Computational Geometry • Lecture Range Searching

Tamara Mchedlidze • Darren Strash
 18.11.2015

Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are saved. We now want to perform a search: which employees have an income between 2,000 and 3,000 Euro and were born between 1960 and 1980?

Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are saved. We now want to perform a search: which employees have an income between 2,000 and 3,000 Euro and were born between 1960 and 1980?

Geometric Interpretation:

Entries are points: (birth year, income level) and the query is an axis-parallel rectangle

Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are saved. We now want to perform a search: which employees have an income between 2,000 and 3,000 Euro and were born between 1960 and 1980?

This problem can easily be generalized to d dimensions.

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:

Search for all points in $[6,50]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:
Search for all points in $[6,50]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:
Search for all points in $[6,50]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:
Search for all points in $[6,50]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:
Search for all points in $[6,50]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:
Search for all points in $[6,50]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:
Search for all points in $[6,50]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:
Search for all points in $[6,50]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:
Search for all points in $[6,50]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:
Search for all points in $[6,50]$

Orthogonal Range Queries

Given: n points in \mathbb{R}^{d}
Output: A data structure that efficiently answers queries of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$

Problem: Design a data structure for the case $d=1$.
Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_{v}

Example:

Search for all points in $[6,50]$

Answer:

Points in the leaves between the search paths, (i.e.,
$\{7,8,12,15,17,21,33,41\})$

1dRangeQuery

FindSplitNode($\left.T, x, x^{\prime}\right)$
$v \leftarrow \operatorname{root}(T)$
while v not a leaf and ($x^{\prime} \leq x_{v}$ or $x>x_{v}$) do if $x^{\prime} \leq x_{v}$ then $v \leftarrow \operatorname{lc}(v)$ else $v \leftarrow \mathrm{rc}(v)$
return v
1dRangeQuery $\left(T, x, x^{\prime}\right)$
$v_{\text {split }} \leftarrow$ FindSplitNode $\left(T, x, x^{\prime}\right)$
if $v_{\text {split }}$ is leaf then report $v_{\text {split }}$ else
$v \leftarrow \operatorname{lc}\left(v_{\text {split }}\right)$ while v not a leaf do if $x \leq x_{v}$ then

ReportSubtree $(\mathrm{rc}(v)) ; v \leftarrow \operatorname{lc}(v)$ else $v \leftarrow \mathrm{rc}(v)$

$$
\text { report } v
$$

// analog. for x^{\prime} and $\operatorname{rc}\left(v_{\text {split }}\right)$

1dRangeQuery

FindSplitNode $\left(T, x, x^{\prime}\right)$
$v \leftarrow \operatorname{root}(T)$
while v not a leaf and $\left(x^{\prime} \leq x_{v}\right.$ or $\left.x>x_{v}\right)$ do if $x^{\prime} \leq x_{v}$ then $v \leftarrow \operatorname{lc}(v)$ else $v \leftarrow \mathrm{rc}(v)$

return v

1dRangeQuery $\left(T, x, x^{\prime}\right)$

Analysis of 1dRangeQuery

1dRangeQuery $\left(T, x, x^{\prime}\right)$
$v_{\text {split }} \leftarrow$ FindSplitNode $\left(T, x, x^{\prime}\right)$
if $v_{\text {split }}$ is leaf then report $v_{\text {split }}$ else

$$
v \leftarrow \operatorname{lc}\left(v_{\text {split }}\right)
$$

while v not a leaf do if $x \leq x_{v}$ then

ReportSubtree $(\mathrm{rc}(v)) ; v \leftarrow \operatorname{lc}(v)$ else $v \leftarrow \mathrm{rc}(v)$
report v
// analog. for x^{\prime} and $\operatorname{rc}\left(v_{\text {split }}\right)$

Theorem 1: A set of n points in \mathbb{R} can preprocessed in $O(n \log n)$ time and stored in $O(n)$ space so that we can answer range queries in $O(k+\log n)$ time, where k is the number of reported points.

Orthogonal Range Queries for $d=2$

Given: Set P of n points in \mathbb{R}^{2}
Goal: A data structure to efficiently answer range queries of the form $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$

Orthogonal Range Queries for $d=2$
Given: Set P of n points in \mathbb{R}^{2}
Goal: A data structure to efficiently answer range queries of the form $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$

Ideas for generalizing the 1d case?

Orthogonal Range Queries for $d=2$
Given: Set P of n points in \mathbb{R}^{2}
Goal: A data structure to efficiently answer range queries of the form $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$

Ideas for generalizing the 1d case?

Solutions:

- one search tree, alternate search for x and y coordinates $\rightarrow k d$-Tree
- primary search tree on x-coordinates, several secondary search trees on y-coordinates
\rightarrow Range Tree

Orthogonal Range Queries for $d=2$
Given: Set P of n points in \mathbb{R}^{2}
Goal: A data structure to efficiently answer range queries of the form $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$

Ideas for generalizing the 1d case?

