

Computational Geometry · **Lecture** Projects & Polygon Triangulation

INSTITUTE FOR THEORETICAL INFORMATICS - FACULTY OF INFORMATICS

Tamara Mchedlidze · Darren Strash 02.11.2015

Projects

Project Specifications

Groups:

2 or 3 students, assigned to a supervisor

Tools:

 Use any programming language, should run with little effort on Linux

Due date:

08.02.2016

Visualization:

- Need to visualize output; ipe, svg, video? This is also helpful for debugging output
- Do not need to use graphics APIs, unless you really want to

Group Presentations:

 Each groups gives a 20-minute presentation (last 2 weeks of class)

Project—Next Steps

Project proposals: due in 2 weeks (16.11.2015):

- No more than 1 page
- Formalize your problem
- Describe geometric primitives
- State any simplifying assumptions
- Describe the algorithms / data structures you will use
- Avoid brute force algorithms

Supervisor:

- Assigned supervisor (Tamara, Darren, or Benjamin)
- Meet with supervisor in two weeks to discuss proposal.

Now, form groups and sit by each other!

Time to present the projects...

Project 2: Artifical Intelligence I

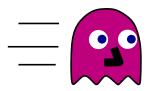
Project 3: Artifical Intelligence II

moving objections

Ghosts se until they

Fast visi

Is Pacm



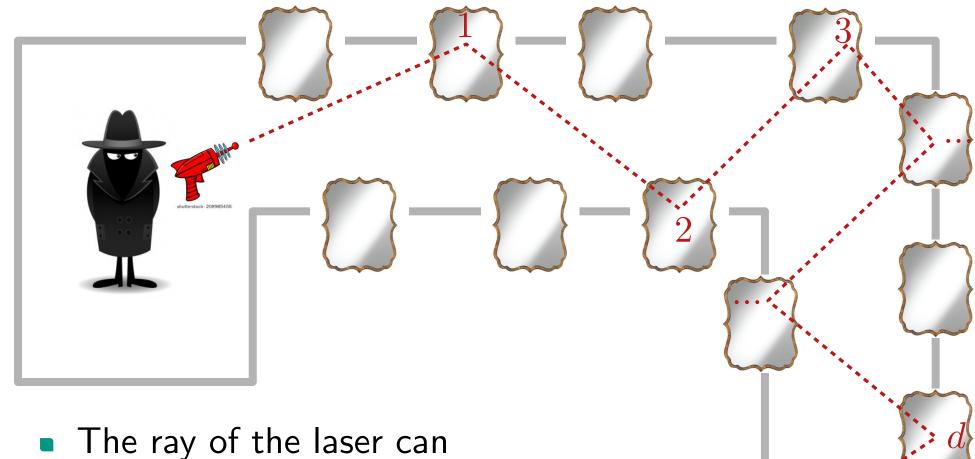
Ghosts smelling Pacman follow him until they lose the track.

Fast smell check:

Can Packman be smelled from point p?

