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Aside: Organizational Items
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Overlaying Map Layers

+

=

Example: Given two different map layers whose intersection is
of interest.

Land use

Precipitation

Map combining themes

Regions are polygons
Polygons are line segments
Calculate all line segment intersections
Compute regions
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Problem Formulation

Given: Set S = {s1, . . . , sn} of line segments in the plane

Output: all intersections of two or more line segments
for each intersection, the line segments involved.

Def: Line segments are closed

Discussion:
– How can you solve this problem
naively?
– Is this already optimal?
– Are their better approaches?
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The Sweep-Line Method: An Example
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Data Structures

1.) Event Queue Q
define p ≺ q ⇔def. yp > yq ∨ (yp = yq ∧ xp < xq)

p q
`

Store events by ≺ in a balanced binary search tree

→ e.g., AVL tree, red-black tree, . . .

Operations insert, delete and nextEvent in O(log |Q|) time

2.) Sweep-Line Status T `

Stores ` cut lines ordered from left to right

Required operations insert, delete, findNeighbor

This is also a balanced binary search tree with line segments stored in
the leaves!
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Algorithm

FindIntersections(S)

Input: Set S of line segments
Output: Set of all intersection points and the line segments

involved
Q ← ∅; T ← ∅
foreach s ∈ S do
Q.insert(upperEndPoint(s))
Q.insert(lowerEndPoint(s))

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

What happens
with duplicates?

This is the core of the
algorithm!
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Algorithm

handleEvent(p)

U(p)← Line segments with p as upper endpoint
L(p)← Line segments with p as lower endpoint
C(p)← Line segments with p as interior point
if |U(p) ∪ L(p) ∪ C(p)| ≥ 2 then

return p and U(p) ∪ L(p) ∪ C(p)

remove L(p) ∪ C(p) from T
add U(p) ∪ C(p) to T
if U(p) ∪ C(p) = ∅ then //sl and sr, neighbors of p in T
Q ← check if sl and sr intersect below p

else //s′ and s′′ leftmost and rightmost line segment in U(p) ∪ C(p)
Q ← check if sl and s′ intersect below p
Q ← check if sr and s′′ intersect below p

Stored with p in Q

Neighbors in T

Remove and insert
reverses order in C(p)
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What Happens Exactly?
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S
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What Happens Exactly?
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S
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Correctness

Lemma 1:Algorithm FindIntersections finds all intersection
points and the line segments involved

Proof:
Induction on the number of events processed.

Let p be an intersection point and all intersection points q ≺ p
are already correctly computed.

Case 1: p is a line segment endpoint
p was inserted in Q
U(p) stores p
L(p) and C(p) are in T

Case 2: p is not a line segment endpoint

Consider why p must be in Q!
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Running-Time Analysis

FindIntersections(S)

Input: Set S of line segments
Output: Set of all intersections with their line segments
Q ← ∅; T ← ∅
foreach s ∈ S do
Q.insert(upperEndPoint(s))
Q.insert(lowerEndPoint(s))

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

O(1)

O(n log n)

O(log |Q|) ?
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Running-Time Analysis

Lemma 2:Algorithm FindIntersections has running time
O(n log n + I log n), where I is the number of
intersection points.

handleEvent(p)

U(p)← Line segments with p as upper endpoint
L(p)← Line segments with p as lower endpoint
C(p)← Line segments with p as interior point
if |U(p) ∪ L(p) ∪ C(p)| ≥ 2 then

return p and U(p) ∪ L(p) ∪ C(p)

remove L(p) ∪ C(p) from T
add U(p) ∪ C(p) to T
if U(p) ∪ C(p) = ∅ then //sl and sr, neighbors of p in T
Q ← check if sl and sr intersect below p

else //s′ and s′′ leftmost and rightmost line segment in U(p) ∪ C(p)
Q ← check if sl and s′ intersect below p
Q ← check if sr and s′′ intersect below p
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Summary

Proof:
Correctness X
Running time X
Space

– T has at most n elements
– Q has at most O(n + I) elements
– reduction of Q to O(n) space: an exercise

Consider how much space the
data structures need!

Thm 1:Let S be a set of n line segments in the plane. Then
we can compute intersections in S together with the
involved line segments in O((n + I) log n) time and
O(n) space.
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Discussion

Is the Sweep-Line Algorithm always better than the naive one?

No, because if I ∈ Ω(n2) then the algorithm has running time
O(n2 log n).

Can we do better?

Yes, in Θ(n log n + I) time and Θ(n) space [Balaban, 1995].

How does this solve the map overlay problem?

Using an appropriate data structure (doubly-connected edgelist) for
planar graphs we can compute in O((n + I) log n) time the overlay of
two maps.
(Details in Ch. 2.3 of the book)

14


	Overlaying Map Layers
	Problem Formulation
	The Sweep-Line Method: An Example
	Data Structures
	Algorithm
	Algorithm
	What Happens Exactly?
	Correctness
	Running-Time Analysis
	Running-Time Analysis
	Summary
	Discussion