Solutions:

- one search tree, alternate search for x and y coordinates $\rightarrow k d$-Tree
- primary search tree on x-coordinates, several secondary search trees on y-coordinates
\rightarrow Range Tree
Temporary assumption: general position, that is no two points have the same x - or y-coordinates

$k d$-Trees: Example

$k d$-Trees: Example

$k d$-Trees: Example

$k d$-Trees: Example

$k d$-Trees: Example

$k d$-Trees: Example

$k d$-Trees: Example

$k d$-Trees: Example

$k d$-Trees: Example

$k d$-Trees: Example

$k d$-Trees: Example

$k d$-Trees: Construction

BuildKdTree $(P$, depth $)$

$k d$-Trees: Construction

$k d$-Trees: Construction

BuildKdTree $(P$, depth $)$

if $|P|=1$ then
| return leaf with a point in P
else
if depth even then
else

$k d$-Trees: Construction

BuildKdTree $(P$, depth $)$
if $|P|=1$ then
$\mid \quad$ return leaf with a point in P
else
if depth even then point $\lceil|P| / 2\rceil$
divide P vertically f
$\ell: x=x_{\text {median }(P)}$ in
P_{1} (Points left of or on ℓ) and $P_{2}=P \backslash P_{1}$
else

$k d$-Trees: Construction

BuildKdTree $(P$, depth $)$

if depth even then
divide P vertically at
$\ell: x=x_{\text {median }(P)}$ in
P_{1} (Points left of or on ℓ) and $P_{2}=P \backslash P_{1}$
else
divide P horizontal at
$\ell: y=y_{\text {median }(P)}$ in
P_{1} (points above or on ℓ) and $P_{2}=P \backslash P_{1}$

$k d$-Trees: Construction

BuildKdTree(P, depth)

$$
\begin{aligned}
& \text { if }|P|=1 \text { then } \\
& \mid \text { return leaf with a point in } P \\
& \text { else }
\end{aligned}
$$

if depth even then divide P vertically at $\ell: x=x_{\text {median }(P)}$ in
P_{1} (Points left of or on ℓ) and $P_{2}=P \backslash P_{1}$
else
divide P horizontal at
$\ell: y=y_{\text {median }(P)}$ in
P_{1} (points above or on ℓ) and $P_{2}=P \backslash P_{1}$
$v_{\text {left }} \leftarrow \operatorname{BuildKdTree}\left(P_{1}\right.$, depth +1$)$ $v_{\text {right }} \leftarrow \operatorname{BuildKdTree}\left(P_{2}\right.$, depth +1$)$

$k d$-Trees: Construction

BuildKdTree(P, depth)

if $|P|=1$ then
return leaf with a point in P
else
if depth even then
divide P vertically at
$\ell: x=x_{\text {median }(P)}$ in
P_{1} (Points left of or on ℓ) and $P_{2}=P \backslash P_{1}$
else
divide P horizontal at
$\ell: y=y_{\text {median }(P)}$ in
P_{1} (points above or on ℓ) and $P_{2}=P \backslash P_{1}$
$v_{\text {left }} \leftarrow \operatorname{BuildKdTree}\left(P_{1}\right.$, depth +1$)$ $v_{\text {right }} \leftarrow \operatorname{BuildKdTree}\left(P_{2}\right.$, depth +1$)$

$k d$-Trees: Construction

BuildKdTree(P, depth)

if $|P|=1$ then
return leaf with a point in P
else
if depth even then
divide P vertically at
$\ell: x=x_{\text {median }(P)}$ in
P_{1} (Points left of or on ℓ) and $P_{2}=P \backslash P_{1}$
else
divide P horizontal at
$\ell: y=y_{\text {median }(P)}$ in
P_{1} (points above or on ℓ) and $P_{2}=P \backslash P_{1}$
$v_{\text {left }} \leftarrow \operatorname{BuildKdTree}\left(P_{1}\right.$, depth +1$)$ $v_{\text {right }} \leftarrow \operatorname{BuildKdTree}\left(P_{2}\right.$, depth +1$)$
Create node v, which stores ℓ

$k d$-Trees: Construction

BuildKdTree $(P$, depth $)$

$$
\begin{aligned}
& \text { if }|P|=1 \text { then } \\
& \mid \text { return leaf with a point in } P \\
& \text { else }
\end{aligned}
$$

if depth even then divide P vertically at $\ell: x=x_{\text {median }(P)}$ in
P_{1} (Points left of or on ℓ) and $P_{2}=P \backslash P_{1}$
else
divide P horizontal at
$\ell: y=y_{\text {median }(P)}$ in
P_{1} (points above or on ℓ) and $P_{2}=P \backslash P_{1}$
$v_{\text {left }} \leftarrow \operatorname{BuildKdTree}\left(P_{1}\right.$, depth +1$)$ $v_{\text {right }} \leftarrow \operatorname{BuildKdTree}\left(P_{2}\right.$, depth +1$)$
Create node v, which stores ℓ