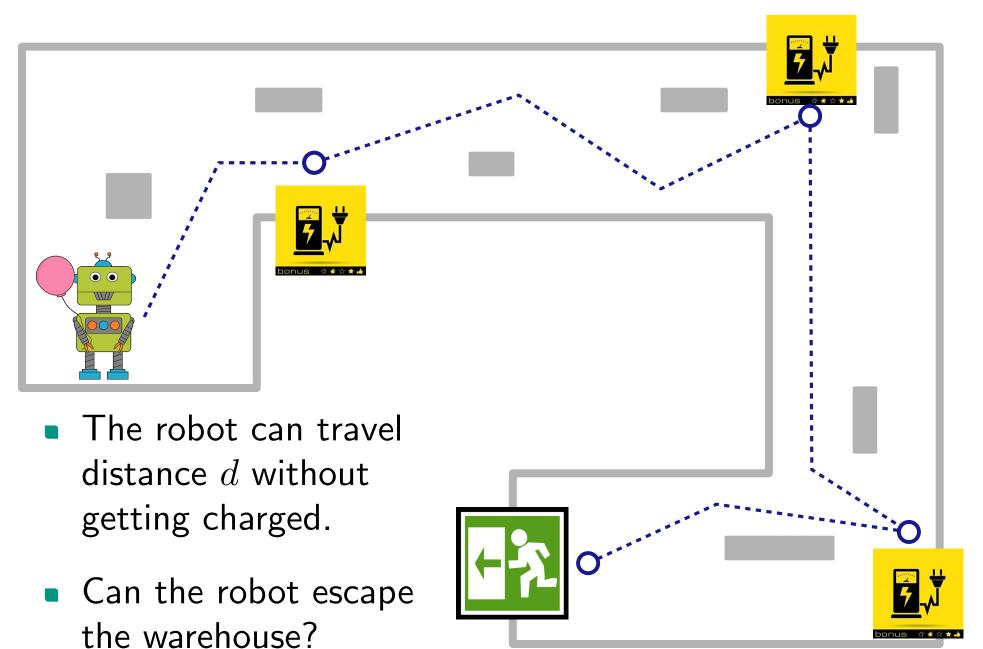
Secret Agent

Shooting Secret Agent

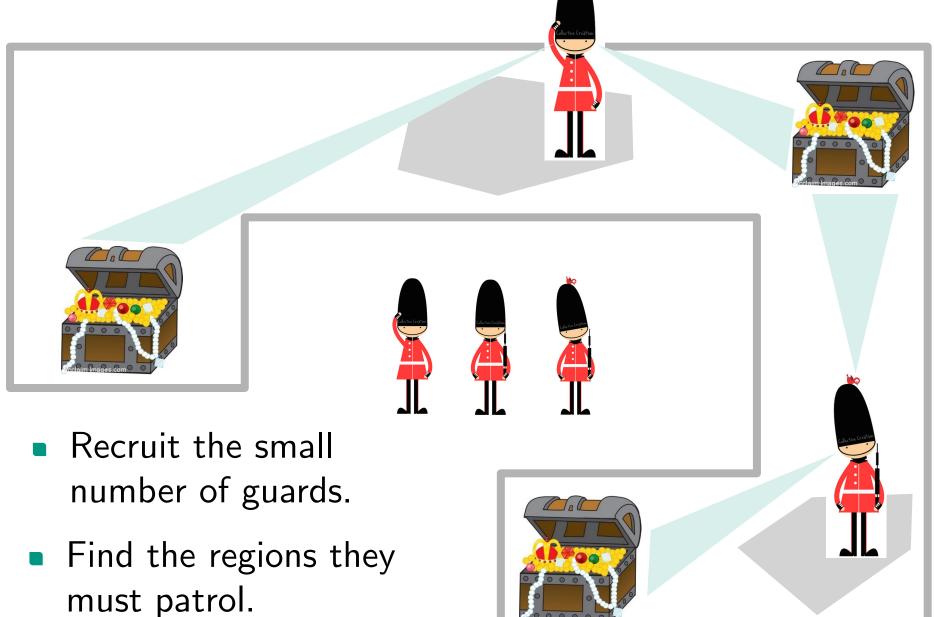


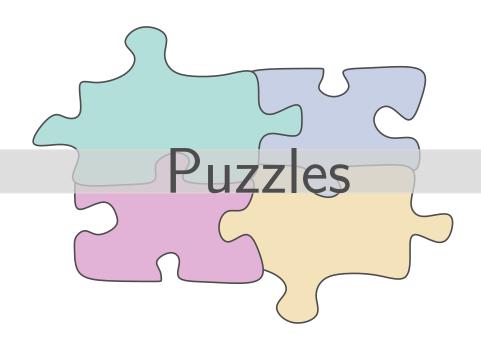
- reflect only d times!
- Can the agent shoot the target?

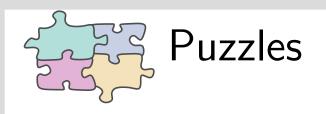
Secret Agent's Robot



Secret Agent Protects Jewels

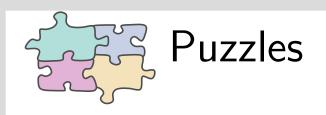




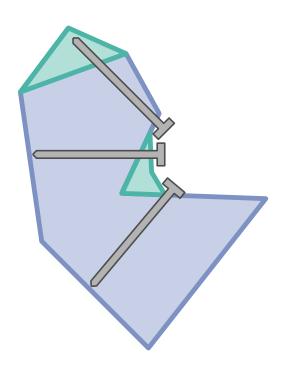


Puzzle # 1: Food fit

Does not fit!



