

Computational Geometry · **Lecture** Line Segment Intersection

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Tamara Mchedlidze · Darren Strash 26.10.2015

 $1 \quad \mathsf{Dr. Tamara \ Mchedlidze} \cdot \mathsf{Dr. \ Darren \ Strash} \cdot \mathsf{Computational \ Geometry \ Lecture}$

Aside: Organizational Items

Overlaying Map Layers

Example: Given two different map layers whose intersection is of interest.

- Regions are polygons
- Polygons are line segments
- Calculate all line segment intersections
- Compute regions

Problem Formulation

Given: Set $S = \{s_1, \ldots, s_n\}$ of line segments in the plane **Output:** all intersections of two or more line segments for each intersection, the line segments involved. Line segments are **closed**

Def:

Discussion:

- How can you solve this problem
- naively?
- Is this already optimal?
- Are their better approaches?

The Sweep-Line Method: An Example

Data Structures

1.) Event Queue \mathcal{Q}

• define $p \prec q \quad \Leftrightarrow_{\text{def.}} \quad y_p > y_q \lor (y_p = y_q \land x_p < x_q)$

- Store events by \prec in a **balanced binary search tree** \rightarrow e.g., AVL tree, red-black tree, ...
- Operations insert, delete and nextEvent in $O(\log |\mathcal{Q}|)$ time

2.) Sweep-Line Status \mathcal{T}

- Stores ℓ cut lines ordered from left to right
- Required operations insert, delete, findNeighbor
- This is also a balanced binary search tree with line segments stored in the leaves!

Algorithm

Algorithm

handleEvent(p)Stored with p in \mathcal{Q} $U(p) \leftarrow \text{Line segments with } p \text{ as upper endpoint}$ $L(p) \leftarrow \text{Line segments with } p \text{ as lower endpoint}$ $C(p) \leftarrow \text{Line segments with } p \text{ as interior point}$ Neighbors in \mathcal{T} if $|U(p) \cup L(p) \cup C(p)| \ge 2$ then return p and $U(p) \cup L(p) \cup C(p)$ Remove and insert remove $L(p) \cup C(p)$ from \mathcal{T} reverses order in C(p)add $U(p) \cup C(p)$ to \mathcal{T} if $U(p) \cup C(p) = \emptyset$ then $//s_l$ and s_r , neighbors of p in \mathcal{T} $\mathcal{Q} \leftarrow \text{check if } s_l \text{ and } s_r \text{ intersect below } p$ else //s' and s'' leftmost and rightmost line segment in $U(p) \cup C(p)$ $\mathcal{Q} \leftarrow \text{check if } s_l \text{ and } s' \text{ intersect below } p$ $\mathcal{Q} \leftarrow \text{check if } s_r \text{ and } s'' \text{ intersect below } p$

What Happens Exactly?

9 Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture

What Happens Exactly?

Add event
$$p' = s_1 \times s_7$$
 in \mathcal{Q}

 $C(p) = \{s_1, s_3\}$

9 Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture

Lemma 1: Algorithm FindIntersections finds all intersection points and the line segments involved

Proof:

Induction on the number of events processed.

Let p be an intersection point and all intersection points $q\prec p$ are already correctly computed.

Case 1: p is a line segment endpoint

- $\hfill p$ was inserted in ${\cal Q}$
- U(p) stores p
- L(p) and C(p) are in \mathcal{T}

Case 2: p is not a line segment endpoint -

Consider why p must be in Q!

Running-Time Analysis

handleEvent(p)

 $U(p) \leftarrow \text{Line segments with } p \text{ as upper endpoint}$ $L(p) \leftarrow \text{Line segments with } p \text{ as lower endpoint}$ $C(p) \leftarrow \text{Line segments with } p \text{ as interior point}$ if $|U(p) \cup L(p) \cup C(p)| \ge 2$ then return p and $U(p) \cup L(p) \cup C(p)$ remove $L(p) \cup C(p)$ from \mathcal{T} add $U(p) \cup C(p)$ to \mathcal{T} if $U(p) \cup C(p) = \emptyset$ then $//s_l$ and s_r , neighbors of p in \mathcal{T} $\mathcal{Q} \leftarrow \text{check if } s_l \text{ and } s_r \text{ intersect below } p$ else //s' and s'' leftmost and rightmost line segment in $U(p) \cup C(p)$ $\mathcal{Q} \leftarrow \text{check if } s_l \text{ and } s' \text{ intersect below } p$ $\mathcal{Q} \leftarrow \text{check if } s_r \text{ and } s'' \text{ intersect below } p$

Lemma 2: Algorithm FindIntersections has running time $O(n \log n + I \log n)$, where I is the number of intersection points.

Summary

Thm 1:Let S be a set of n line segments in the plane. Then we can compute intersections in S together with the involved line segments in $O((n + I) \log n)$ time and O(n) space.

Proof:

- Correctness \checkmark
- Running time ✓
- Space

Consider how much space the data structures need!

- ${\mathcal T}$ has at most n elements
- Q has at most O(n+I) elements
- reduction of \mathcal{Q} to O(n) space: an exercise

Discussion

Is the Sweep-Line Algorithm always better than the naive one?

No, because if $I \in \Omega(n^2)$ then the algorithm has running time $O(n^2 \log n)$.

Can we do better?

Yes, in $\Theta(n \log n + I)$ time and $\Theta(n)$ space [Balaban, 1995].

How does this solve the map overlay problem?

Using an appropriate data structure (doubly-connected edgelist) for planar graphs we can compute in $O((n + I) \log n)$ time the overlay of two maps.

(Details in Ch. 2.3 of the book)