$k d$-Trees: Construction

BuildKdTree $(P$, depth $)$

$k d$-Trees: Construction

BuildKdTree(P, depth)

if $|P|=1$ then
return leaf with a point in P
else
if depth even then
divide P vertically at
$\ell: x=x_{\text {median }(P)}$ in
P_{1} (Points left of or on ℓ) and $P_{2}=P \backslash P_{1}$
else
divide P horizontal at
$\ell: y=y_{\text {median }(P)}$ in
P_{1} (points above or on ℓ) and $P_{2}=P \backslash P_{1}$
$v_{\text {left }} \leftarrow \operatorname{BuildKdTree}\left(P_{1}\right.$, depth +1$)$ $v_{\text {right }} \leftarrow \operatorname{BuildKdTree}\left(P_{2}\right.$, depth +1$)$
Create node v, which stores ℓ make $v_{\text {left }}$ and $v_{\text {right }}$ children of v

$k d$-Trees: Construction

BuildKdTree(P, depth)

if $|P|=1$ then
return leaf with a point in P
else
if depth even then
divide P vertically at
$\ell: x=x_{\text {median }(P)}$ in
P_{1} (Points left of or on ℓ) and $P_{2}=P \backslash P_{1}$
else
divide P horizontal at
$\ell: y=y_{\text {median }(P)}$ in
P_{1} (points above or on ℓ) and $P_{2}=P \backslash P_{1}$
$v_{\text {left }} \leftarrow \operatorname{BuildKdTree}\left(P_{1}\right.$, depth +1$)$ $v_{\text {right }} \leftarrow \operatorname{BuildKdTree}\left(P_{2}\right.$, depth +1$)$
Create node v, which stores ℓ make $v_{\text {left }}$ and $v_{\text {right }}$ children of v return v

Analysis of $k d$-Tree Construction

Lemma 1: A $k d$-tree for n points in \mathbb{R}^{2} can be constructed in $O(n \log n)$ time, using $O(n)$ space.

Analysis of $k d$-Tree Construction
Lemma 1: A $k d$-tree for n points in \mathbb{R}^{2} can be constructed in $O(n \log n)$ time, using $O(n)$ space.

Proof sketch:

- Determine median:
- make two lists sorted on x - and y-coordinates
- at each step, determine median and divide the lists

Analysis of $k d$-Tree Construction
Lemma 1: A $k d$-tree for n points in \mathbb{R}^{2} can be constructed in $O(n \log n)$ time, using $O(n)$ space.

Proof sketch:

- Determine median:
- make two lists sorted on x - and y-coordinates
- at each step, determine median and divide the lists
- We get the following recurrence:

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ O(n)+2 T(\lceil n / 2\rceil) & \text { otherwise }\end{cases}
$$

Analysis of $k d$-Tree Construction
Lemma 1: A $k d$-tree for n points in \mathbb{R}^{2} can be constructed in $O(n \log n)$ time, using $O(n)$ space.

Proof sketch:

- Determine median:
- make two lists sorted on x - and y-coordinates
- at each step, determine median and divide the lists
- We get the following recurrence:

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ O(n)+2 T(\lceil n / 2\rceil) & \text { otherwise }\end{cases}
$$

- Solves to $T(n)=O(n \log n)$ (analogous to MergeSort)

Analysis of $k d$-Tree Construction
Lemma 1: A $k d$-tree for n points in \mathbb{R}^{2} can be constructed in $O(n \log n)$ time, using $O(n)$ space.

Proof sketch:

- Determine median:
- make two lists sorted on x - and y-coordinates
- at each step, determine median and divide the lists
- We get the following recurrence:

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ O(n)+2 T(\lceil n / 2\rceil) & \text { otherwise }\end{cases}
$$

- Solves to $T(n)=O(n \log n)$ (analogous to MergeSort)
- Linear space, since we are using a binary tree with n leaves.

Range Queries in a $k d$-Tree

Range Queries in a $k d$-Tree

SearchKdTree (v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{lc}(v)) \subseteq R$ then ReportSubtree (Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree $(\operatorname{lc}(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc(v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc(v), R)

Range Queries in a $k d$-Tree

SearchKdTree (v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{lc}(v)) \subseteq R$ then ReportSubtree $(\operatorname{Ic}(v))$
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree(Ic $(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc (v))
else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc $(v), R)$

Range Queries in a $k d$-Tree

SearchKdTree (v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{Ic}(v)) \subseteq R$ then ReportSubtree (Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree(Ic $(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc (v))
else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc $(v), R)$

Range Queries in a $k d$-Tree

SearchKdTree (v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{lc}(v)) \subseteq R$ then ReportSubtree (Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree $(\operatorname{lc}(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc(v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc(v), R)