Puzzle # 2: Protect the colony



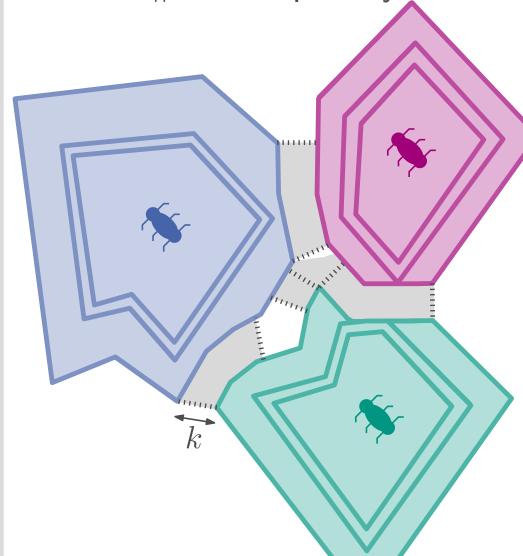
Given:

- A region representing an ant colony's home
- A nail of length l, to be hammered into the home

Output:

- Will the nail break the home apart?
- How can we make "small" changes to protect the home?

Puzzle # 3: Keep away



Given:

- A collection of ant colonies that grow over time
- A keep-away distance k

Output:

 The state of the colonies after t time steps

Project Selection

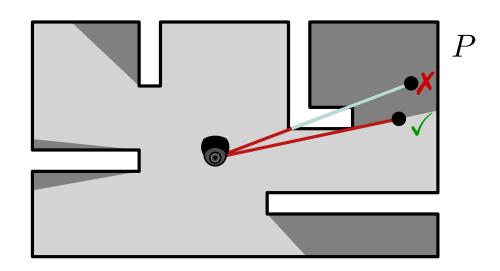
Projects

- 1. Pacman: Collision detection
- 2. Pacman: Ghosts activate on sight
- 3. Pacman: Ghosts activate on smell
- 4. **Secret Agent:** Shoot the laser
- 5. **Secret Agent:** Save the robot
- 6. **Secret Agent:** Guard the jewels
- 7. Puzzle: Food fit
- 8. **Puzzle:** Protect the colony
- 9. Puzzle: Keep away

Polygon Triangulation

The Art-Gallery-Problem

Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.



Assumption: Art gallery is a *simple* polygon P with n corners

(no self-intersections, no holes)

Observation: each camera observes a star-shaped region

Definition: Point $p \in P$ is *visible* from $c \in P$ if $\overline{cp} \in P$

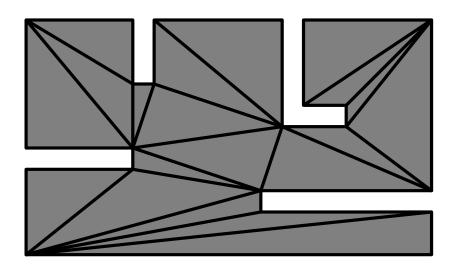
Goal: Use as few cameras as possible!

ightarrow The number depends on the number of corners n and on the shape of P

NP-hard!

Observation: It is easy to guard a triangle

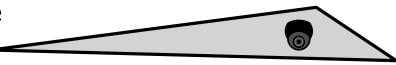
Decompose P into triangles and guard each of them Idea:



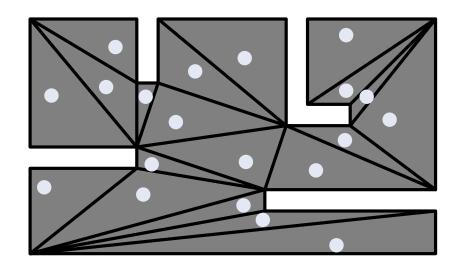
Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly n-2 triangles.

The proof implies a recursive $O(n^2)$ -Algorithm!

