Computational Geometry • Lecture Line Segment Intersection

Tamara Mchedlidze • Darren Strash 26.10.2015

Aside: Organizational Items

Overlaying Map Layers

Example: Given two different map layers whose intersection is of interest.

Land use

Precipitation

Map combining themes

- Regions are polygons
- Polygons are line segments
- Calculate all line segment intersections
- Compute regions

Problem Formulation

Given: Set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of line segments in the plane Output:■ all intersections of two or more line segments - for each intersection, the line segments involved.

Def: Line segments are closed

Discussion:
- How can you solve this problem naively?
- Is this already optimal?
- Are their better approaches?

The Sweep-Line Method: An Example

Data Structures

1.) Event Queue \mathcal{Q}

- define $p \prec q \quad \Leftrightarrow_{\text {def. }} . \quad y_{p}>y_{q} \vee\left(y_{p}=y_{q} \wedge x_{p}<x_{q}\right)$

- Store events by \prec in a balanced binary search tree
\rightarrow e.g., AVL tree, red-black tree, ...
- Operations insert, delete and nextEvent in $O(\log |\mathcal{Q}|)$ time
2.) Sweep-Line Status \mathcal{T}

- Stores ℓ cut lines ordered from left to right
- Required operations insert, delete, findNeighbor
- This is also a balanced binary search tree with line segments stored in the leaves!

Algorithm

Findlntersections (S)
Input: Set S of line segments
Output: Set of all intersection points and the line segments involved
$\mathcal{Q} \leftarrow \emptyset ; \quad \mathcal{T} \leftarrow \emptyset$
foreach $s \in S$ do
\mathcal{Q}.insert(upperEndPoint(s))
\mathcal{Q}.insert(lowerEndPoint(s))

What happens
with duplicates?
while $\mathcal{Q} \neq \emptyset$ do
$p \leftarrow \mathcal{Q}$.nextEvent()
Q.deleteEvent (p)
handleEvent (p)

Algorithm

handleEvent (p)
$U(p) \leftarrow$ Line segments with p as upper etored with p in Q
$L(p) \leftarrow$ Line segments with p as lower endpoint
$C(p) \leftarrow$ Line segments with p as interior pormu Neighbors in \mathcal{T}
if $|U(p) \cup L(p) \cup C(p)| \geq 2$ then
return p and $U(p) \cup L(p) \cup C(p)$
remove $L(p) \cup C(p)$ from \mathcal{T}
Remove and insert
add $U(p) \cup C(p)$ to \mathcal{T}
if $U(p) \cup C(p)=\emptyset$ then $\quad / / s_{l}$ and s_{r}, neighbors of p in \mathcal{T}
$\mathcal{Q} \leftarrow$ check if s_{l} and s_{r} intersect below p
else $/ / s^{\prime}$ and $s^{\prime \prime}$ leftmost and rightmost line segment in $U(p) \cup C(p)$
$\mathcal{Q} \leftarrow$ check if s_{l} and s^{\prime} intersect below p
$\mathcal{Q} \leftarrow$ check if s_{r} and $s^{\prime \prime}$ intersect below p

What Happens Exactly?

Delete $L(p) \cup C(p)$; add $U(p) \cup C(p)$

What Happens Exactly?

Correctness

Lemma 1: Algorithm FindIntersections finds all intersection points and the line segments involved

Proof:

Induction on the number of events processed.
Let p be an intersection point and all intersection points $q \prec p$ are already correctly computed.

Case 1: p is a line segment endpoint

- p was inserted in \mathcal{Q}
- $U(p)$ stores p
- $L(p)$ and $C(p)$ are in \mathcal{T}

Case 2: p is not a line segment endpoint
Consider why p must be in \mathcal{Q} !

Running-Time Analysis

FindIntersections (S)
Input: Set S of line segments
Output: Set of all intersections with their line segments
$\mathcal{Q} \leftarrow \emptyset ; \mathcal{T} \leftarrow \emptyset \quad O(1)$
foreach $s \in S$ do
\mathcal{Q}.insert(upperEndPoint(s))
\mathcal{Q}.insert(lowerEndPoint(s))
$O(n \log n)$
while $\mathcal{Q} \neq \emptyset$ do
$p \leftarrow \mathcal{Q}$.nextEvent()
Q.deleteEvent (p)
$O(\log |\mathcal{Q}|)$
handleEvent (p)

Running-Time Analysis

handleEvent (p)
$U(p) \leftarrow$ Line segments with p as upper endpoint
$L(p) \leftarrow$ Line segments with p as lower endpoint
$C(p) \leftarrow$ Line segments with p as interior point
if $|U(p) \cup L(p) \cup C(p)| \geq 2$ then return p and $U(p) \cup L(p) \cup C(p)$
remove $L(p) \cup C(p)$ from \mathcal{T}
add $U(p) \cup C(p)$ to \mathcal{T}
if $U(p) \cup C(p)=\emptyset$ then $\quad / / s_{l}$ and s_{r}, neighbors of p in \mathcal{T}
$\mathcal{Q} \leftarrow$ check if s_{l} and s_{r} intersect below p
else $/ / s^{\prime}$ and $s^{\prime \prime}$ leftmost and rightmost line segment in $U(p) \cup C(p)$
$\mathcal{Q} \leftarrow$ check if s_{l} and s^{\prime} intersect below p
$\mathcal{Q} \leftarrow$ check if s_{r} and $s^{\prime \prime}$ intersect below p
Lemma 2: Algorithm FindIntersections has running time $O(n \log n+I \log n)$, where I is the number of intersection points.

Summary

Thm 1:Let S be a set of n line segments in the plane. Then we can compute intersections in S together with the involved line segments in $O((n+I) \log n)$ time and $O(n)$ space.

Proof:

- Correctness \checkmark
- Running time \checkmark

Consider how much space the data structures need!

- Space

Discussion

Is the Sweep-Line Algorithm always better than the naive one?
No, because if $I \in \Omega\left(n^{2}\right)$ then the algorithm has running time $O\left(n^{2} \log n\right)$.

Can we do better?
Yes, in $\Theta(n \log n+I)$ time and $\Theta(n)$ space [Balaban, 1995].
How does this solve the map overlay problem?
Using an appropriate data structure (doubly-connected edgelist) for planar graphs we can compute in $O((n+I) \log n)$ time the overlay of two maps.
(Details in Ch. 2.3 of the book)