Range Queries in a $k d$-Tree

SearchKdTree (v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{lc}(v)) \subseteq R$ then ReportSubtree (Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree $(\operatorname{lc}(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc(v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc(v), R)

Range Queries in a $k d$-Tree

SearchKdTree(v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{Ic}(v)) \subseteq R$ then ReportSubtree (Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree(Ic $(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc(v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc(v), R)

Range Queries in a $k d$-Tree

SearchKdTree (v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{lc}(v)) \subseteq R$ then ReportSubtree (Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree $(\operatorname{lc}(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc (v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc $(v), R)$

Range Queries in a $k d$-Tree

SearchKdTree(v, R) if v leaf then report point p in v when $p \in R$ else
if region $(\operatorname{lc}(v)) \subseteq R$ then ReportSubtree(Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree(Ic $(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc(v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc(v), R)

Range Queries in a $k d$-Tree

SearchKdTree (v, R) if v leaf then report point p in v when $p \in R$ else
if region $(\operatorname{lc}(v)) \subseteq R$ then ReportSubtree $(\operatorname{Ic}(v))$
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree $(\operatorname{Ic}(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc (v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc(v), R)

Range Queries in a $k d$-Tree

SearchKdTree (v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{lc}(v)) \subseteq R$ then ReportSubtree (Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree $(\operatorname{lc}(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc(v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc(v), R)

Range Queries in a $k d$-Tree

SearchKdTree (v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{Ic}(v)) \subseteq R$ then ReportSubtree (Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree $(\operatorname{lc}(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc(v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc $(v), R)$

Range Queries in a $k d$-Tree

SearchKdTree (v, R)
if v leaf then
report point p in v when $p \in R$ else

$$
\text { if region }(\operatorname{Ic}(v)) \subseteq R \text { then }
$$

ReportSubtree $(\operatorname{Ic}(v))$
else
if region $(\operatorname{lc}(v)) \cap R \neq \emptyset$ then SearchKdTree $(\operatorname{lc}(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc (v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc $(v), R)$

Range Queries in a $k d$-Tree

SearchKdTree(v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{lc}(v)) \subseteq R$ then ReportSubtree(Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree $(\operatorname{lc}(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc(v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc $(v), R)$

Range Queries in a $k d$-Tree

SearchKdTree(v, R)
if v leaf then
report point p in v when $p \in R$ else
if region $(\operatorname{lc}(v)) \subseteq R$ then ReportSubtree (Ic (v))
else
if region $(\operatorname{Ic}(v)) \cap R \neq \emptyset$ then SearchKdTree $(\operatorname{Ic}(v), R)$
if region $(\mathrm{rc}(v)) \subseteq R$ then
ReportSubtree(rc(v)) else
if region $(\mathrm{rc}(v)) \cap R \neq \emptyset$ then SearchKdTree(rc(v), R)

Analysis of Queries in $k d$-Trees

Lemma 2: A range query with an axis-aligned rectangle R in a $k d$-tree on n points may use $O(\sqrt{n}+k)$ time, where k is the number of reported points.

Analysis of Queries in $k d$-Trees

Lemma 2: A range query with an axis-aligned rectangle R in a $k d$-tree on n points may use $O(\sqrt{n}+k)$ time, where k is the number of reported points.

Proof sketch:

- Calls to ReportSubtree take $O(k)$ time in total

Analysis of Queries in $k d$-Trees
Lemma 2: A range query with an axis-aligned rectangle R in a $k d$-tree on n points may use $O(\sqrt{n}+k)$ time, where k is the number of reported points.

Proof sketch:

- Calls to ReportSubtree take $O(k)$ time in total
- Still missing:

Number of remaining nodes visited
\rightarrow Exercise

Orthogonal Range Queries for $d=2$
Given: Set P of n points in \mathbb{R}^{2}
Goal: A data structure to efficiently answer range queries of the form $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$

Ideas for generalizing the 1d case?

Solutions:

- one search tree, alternate search for x and y coordinates $\rightarrow k d$-Tree
- primary search tree on x-coordinates, several secondary search trees on y-coordinates
\rightarrow Range Tree
Temporary assumption: general position, that is no two points have the same x - or y-coordinates

Range Trees

Idea: Use 1-dimensional search trees on two levels:

- a 1d search tree T_{x} on x-coordinates

Range Trees

Idea: Use 1-dimensional search trees on two levels:

- a 1d search tree T_{x} on x-coordinates
- in each node v of T_{x} a 1d search tree $T_{y}(v)$ stores the canonical subset $P(v)$ on y-coordinates

Range Trees

Idea: Use 1-dimensional search trees on two levels:

- a 1d search tree T_{x} on x-coordinates
- in each node v of T_{x} a 1d search tree $T_{y}(v)$ stores the canonical subset $P(v)$ on y-coordinates
- compute the points by x-query in T_{x} and subsequent y-queries in the auxiliary structures T_{y} for the subtrees in T_{x}