Observation: It is easy to guard a triangle



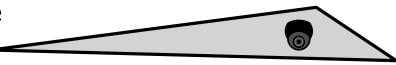
Decompose P into triangles and guard each of them Idea:



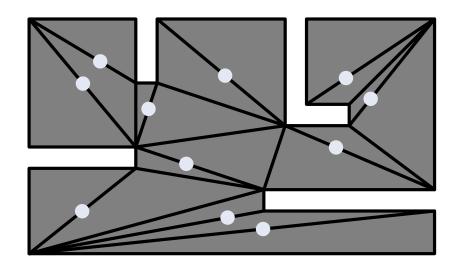
Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly n-2 triangles.

• P could be guarded by n-2 cameras placed in the triangles

Observation: It is easy to guard a triangle



Decompose P into triangles and guard each of them Idea:

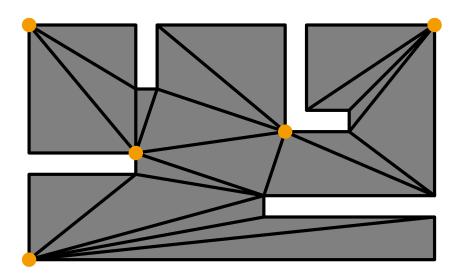


Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly n-2 triangles.

- P could be guarded by n-2 cameras placed in the triangles
- ullet P can be guarded by pprox n/2 cameras placed on the diagonals

Observation: It is easy to guard a triangle

Decompose P into triangles and guard each of them Idea:



Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly n-2 triangles.

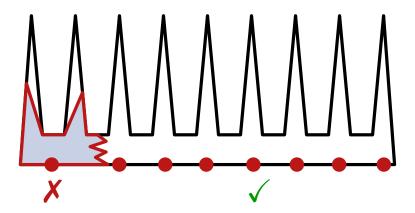
- P could be guarded by n-2 cameras placed in the triangles
- P can be guarded by pprox n/2 cameras placed on the diagonals
- P can be observed by even smaller number of cameras placed on the corners

The Art-Gallery-Theorem [Chvátal '75]

Theorem 2: For a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient to guard it.

Proof:

• Find a simple polygon with n corners that requires $\approx n/3$ cameras!



Sufficiency on the board

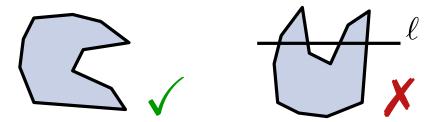
Conclusion: Given a triangulation, the $\lfloor n/3 \rfloor$ cameras that guard the polygon can be placed in O(n) time.

Proof of Art-Gallery-Theorem: Overview

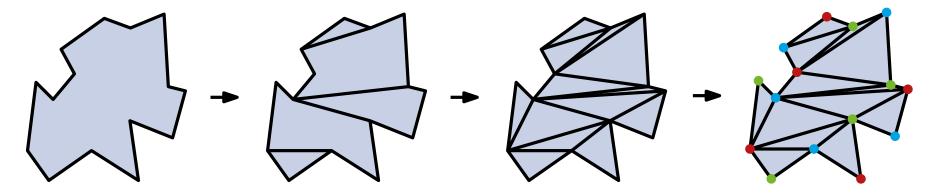
3-step process:

• Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line ℓ , the interection $\ell \cap P$ is connected.



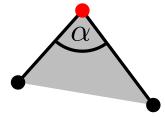
- Step 2: Triangulate the resulting y-monotone polygons
- Step 3: use DFS to color the vertices of the polygon



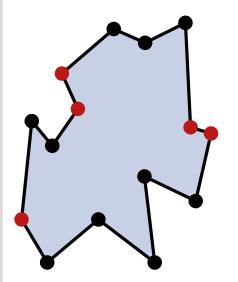
Partition into y-monotone Polygons

Idea: Five different types of vertices

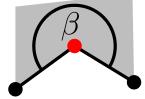
- Turn vertices: vertical change in direction
 - start vertices



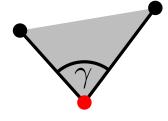
if $\alpha < 180^{\circ}$



split vertices



if $\beta > 180^{\circ}$



if $\gamma < 180^{\circ}$

if $\delta > 180^{\circ}$

regular vertices

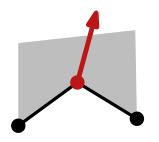


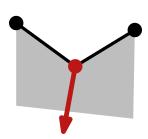
Characterization

Lemma 1: A polygon is y-monotone if it has no split vertices or merge vertices.

