
Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Tamara Mchedlidze · Darren Strash

Computational Geometry · Lecture

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Range Searching

18.11.2015

1

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Geometry in Databases

In a personnel database, the employees of a company are
anonymized and their monthly income and birth year are
saved. We now want to perform a search: which employees
have an income between 2,000 and 3,000 Euro and were born
between 1960 and 1980?

Geometric Interpretation:
Entries are points: (birth year, income level) and the query is
an axis-parallel rectangle

income

birth year

2000

3000

1960 1980

2

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Geometry in Databases

In a personnel database, the employees of a company are
anonymized and their monthly income and birth year are
saved. We now want to perform a search: which employees
have an income between 2,000 and 3,000 Euro and were born
between 1960 and 1980?

income

birth year

2000

3000

1960 1980

2
4

ch
ild

re
n

This problem can easily be generalized to d dimensions.

2

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Orthogonal Range Queries

Given: n points in Rd

Output: A data structure that efficiently answers queries of
the form [a1, b1]× · · · × [ad, bd]

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:
Stores points in the leaves
Internal node v stores pivot value xv

2

5 8 12 15

17

21 33 41

58

672 93

67582112

15

Example:
Search for all points in [6,50]

vsplit

6 5017

8

6

5

6

7

6

7

52
50

33
50

41

50

52

Answer:
Points in the leaves between the
search paths, (i.e.,
{7,8,12,15,17,21,33,41})

3

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

1dRangeQuery

FindSplitNode(T, x, x′)

v ← root(T)
while v not a leaf and (x′ ≤ xv or x > xv) do

if x′ ≤ xv then v ← lc(v) else v ← rc(v)

return v

1dRangeQuery(T, x, x′)

vsplit ← FindSplitNode(T, x, x′)
if vsplit is leaf then report vsplit
else

v ← lc(vsplit)
while v not a leaf do

if x ≤ xv then
ReportSubtree(rc(v)); v ← lc(v)

else v ← rc(v)

report v
// analog. for x′ and rc(vsplit)

2

5 8 12 15

17

21 33 41

58

672 93

67582112

15

vsplit

6 5017

8

6

5

6

7

6

7

52
50

33
50

41

50

52

Can find canonical subset in
linear time

93

4

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Analysis of 1dRangeQuery

Theorem 1: A set of n points in R can preprocessed in
O(n log n) time and stored in O(n) space so that
we can answer range queries in O(k + log n)
time, where k is the number of reported points.

2

5 8 12 15

17

21 33 41

58

672 93

67582112

15

vsplit

6 5017

8

6

5

6

7

6

7

52
50

33
50

41

50

52

1dRangeQuery(T, x, x′)

vsplit ← FindSplitNode(T, x, x′)
if vsplit is leaf then report vsplit
else

v ← lc(vsplit)
while v not a leaf do

if x ≤ xv then
ReportSubtree(rc(v)); v ← lc(v)

else v ← rc(v)

report v
// analog. for x′ and rc(vsplit)

5

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Orthogonal Range Queries for d = 2

Given: Set P of n points in R2

Goal: A data structure to efficiently answer range queries of
the form R = [x, x′]× [y, y′]

Ideas for generalizing the 1d case?

Solutions:

one search tree, alternate search for x and y coordinates

primary search tree on x-coordinates,
several secondary search trees on y-coordinates

→ kd-Tree

→ Range Tree

Temporary assumption: general position, that is no two
points have the same x- or y-coordinates

6

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

kd-Trees: Example

p

`1
`7

`3

`6

`5

`2

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

`8

`4

`1

`2 `3

`5 `6 `7

`8 `9

`4

4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`9

7

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

kd-Trees: Construction

p

`

4

p1

p5

p3

p7

p9

p10

p6

p8

BuildKdTree(P, depth)

if |P | = 1 then
return leaf with a point in P

else
if depth even then

divide P vertically at
` : x = xmedian(P) in
P1 (Points left of or on `) and
P2 = P \ P1

else
divide P horizontal at
` : y = ymedian(P) in
P1 (points above or on `) and
P2 = P \ P1

vleft ← BuildKdTree(P1, depth + 1)
vright ← BuildKdTree(P2, depth + 1)
Create node v, which stores `
make vleft and vright children of v
return v

p2

v
`

vleft vright

8

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Analysis of kd-Tree Construction

Lemma 1:A kd-tree for n points in R2 can be constructed in
O(n log n) time, using O(n) space.