Range Trees: Construction

BuildRangeTree (P)
if $|P|=1$ then
Create leaf v for the point in P
else
Split P at $x_{\text {median }}$ into $P_{1}=\left\{p \in P \mid p_{x} \leq x_{\text {median }}\right\}, P_{2}=P \backslash P_{1}$
$v_{\text {left }} \leftarrow$ BuildRangeTree $\left(P_{1}\right)$
$v_{\text {right }} \leftarrow$ BuildRangeTree $\left(P_{2}\right)$
Create node v with pivot $x_{\text {median }}$ and children $v_{\text {left }}$ and $v_{\text {right }}$
$T_{y}(v) \leftarrow$ binary search tree for P w.r.t y-coordinates
return v

Range Trees: Construction

BuildRangeTree (P)
if $|P|=1$ then
Create leaf v for the point in P
else
Split P at $x_{\text {median }}$ into $P_{1}=\left\{p \in P \mid p_{x} \leq x_{\text {median }}\right\}, P_{2}=P \backslash P_{1}$
$v_{\text {left }} \leftarrow$ BuildRangeTree $\left(P_{1}\right)$
$v_{\text {right }} \leftarrow \operatorname{BuildRangeTree~}\left(P_{2}\right)$
Create node v with pivot $x_{\text {median }}$ and children $v_{\text {left }}$ and $v_{\text {right }}$
$T_{y}(v) \leftarrow$ binary search tree for P w.r.t y-coordinates
return v
Problem: How much space and runtime does BuildRangeTree use?

Range Trees: Construction

BuildRangeTree (P)
if $|P|=1$ then
Create leaf v for the point in P
else
Split P at $x_{\text {median }}$ into $P_{1}=\left\{p \in P \mid p_{x} \leq x_{\text {median }}\right\}, P_{2}=P \backslash P_{1}$
$v_{\text {left }} \leftarrow$ BuildRangeTree $\left(P_{1}\right)$
$v_{\text {right }} \leftarrow \operatorname{BuildRangeTree}\left(P_{2}\right)$
Create node v with pivot $x_{\text {median }}$ and children $v_{\text {left }}$ and $v_{\text {right }}$
$T_{y}(v) \leftarrow$ binary search tree for P w.r.t y-coordinates
return v
Problem: How much space and runtime does BuildRangeTree use?
Lemma 3: A Range Tree for n points in \mathbb{R}^{2} uses $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.

Range Queries in a Range Tree

Reminder:
1dRangeQuery $\left(T, x, x^{\prime}\right)$
$v_{\text {split }} \leftarrow$ FindSplitNode $\left(T, x, x^{\prime}\right)$
if $v_{\text {split }}$ is leaf then report $v_{\text {split }}$
else
$v \leftarrow \operatorname{lc}\left(v_{\text {split }}\right)$
while v not leaf do
if $x \leq x_{v}$ then
ReportSubtree(rc (v))
$v \leftarrow \operatorname{lc}(v)$
else $v \leftarrow \mathrm{rc}(v)$
report v
// analogous for x^{\prime} and $\mathrm{rc}\left(v_{\text {split }}\right)$

Range Queries in a Range Tree

Reminder:
1dRangeQuery $\left(T, x, x^{\prime}\right)$ 2dRangeQuery $\left(T,\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]\right)$
$v_{\text {split }} \leftarrow$ FindSplitNode $\left(T, x, x^{\prime}\right)$
if $v_{\text {split }}$ is leaf then report $v_{\text {split }}$
else
$v \leftarrow \operatorname{lc}\left(v_{\text {split }}\right)$
while v not leaf do
if $x \leq x_{v}$ then
ReportSubtree(rc(v)) 1dRangeQuery $\left(T_{y}(\mathrm{rc}(v)), y, y^{\prime}\right)$
$v \leftarrow \operatorname{lc}(v)$
else $v \leftarrow \mathrm{rc}(v)$
report v
// analogous for x^{\prime} and $\mathrm{rc}\left(v_{\text {split }}\right)$

Range Queries in a Range Tree

Reminder:
1dRangeQuery $\left(T, x, x^{\prime}\right) \quad$ 2dRangeQuery $\left(T,\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]\right)$
$v_{\text {split }} \leftarrow$ FindSplitNode $\left(T, x, x^{\prime}\right)$
if $v_{\text {split }}$ is leaf then report $v_{\text {split }}$
else
$v \leftarrow \operatorname{Ic}\left(v_{\text {split }}\right)$
while v not leaf do
if $x \leq x_{v}$ then
ReportSubtree(rc(v)) 1dRangeQuery $\left(T_{y}(\mathrm{rc}(v)), y, y^{\prime}\right)$
$v \leftarrow \operatorname{lc}(v)$
else $v \leftarrow \mathrm{rc}(v)$
report v
// analogous for x^{\prime} and $\mathrm{rc}\left(v_{\text {split }}\right)$
Lemma 4: A range query in a Range Tree takes $O\left(\log ^{2} n+k\right)$ time, where k is the number of reported points.