Proof: On the blackboard

⇒ We need to eliminate all split and merge vertices by using diagonals



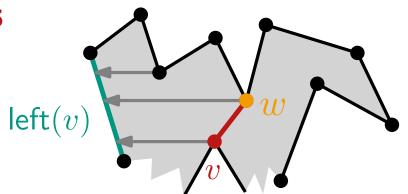


Observation: The diagonals should neither cross the edges of P nor the other diagonals

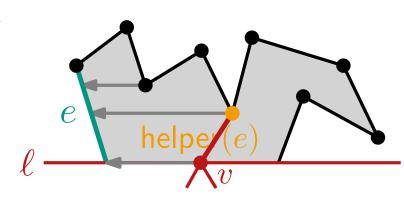
Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

compute for each vertex v its left adjacent edge left(v) with respect to the horizontal sweep line ℓ



- connect split vertex v to the nearest vertex w above v, such that $\mathsf{left}(w) = \mathsf{left}(v)$
- for each edge e save the botommost vertex w such that left(w) = e; notation helper(e) := w
- when ℓ passes through a split vertex v, we connect v with helper(left(v))

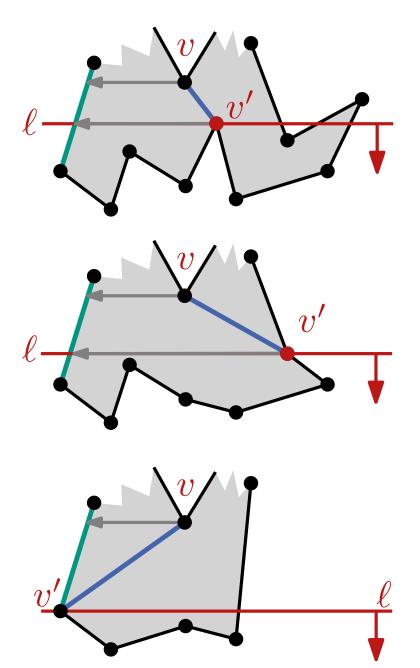


Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices

- ullet when the vertex v is reached, we set helper(left(v)) = v
- lacktriangle when we reach a split vertex v'such that left(v') = left(v) the diagonal (v, v') is introduced
- lacktriangle in case we reach a regular vertex v'such that helper(left(v')) is v the diagonal (v, v') is introduced

• if the end of v' of left(v) is reached, then the diagonal (v, v') is introduced



MakeMonotone(Polygon P)

 $\mathcal{D} \leftarrow \mathsf{doubly\text{-}connected}$ edge list for (V(P), E(P))

 $\mathcal{Q} \leftarrow \text{priority queue for } V(P) \text{ sorted lexicographically; } \mathcal{T} \leftarrow \emptyset \text{ (binary)}$ search tree for sweep-line status)

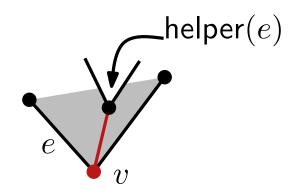
while $Q \neq \emptyset$ do

 $v \leftarrow \mathcal{Q}.\mathsf{nextVertex}()$

Q.deleteVertex(v)

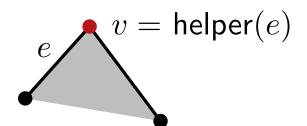
handleVertex(v)

return \mathcal{D}



handleStartVertex(vertex v)

 $\mathcal{T} \leftarrow \mathsf{add} \mathsf{\ the\ left\ edge}\ e$ $\mathsf{helper}(e) \leftarrow v$



handleEndVertex(vertex v)

 $e \leftarrow \mathsf{left} \; \mathsf{edge}$ if isMergeVertex(helper(e)) then $\mathcal{D} \leftarrow \mathsf{add} \; \mathsf{edge} \; (\mathsf{helper}(e), v)$

remove e from ${\mathcal T}$

MakeMonotone(Polygon P)

