v′) = left(v) the
diagonal (v, v′) is introduced

` v′

in case we reach a regular vertex v′

such that helper(left(v′)) is v the
diagonal (v, v′) is introduced

v

`
v′
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Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices
when the vertex v is reached, we
set helper(left(v)) = v

v

when we reach a split vertex v′

such that left(v′) = left(v) the
diagonal (v, v′) is introduced

` v′

in case we reach a regular vertex v′

such that helper(left(v′)) is v the
diagonal (v, v′) is introduced

v

`
v′

if the end of v′ of left(v) is reached,
then the diagonal (v, v′) is
introduced

v

`v′
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅ (binary
search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅ (binary
search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleStartVertex(vertex v)

T ← add the left edge e
helper(e)← v

v = helper(e)
e
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅ (binary
search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleStartVertex(vertex v)

T ← add the left edge e
helper(e)← v

v = helper(e)
e

handleEndVertex(vertex v)

e← left edge
if isMergeVertex(helper(e)) then
D ← add edge (helper(e), v)

remove e from T

e
v

helper(e)
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅ (binary
search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleSplitVertex(vertex v)

e← Edge to the left of v in T
D ← add edge (helper(e), v)
helper(e)← v
T ← add the right edge e′ of v
helper(e′)← v

helper(e)
e

v

e′
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅ (binary
search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleMergeVertex(vertex v)

e← right edge
if isMergeVertex(helper(e)) then
D ← add edge (helper(e), v)

remove e from T
e′ ← edge to the left of v in T
if isMergeVertex(helper(e′)) then
D ← add edge (helper(e′), v)

helper(e′)← v

v

e
helper(e)e′

helper(e′)
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅ (binary
search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleRegularVertex(vertex v)

if P lies locally to the left of v then
e, e′ ← above, below edge
if isMergeVertex(helper(e)) then
D ← add edge (helper(e), v)

remove e from T
T ← add e′; helper(e′)← v

else
e← edge to the left of v
add e to T
if isMergeVertex(helper(e)) then
D ← add (helper(e), v)

helper(e)← v

v

e

e′

helper(e)
v

e

helper(e)
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Analysis

Lemma 2: The algorithm MakeMonotone computes a set of
crossing-free diagonals of P , which partitions P
into y-monotone polygons.
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crossing-free diagonals of P , which partitions P
into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be
partitioned into y-monotone polygons in
O(n log n) time and O(n) space.
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Analysis

Lemma 2: The algorithm MakeMonotone computes a set of
crossing-free diagonals of P , which partitions P
into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be
partitioned into y-monotone polygons in
O(n log n) time and O(n) space.

Construct priority queue Q: O(n)
Initialize sweep-line status T : O(1)
Handle a single event: O(log n)
Q.deleteMax: O(log n)
Find, remove, add element in T : O(log n)
Add diagonals to D: O(1)

Space: obviously O(n)
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Proof of Art-Gallery-Theorem: Overview

Three-step procedure:

Step 1: Decompose P in y-monotone polygons

Definition: A polygon P is y-monotone, if for each horizontal line `
the intersection ` ∩ P is connected.

7X

`

Step 2: Triangulate y-monotone polygons

Step 3: use DFS to color the triangulated polygon

X

X
ToDo!
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Triangulate y-monotone Polygon

Approach: Greedy, top down traversal of both sides

Reminder: The left and the right boundary of the polygon
have decreasing y-coordinates
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Triangulate y-monotone Polygon

Approach: Greedy, top down traversal of both sides
Invariant?

Reminder: The left and the right boundary of the polygon
have decreasing y-coordinates
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Triangulate y-monotone Polygon

Approach: Greedy, top down traversal of both sides
Invariant?

The already visited but not
triangulated polygon has
the shape of a funnel
(trichter).

In our case:

chains of
concave vertices

only 1 chain!

concave

convex

Angle in P
> 180◦

Reminder: The left and the right boundary of the polygon
have decreasing y-coordinates
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Triangulate y-monotone Polygon

Approach: Greedy, top down traversal of both sides
Invariant?

The already visited but not
triangulated polygon has
the shape of a funnel
(trichter).

In our case:

chains of
concave vertices

only 1 chain!

concave

convex

Angle in P
> 180◦

sim
plie

r case

Reminder: The left and the right boundary of the polygon
have decreasing y-coordinates
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Algorithm TriangulateMonotonePolygon
TriangulateMonotonePolygon(Polygon P as doubly-connected list of
edges)

Merge vertices on left and right chains into desc. seq. → u1, . . . , un
Stack S ← ∅; S.push(u1); S.push(u2)
for j ← 3 to n− 1 do

if uj and S.top() from different paths then
while not S.empty() do

v ← S.pop()
if not S.empty() then draw (uj , v)

S.push(uj−1); S.push(uj)
else

v ← S.pop()
while not S.empty() and uj sees S.top() do

v ← S.pop()
draw diagonal (uj , v)

S.push(v); S.push(uj)

Connect un to all the vertices in S (except for the first and the last)
29
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Task:
What is the running
time?
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Summary

Theorem 4: A y-monotone polygon with n vertices can be
triangulated in O(n) time.
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Summary

Theorem 4: A y-monotone polygon with n vertices can be
triangulated in O(n) time.

Theorem 3: A simple polygon with n vertices can be
partitioned into y-monotone polygons in
O(n log n) time and O(n) space.

recall
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Summary

Theorem 4: A y-monotone polygon with n vertices can be
triangulated in O(n) time.

Theorem 3: A simple polygon with n vertices can be
partitioned into y-monotone polygons in
O(n log n) time and O(n) space.

⇓

Theorem 5: A simple polygon with n vertices can be
triangulated in O(n log n) time and O(n) space.

recall
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Proof of Art-Gallery-Theorem: Overview

Three-step procedure:

Step 1: Decompose P in y-monotone polygons

Definition: A polygon P is y-monotone, if for each horizontal line `
the intersection ` ∩ P is connected.

7X

`

Step 2: Triangulate y-monotone polygons

Step 3: use DFS to color the triangulated polygon

X

X
X
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Discussion

Can the triangulation algorithm be expanded to work with
polygons with holes?
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Discussion

Can the triangulation algorithm be expanded to work with
polygons with holes?

Triangulation: yes

But are bn/3c cameras still sufficient to guard it?
No, a generalization of Art-Gallery-Theorems says that b(n+ h)/3c
cameras are sometimes necessary, and always sufficient, where h is
the number of holes. [Hoffmann et al., 1991]

. . .
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Can we solve the triangulation problem faster for simple polygons?
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Discussion

Can the triangulation algorithm be expanded to work with
polygons with holes?

Can we solve the triangulation problem faster for simple polygons?

Yes. The question whether it is possible was open for more than a decade.
In the end of 80’s a faster randomized algorithm was given, and in 1990
Chazelle presented a deterministic linear-time algorithm (complicated).

Triangulation: yes

But are bn/3c cameras still sufficient to guard it?
No, a generalization of Art-Gallery-Theorems says that b(n+ h)/3c
cameras are sometimes necessary, and always sufficient, where h is
the number of holes. [Hoffmann et al., 1991]
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