Proof sketch:
Determine median:
– make two lists sorted on x- and y-coordinates
– at each step, determine median and divide the lists

We get the following recurrence:

T (n) =

{
O(1) if n = 1

O(n) + 2T (dn/2e) otherwise

Solves to T (n) = O(n log n) (analogous to MergeSort)

Linear space, since we are using a binary tree with n leaves.

9

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Range Queries in a kd-Tree

p1

p2

p3

p4 p5

p6
p7

p8

p9
p10

p11

p12
p13

p1 p2

p4 p5

SearchKdTree(v,R)

if v leaf then
report point p in v when p ∈ R

else
if region(lc(v)) ⊆ R then

ReportSubtree(lc(v))
else

if region(lc(v))∩R 6= ∅ then
SearchKdTree(lc(v), R)

if region(rc(v)) ⊆ R then
ReportSubtree(rc(v))

else
if region(rc(v))∩R 6= ∅ then
SearchKdTree(rc(v), R)

p3

p6

p6

p7 p8 p9 p10

p7

p8

p9
p10

p11

p11

p12 p13

10

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Analysis of Queries in kd-Trees

Lemma 2:A range query with an axis-aligned rectangle R in a
kd-tree on n points may use O(

√
n+ k) time,

where k is the number of reported points.

Proof sketch:

Calls to ReportSubtree take O(k) time in total

Still missing:
Number of remaining nodes visited
→ Exercise

11

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Orthogonal Range Queries for d = 2

X

Given: Set P of n points in R2

Goal: A data structure to efficiently answer range queries of
the form R = [x, x′]× [y, y′]

Ideas for generalizing the 1d case?

Solutions:

one search tree, alternate search for x and y coordinates

primary search tree on x-coordinates,
several secondary search trees on y-coordinates

→ kd-Tree

→ Range Tree

Temporary assumption: general position, that is no two
points have the same x- or y-coordinates

12

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Range Trees

Idea: Use 1-dimensional search trees on two levels:
a 1d search tree Tx on x-coordinates

v

P (v)

Tx

in each node v of Tx a 1d search tree Ty(v) stores
the canonical subset P (v) on y-coordinates

compute the points by x-query in Tx and
subsequent y-queries in the auxiliary structures Ty

for the subtrees in Tx

Ty(v)

P (v)

13

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Range Trees: Construction

BuildRangeTree(P)

if |P | = 1 then
Create leaf v for the point in P

else
Split P at xmedian into P1 = {p ∈ P | px ≤ xmedian}, P2 = P \ P1

vleft ← BuildRangeTree(P1)
vright ← BuildRangeTree(P2)
Create node v with pivot xmedian and children vleft and vright

Ty(v)← binary search tree for P w.r.t y-coordinates
return v

Problem: How much space and runtime does BuildRangeTree use?

Lemma 3: A Range Tree for n points in R2 uses O(n log n)
space and can be constructed in O(n log n) time.

14

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Range Queries in a Range Tree

Reminder:

1dRangeQuery(T, x, x′)

vsplit ← FindSplitNode(T, x, x′)
if vsplit is leaf then report vsplit
else

v ← lc(vsplit)
while v not leaf do

if x ≤ xv then
ReportSubtree(rc(v))
v ← lc(v)

else v ← rc(v)

report v
// analogous for x′ and rc(vsplit)

2dRangeQuery(T, [x, x′]× [y, y′])

1dRangeQuery(Ty(rc(v)), y, y
′)

Lemma 4:A range query in a Range Tree takes O(log2 n+ k)
time, where k is the number of reported points.

15

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Range Queries with Fractional Cascading

Observation: Range queries in a Range Tree perform O(log n)
1d queries, each taking O(log n+ kv) time.
The query interval [y, y′] is always the same!

Idea: Use this property to accelerate the 1d queries to
O(1 + kv) time

Example:Two sets B ⊆ A ⊆ R in sorted arrays

3 10 19 23 30 37 59 62 70 80 100 105

10 19 30 70 80 100

A

B 62

link a ∈ A
with smallest
b ≥ a in B

Search interval [20,65]

23

30

Pointer yields starting point for second
search in O(1) time

16

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Speed-up with Fractional Cascading

In Range Trees we have P (lc(v)) ⊆ P (v) and P (rc(v)) ⊆ P (v) as the
canonical sets.