 $\mathcal{D} \leftarrow \mathsf{doubly\text{-}connected}$ edge list for (V(P), E(P))

 $\mathcal{Q} \leftarrow$ priority queue for V(P) sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$ (binary search tree for sweep-line status)

while $Q \neq \emptyset$ do

 $v \leftarrow \mathcal{Q}.\mathsf{nextVertex}()$

Q.deleteVertex(v)

handleVertex(v)

return \mathcal{D}

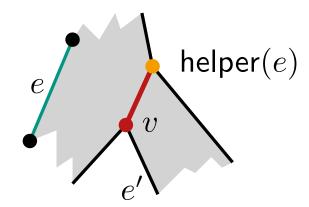
handleSplitVertex(vertex v)

 $e \leftarrow \mathsf{Edge}$ to the left of v in \mathcal{T}

 $\mathcal{D} \leftarrow \mathsf{add} \; \mathsf{edge} \; (\mathsf{helper}(e), v)$

 $\mathsf{helper}(e) \leftarrow v$

 $\mathcal{T} \leftarrow \mathsf{add}$ the right edge e' of v $\mathsf{helper}(e') \leftarrow v$



MakeMonotone(Polygon P)

 $\mathcal{D} \leftarrow \mathsf{doubly\text{-}connected}$ edge list for (V(P), E(P))

 $\mathcal{Q} \leftarrow$ priority queue for V(P) sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$ (binary search tree for sweep-line status)

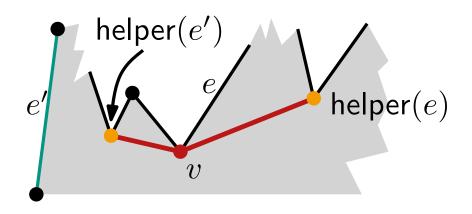
while $Q \neq \emptyset$ do

 $v \leftarrow \mathcal{Q}.\mathsf{nextVertex}()$

Q.deleteVertex(v)

handleVertex(v)

return \mathcal{D}



handleMergeVertex(vertex v)

 $e \leftarrow \mathsf{right} \; \mathsf{edge}$

if isMergeVertex(helper(e)) then

 $\mathcal{D} \leftarrow \mathsf{add} \; \mathsf{edge} \; (\mathsf{helper}(e), v)$

remove e from ${\mathcal T}$

 $e' \leftarrow \text{edge to the left of } v \text{ in } \mathcal{T}$

if isMergeVertex(helper(e')) then

 $\mathcal{D} \leftarrow \mathsf{add} \; \mathsf{edge} \; (\mathsf{helper}(e'), v)$

 $\mathsf{helper}(e') \leftarrow v$

MakeMonotone(Polygon P)

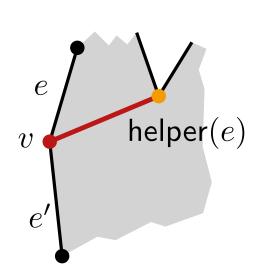
 $\mathcal{D} \leftarrow \mathsf{doubly\text{-}connected}$ edge list for (V(P), E(P))

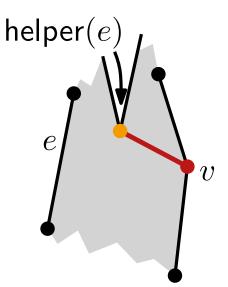
 $\mathcal{Q} \leftarrow \text{priority queue for } V(P) \text{ sorted lexicographically; } \mathcal{T} \leftarrow \emptyset \text{ (binary)}$ search tree for sweep-line status)

while $Q \neq \emptyset$ do

 $v \leftarrow \mathcal{Q}.\mathsf{nextVertex}()$ Q.deleteVertex(v)handleVertex(v)

return \mathcal{D}





handleRegularVertex(vertex v)

if P lies locally to the left of v then $e, e' \leftarrow$ above, below edge if isMergeVertex(helper(e)) then $\mathcal{D} \leftarrow \mathsf{add} \; \mathsf{edge} \; (\mathsf{helper}(e), v)$ remove e from \mathcal{T} $\mathcal{T} \leftarrow \mathsf{add}\ e';\ \mathsf{helper}(e') \leftarrow v$

else

 $e \leftarrow \text{edge to the left of } v$ add e to ${\mathcal T}$ if isMergeVertex(helper(e)) then $\mathcal{D} \leftarrow \mathsf{add} \; (\mathsf{helper}(e), v)$

Analysis

Lemma 2: The algorithm MakeMonotone computes a set of crossing-free diagonals of P, which partitions P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned into y-monotone polygons in $O(n \log n)$ time and O(n) space.