Range Queries with Fractional Cascading

Observation: Range queries in a Range Tree perform $O(\log n)$
1 d queries, each taking $O\left(\log n+k_{v}\right)$ time. The query interval $\left[y, y^{\prime}\right]$ is always the same!

Range Queries with Fractional Cascading

Observation: Range queries in a Range Tree perform $O(\log n)$
1 d queries, each taking $O\left(\log n+k_{v}\right)$ time. The query interval $\left[y, y^{\prime}\right]$ is always the same!

Idea: Use this property to accelerate the 1d queries to $O\left(1+k_{v}\right)$ time

Range Queries with Fractional Cascading

Observation: Range queries in a Range Tree perform $O(\log n)$ 1 d queries, each taking $O\left(\log n+k_{v}\right)$ time. The query interval $\left[y, y^{\prime}\right]$ is always the same!
Idea: Use this property to accelerate the 1d queries to $O\left(1+k_{v}\right)$ time
Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

$$
A \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 10 & 19 & 23 & 30 & 37 & 59 & 62 & 70 & 80 & 100 & 105 \\
\hline
\end{array}
$$

10	19	30	62	70	80	100

Range Queries with Fractional Cascading

Observation: Range queries in a Range Tree perform $O(\log n)$ 1 d queries, each taking $O\left(\log n+k_{v}\right)$ time. The query interval $\left[y, y^{\prime}\right]$ is always the same!
Idea: Use this property to accelerate the 1d queries to $O\left(1+k_{v}\right)$ time
Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 10 & 19 & 23 & 30 & 37 & 59 & 62 & 70 & 80 & 100 \\
\hline
\end{array}
$$

10	19	30	62	70	80	100

Search interval $[20,65]$

Range Queries with Fractional Cascading

Observation: Range queries in a Range Tree perform $O(\log n)$ 1 d queries, each taking $O\left(\log n+k_{v}\right)$ time. The query interval $\left[y, y^{\prime}\right]$ is always the same!
Idea: Use this property to accelerate the 1d queries to $O\left(1+k_{v}\right)$ time
Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

$$
A \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 10 & 19 & 23 & 30 & 37 & 59 & 62 & 70 & 80 & 100 & 105 \\
\hline
\end{array}
$$

Can we do better than two binary searches?

10	19	30	62	70	80	100

Search interval $[20,65]$

Range Queries with Fractional Cascading

Observation: Range queries in a Range Tree perform $O(\log n)$ 1 d queries, each taking $O\left(\log n+k_{v}\right)$ time. The query interval $\left[y, y^{\prime}\right]$ is always the same!
Idea: Use this property to accelerate the 1d queries to $O\left(1+k_{v}\right)$ time
Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

Range Queries with Fractional Cascading

Observation: Range queries in a Range Tree perform $O(\log n)$ 1 d queries, each taking $O\left(\log n+k_{v}\right)$ time. The query interval $\left[y, y^{\prime}\right]$ is always the same!
Idea: Use this property to accelerate the 1d queries to $O\left(1+k_{v}\right)$ time
Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

Search interval $[20,65]$

Range Queries with Fractional Cascading

Observation: Range queries in a Range Tree perform $O(\log n)$ 1 d queries, each taking $O\left(\log n+k_{v}\right)$ time. The query interval $\left[y, y^{\prime}\right]$ is always the same!
Idea: Use this property to accelerate the 1d queries to $O\left(1+k_{v}\right)$ time
Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

A	3	10	19	$23 \quad 30$	37	59	6270	80	100	105	
											link $a \in A$ with smallest $b \geq a$ in B
	B	B 10	$10 \quad 19$	19	30	62	70	80	100		

Search interval $[20,65]$
Pointer yields starting point for second search in $O(1)$ time

Speed-up with Fractional Cascading

- In Range Trees we have $P(\operatorname{lc}(v)) \subseteq P(v)$ and $P(\operatorname{rc}(v)) \subseteq P(v)$ as the canonical sets.

Speed-up with Fractional Cascading

- In Range Trees we have $P(\operatorname{lc}(v)) \subseteq P(v)$ and $P(\operatorname{rc}(v)) \subseteq P(v)$ as the canonical sets.
- Define for each array element $A(v)[i]$ two pointers into the arrays $A(\operatorname{lc}(v))$ and $A(r c(v))$
\rightarrow Layered Range Tree

Speed-up with Fractional Cascading

- In Range Trees we have $P(\operatorname{lc}(v)) \subseteq P(v)$ and $P(\operatorname{rc}(v)) \subseteq P(v)$ as the canonical sets.
- Define for each array element $A(v)[i]$ two pointers into the arrays $A(\operatorname{lc}(v))$ and $A(\mathrm{rc}(v))$
\rightarrow Layered Range Tree
- In the split node a binary search takes $O(\log n)$ time, then it takes $O(1)$ time to follow the pointers in the children