Define for each array element A(v)[i] two pointers into the arrays
A(lc(v)) and A(rc(v))
→ Layered Range Tree

3 99

10 19 37 80

30 49

80 3 99 3049

9962

6210 37

10 3719

8019

99623719103 80 30 4923 59 70 89 95

30 49233 95 59 70 89

23 95 59 70 89

95 23 89 70

3 10 19 23 30 37 49 59 62 70 80 89 95 99

(2,19)

(5,80)

(7,10)

(8,37)
(12,3)

(15,99)

(17,62) (21,49)

(33,30)

(41,95)

(52,23)

(58,59)

(67,89)

(93,70)

2

5 7 8 12 15

17

21 33 41 52

58

672 93

67584121127

5

8

15

17

52

33

Tx

In the split node a binary search takes O(log n) time,
then it takes O(1) time to follow the pointers in the children

17

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Speed-up with Fractional Cascading

Theorem 2: A Layered Range Tree on n points in R2 can be
constructed in O(n log n) time and space. Range queries
take O(log n+ k) time, where k is the number of reported
points.

In Range Trees we have P (lc(v)) ⊆ P (v) and P (rc(v)) ⊆ P (v) as the
canonical sets.

Define for each array element A(v)[i] two pointers into the arrays
A(lc(v)) and A(rc(v))
→ Layered Range Tree

In the split node a binary search takes O(log n) time,
then it takes O(1) time to follow the pointers in the children

17

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Arbitrary Point Sets

Idea: Instead of R, use pairs of numbers (a|b) with total
order ↔ lexicographic order

p = (px, py) p̂ =
(
(px|py), (py|px)

)
unique coord.Rectangle R = [x, x′]× [y, y′]

R̂ = [(x| −∞), (x′|+∞)]× [(y| −∞), (y′|+∞)]

p ∈ R ⇔ p̂ ∈ R̂Then:

So far: Points in general position, where no two points have
the same x- or y-coordinate

18

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Summary

Given: Set P of n points in R2

Construct: Data structures with efficient range queries of the
form R = [x, x′]× [y, y′]

kd-Tree Range Tree

Preprocessing

Space

Query time

O(n log n) O(n log n)

O(n) O(n log n)

O(
√
n+ k) O(log2 n+ k)

→ We have seen two alternatives

O(n)

O(log2 n+ k)

19

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Discussion

How can the data structures generalize to d-dimensions?

kd-Trees function analogously and by dividing the points alternately
on d coordinates. Space is still O(n), construction O(n log n) and the
query time is O(n1−1/d + k).

Is it possible to query for other objects (e.g., polygons) with these
data structures?

Yes, we can transform any polygon into a point in 4d space (exercise) or
we can use windowing queries (comes in a later lecture).

Range Trees can be built recursively: the auxiliary search tree on the
first coordinate is a (d− 1)-dimensional Range Tree. The construction
and space takes O(n logd−1 n) time; a query takes O(logd n+ k)
time, and with fractional cascading, O(logd−1 n+ k) time.

20

Dr. Tamara Mchedlidze · Dr. Darren Strash · Computational Geometry Lecture Range Searching

Dynamic Range Queries

Question: Can we adapt these data structures for dynamic
point sets?

Inserting points
Removing points

1) Divided kd-trees [van Kreveld, Overmars ’91]
support updates in O(log n) time, but the query time is
O(
√
n log n+ k)

2) Augmented dynamic range trees [Mehlhorn, Näher ’90]
support updates in O(log n log log n) time and queries in
O(log n log log n+ k) time

21

	Geometry in Databases
	Orthogonal Range Queries
	1dRangeQuery
	Analysis of 1dRangeQuery
	Orthogonal Range Queries for $d=2$
	kd-Trees: Example
	kd-Trees: Construction
	Analysis of kd-Tree Construction
	Range Queries in a kd-Tree
	Analysis of Queries in kd-Trees
	Orthogonal Range Queries for $d=2$
	Range Trees
	Range Trees: Construction
	Range Queries in a Range Tree
	Range Queries with Fractional Cascading
	Speed-up with Fractional Cascading
	Arbitrary Point Sets
	Summary
	Discussion
	Dynamic Range Queries