	Construct	priority	queue Q :	O((n)	$\bigg)$
--	-----------	----------	-------------	----	-----	----------

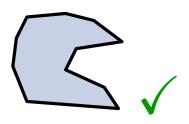
- Initialize sweep-line status \mathcal{T} : O(1)
- Handle a single event: $O(\log n)$
 - \mathcal{Q} .deleteMax: $O(\log n)$
 - Find, remove, add element in \mathcal{T} : $O(\log n)$
 - lacksquare Add diagonals to \mathcal{D} :
- Space: obviously O(n)

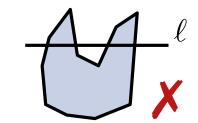
Proof of Art-Gallery-Theorem: Overview

Three-step procedure:

• Step 1: Decompose P in y-monotone polygons

Definition: A polygon P is y-monotone, if for each horizontal line ℓ the intersection $\ell \cap P$ is connected.

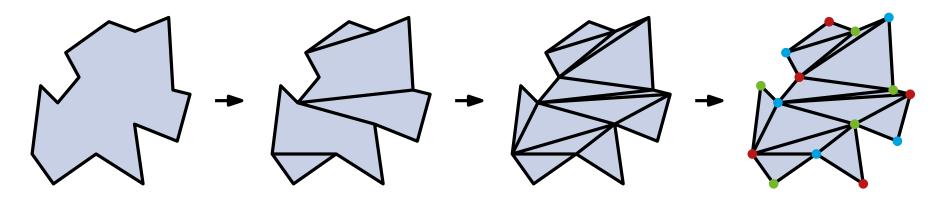




• Step 2: Triangulate y-monotone polygons

ToDo!