Speed-up with Fractional Cascading

- In Range Trees we have $P(\operatorname{lc}(v)) \subseteq P(v)$ and $P(\operatorname{rc}(v)) \subseteq P(v)$ as the canonical sets.
- Define for each array element $A(v)[i]$ two pointers into the arrays $A(\operatorname{lc}(v))$ and $A(\mathrm{rc}(v))$
\rightarrow Layered Range Tree
- In the split node a binary search takes $O(\log n)$ time, then it takes $O(1)$ time to follow the pointers in the children

Theorem 2: A Layered Range Tree on n points in \mathbb{R}^{2} can be constructed in $O(n \log n)$ time and space. Range queries take $O(\log n+k)$ time, where k is the number of reported points.

Arbitrary Point Sets

So far: Points in general position, where no two points have the same x - or y-coordinate

Idea: Instead of \mathbb{R}, use pairs of numbers $(a \mid b)$ with total order \leftrightarrow lexicographic order

Arbitrary Point Sets

So far: Points in general position, where no two points have the same x - or y-coordinate

Idea: Instead of \mathbb{R}, use pairs of numbers $(a \mid b)$ with total order \leftrightarrow lexicographic order

$$
p=\left(p_{x}, p_{y}\right)
$$

Arbitrary Point Sets

So far: Points in general position, where no two points have the same x - or y-coordinate

Idea: Instead of \mathbb{R}, use pairs of numbers $(a \mid b)$ with total order \leftrightarrow lexicographic order

$$
p=\left(p_{x}, p_{y}\right) \rightarrow \hat{p}=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right)
$$

Arbitrary Point Sets

So far: Points in general position, where no two points have the same x - or y-coordinate

Idea: Instead of \mathbb{R}, use pairs of numbers $(a \mid b)$ with total order \leftrightarrow lexicographic order

$$
p=\left(p_{x}, p_{y}\right) \rightarrow \hat{p}=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right)
$$

Arbitrary Point Sets

So far: Points in general position, where no two points have the same x - or y-coordinate

Idea: Instead of \mathbb{R}, use pairs of numbers $(a \mid b)$ with total order \leftrightarrow lexicographic order

$$
p=\left(p_{x}, p_{y}\right) \rightarrow \hat{p}=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right)
$$

$$
\text { Rectangle } R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]
$$

unique coord.

Arbitrary Point Sets

So far: Points in general position, where no two points have the same x - or y-coordinate

Idea: Instead of \mathbb{R}, use pairs of numbers $(a \mid b)$ with total order \leftrightarrow lexicographic order

$$
p=\left(p_{x}, p_{y}\right) \rightarrow \hat{p}=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right)
$$

$$
\text { Rectangle } R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]
$$

unique coord.

Arbitrary Point Sets

So far: Points in general position, where no two points have the same x - or y-coordinate

Idea: Instead of \mathbb{R}, use pairs of numbers $(a \mid b)$ with total order \leftrightarrow lexicographic order

$$
\begin{aligned}
& p=\left(p_{x}, p_{y}\right) \rightarrow \hat{p}=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right) \rightarrow \\
& \text { Rectangle } R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right] \quad \text { unique coord. } \\
& \quad \downarrow \\
& \hat{R}=\left[(x \mid-\infty),\left(x^{\prime} \mid+\infty\right)\right] \times\left[(y \mid-\infty),\left(y^{\prime} \mid+\infty\right)\right]
\end{aligned}
$$

Arbitrary Point Sets

So far: Points in general position, where no two points have the same x - or y-coordinate

Idea: Instead of \mathbb{R}, use pairs of numbers $(a \mid b)$ with total order \leftrightarrow lexicographic order

$$
\begin{aligned}
& p=\left(p_{x}, p_{y}\right) \rightarrow \hat{p}=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right) \longrightarrow \\
& \text { Rectangle } R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right] \quad \text { unique coord. } \\
& \quad \downarrow \\
& \hat{R}=\left[(x \mid-\infty),\left(x^{\prime} \mid+\infty\right)\right] \times\left[(y \mid-\infty),\left(y^{\prime} \mid+\infty\right)\right]
\end{aligned}
$$

Then:

Arbitrary Point Sets

So far: Points in general position, where no two points have the same x - or y-coordinate

Idea: Instead of \mathbb{R}, use pairs of numbers $(a \mid b)$ with total order \leftrightarrow lexicographic order

$$
\begin{aligned}
& p=\left(p_{x}, p_{y}\right) \rightarrow \hat{p}=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right) \rightarrow \\
& \text { Rectangle } R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right] \quad \text { unique coord. } \\
& \quad \downarrow \\
& \hat{R}=\left[(x \mid-\infty),\left(x^{\prime} \mid+\infty\right)\right] \times\left[(y \mid-\infty),\left(y^{\prime} \mid+\infty\right)\right]
\end{aligned}
$$