Step 3: use DFS to color the triangulated polygon

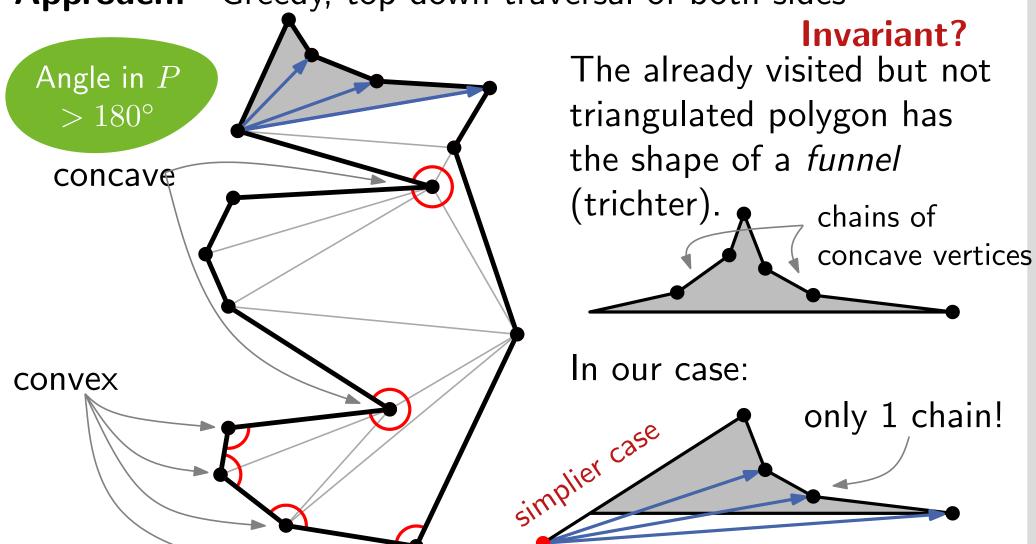


Triangulate y-monotone Polygon

Reminder: The left and the right boundary of the polygon

have decreasing y-coordinates

Approach: Greedy, top down traversal of both sides

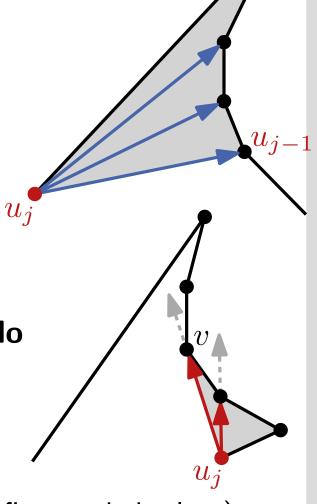


Algorithm TriangulateMonotonePolygon

TriangulateMonotonePolygon(Polygon P as doubly-connected list of edges)

Merge vertices on left and right chains into desc. seq. $\rightarrow u_1, \ldots, u_n$ Stack $S \leftarrow \emptyset$; S.push (u_1) ; S.push (u_2) for $j \leftarrow 3$ to n-1 do if u_i and S.top() from different paths then while not S.empty() do $v \leftarrow S.\mathsf{pop}()$ if not S.empty() then draw (u_j, v) $S.\mathsf{push}(u_{j-1}); S.\mathsf{push}(u_i)$ else $v \leftarrow S.\mathsf{pop}()$

while not S.empty() and u_i sees S.top() do $v \leftarrow S.\mathsf{pop}()$ draw diagonal (u_i, v) $S.\mathsf{push}(v)$; $S.\mathsf{push}(u_i)$



Connect u_n to all the vertices in S (except for the first and the last)

Summary

Theorem 4: A y-monotone polygon with n vertices can be triangulated in O(n) time.

Theorem 3: A simple polygon with n vertices can be partitioned into y-monotone polygons in $O(n \log n)$ time and O(n) space.

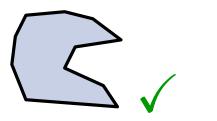
Theorem 5: A simple polygon with n vertices can be triangulated in $O(n \log n)$ time and O(n) space.

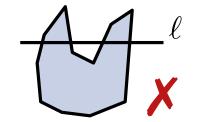
Proof of Art-Gallery-Theorem: Overview

Three-step procedure:

• Step 1: Decompose P in y-monotone polygons

Definition: A polygon P is y-monotone, if for each horizontal line ℓ the intersection $\ell \cap P$ is connected.





• Step 2: Triangulate y-monotone polygons

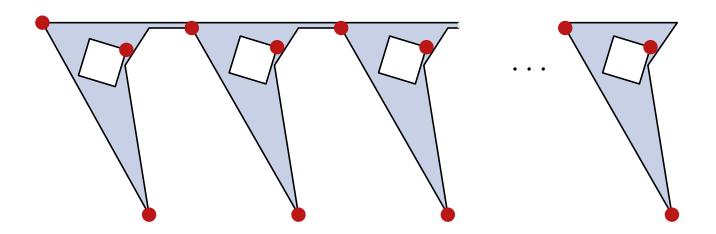
Step 3: use DFS to color the triangulated polygon



Discussion

Can the triangulation algorithm be expanded to work with polygons with holes?

- Triangulation: yes
- But are $\lfloor n/3 \rfloor$ cameras still sufficient to guard it? No, a generalization of Art-Gallery-Theorems says that $\lfloor (n+h)/3 \rfloor$ cameras are sometimes necessary, and always sufficient, where h is the number of holes. [Hoffmann et al., 1991]



Discussion

Can the triangulation algorithm be expanded to work with polygons with holes?

- Triangulation: yes
- But are $\lfloor n/3 \rfloor$ cameras still sufficient to guard it? No, a generalization of Art-Gallery-Theorems says that $\lfloor (n+h)/3 \rfloor$ cameras are sometimes necessary, and always sufficient, where h is the number of holes. [Hoffmann et al., 1991]

Can we solve the triangulation problem faster for simple polygons?

Yes. The question whether it is possible was open for more than a decade. In the end of 80's a faster randomized algorithm was given, and in 1990 Chazelle presented a deterministic linear-time algorithm (complicated).