Then: $p \in R \Leftrightarrow \hat{p} \in \hat{R}$

Summary

Given: Set P of n points in \mathbb{R}^{2}
Construct: Data structures with efficient range queries of the form $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$
\rightarrow We have seen two alternatives

	$k d$-Tree	Range Tree
Preprocessing		
Space		
Query time		

Summary

Given: Set P of n points in \mathbb{R}^{2}
Construct: Data structures with efficient range queries of the form $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$
\rightarrow We have seen two alternatives

	$k d$-Tree	Range Tree
Space	$O(n)$	$O(n \log n)$
Query time	$O(\sqrt{n}+k)$	$O(n \log n)$
		$O\left(\log ^{2} n+k\right)$

Summary

Given: Set P of n points in \mathbb{R}^{2}
Construct: Data structures with efficient range queries of the form $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$
\rightarrow We have seen two alternatives

	$k d$-Tree	Range Tree
Space	$O(n)$	$O(n \log n)$
Query time	$O(\sqrt{n}+k)$	$O(n \log n)$
		$O\left(\log ^{\mathbf{又}} n+k\right)$

Summary

Given: Set P of n points in \mathbb{R}^{2}
Construct: Data structures with efficient range queries of the form $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$
\rightarrow We have seen two alternatives

	$k d$-Tree	Range Tree
Space	$O(n)$	$O(n \log n)$
Query time	$O(\sqrt{n}+k)$	$O(n \log n)$
		$O\left(\log ^{\mathbf{\lambda}} n+k\right)$

Discussion

How can the data structures generalize to d-dimensions?

Discussion

How can the data structures generalize to d-dimensions?

- $k d$-Trees function analogously and by dividing the points alternately on d coordinates. Space is still $O(n)$, construction $O(n \log n)$ and the query time is $O\left(n^{1-1 / d}+k\right)$.

Discussion

How can the data structures generalize to d-dimensions?

- $k d$-Trees function analogously and by dividing the points alternately on d coordinates. Space is still $O(n)$, construction $O(n \log n)$ and the query time is $O\left(n^{1-1 / d}+k\right)$.
- Range Trees can be built recursively: the auxiliary search tree on the first coordinate is a $(d-1)$-dimensional Range Tree. The construction and space takes $O\left(n \log ^{d-1} n\right)$ time; a query takes $O\left(\log ^{d} n+k\right)$ time, and with fractional cascading, $O\left(\log ^{d-1} n+k\right)$ time.

Discussion

How can the data structures generalize to d-dimensions?

- $k d$-Trees function analogously and by dividing the points alternately on d coordinates. Space is still $O(n)$, construction $O(n \log n)$ and the query time is $O\left(n^{1-1 / d}+k\right)$.
- Range Trees can be built recursively: the auxiliary search tree on the first coordinate is a $(d-1)$-dimensional Range Tree. The construction and space takes $O\left(n \log ^{d-1} n\right)$ time; a query takes $O\left(\log ^{d} n+k\right)$ time, and with fractional cascading, $O\left(\log ^{d-1} n+k\right)$ time.

Is it possible to query for other objects (e.g., polygons) with these data structures?

Discussion

How can the data structures generalize to d-dimensions?

- $k d$-Trees function analogously and by dividing the points alternately on d coordinates. Space is still $O(n)$, construction $O(n \log n)$ and the query time is $O\left(n^{1-1 / d}+k\right)$.
- Range Trees can be built recursively: the auxiliary search tree on the first coordinate is a $(d-1)$-dimensional Range Tree. The construction and space takes $O\left(n \log ^{d-1} n\right)$ time; a query takes $O\left(\log ^{d} n+k\right)$ time, and with fractional cascading, $O\left(\log ^{d-1} n+k\right)$ time.

Is it possible to query for other objects (e.g., polygons) with these data structures?

Yes, we can transform any polygon into a point in $4 d$ space (exercise) or we can use windowing queries (comes in a later lecture).

Dynamic Range Queries

Question: Can we adapt these data structures for dynamic point sets?

- Inserting points
- Removing points

Dynamic Range Queries

Question: Can we adapt these data structures for dynamic point sets?

- Inserting points
- Removing points

1) Divided kd-trees [van Kreveld, Overmars '91] support updates in $O(\log n)$ time, but the query time is $O(\sqrt{n \log n}+k)$

Dynamic Range Queries

Question: Can we adapt these data structures for dynamic point sets?

- Inserting points
- Removing points

1) Divided kd-trees [van Kreveld, Overmars '91] support updates in $O(\log n)$ time, but the query time is $O(\sqrt{n \log n}+k)$
2) Augmented dynamic range trees [Mehlhorn, Näher '90] support updates in $O(\log n \log \log n)$ time and queries in
$O(\log n \log \log n+k)$ time
