

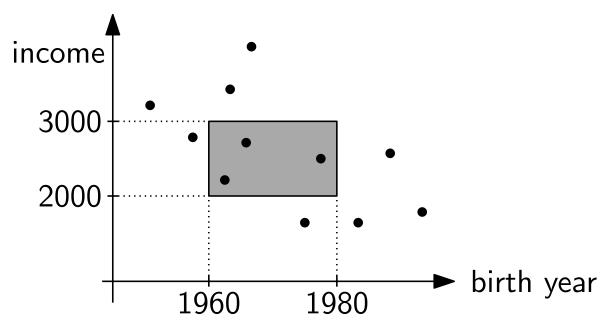
Computational Geometry · **Lecture** Range Searching

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Tamara Mchedlidze · Darren Strash 18.11.2015

Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are saved. We now want to perform a search: which employees have an income between 2,000 and 3,000 Euro and were born between 1960 and 1980?

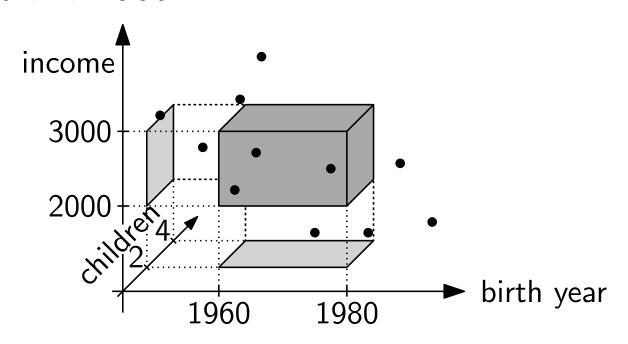


Geometric Interpretation:

Entries are points: (birth year, income level) and the query is an axis-parallel rectangle

Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are saved. We now want to perform a search: which employees have an income between 2,000 and 3,000 Euro and were born between 1960 and 1980?



This problem can easily be generalized to d dimensions.

Orthogonal Range Queries

Given: n points in \mathbb{R}^d

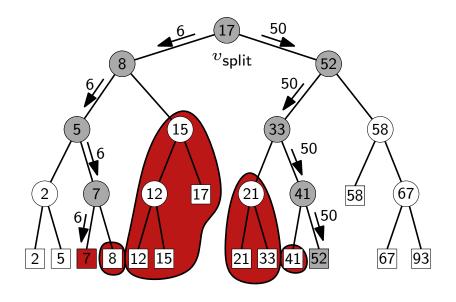
Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_v



Example:

Search for all points in [6,50]

Answer:

Points in the leaves between the search paths, (i.e.,

 $\{7,8,12,15,17,21,33,41\}$

1dRangeQuery

FindSplitNode(T, x, x')

```
v \leftarrow \operatorname{root}(T)
while v not a leaf and (x' \le x_v \text{ or } x > x_v) do
| if x' \le x_v then v \leftarrow \operatorname{lc}(v) else v \leftarrow \operatorname{rc}(v)
```

return v

1dRangeQuery(T, x, x')

 $v_{\text{split}} \leftarrow \text{FindSplitNode}(T, x, x')$ **if** v_{split} is leaf **then** report v_{split} **else**

 $v \leftarrow \operatorname{lc}(v_{\operatorname{split}})$ while v not a leaf do

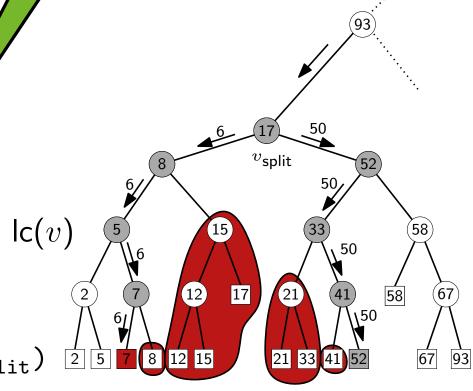
if $x \leq x_v$ then

ReportSubtree(rc(v)); $v \leftarrow \operatorname{lc}(v)$ else $v \leftarrow \operatorname{rc}(v)$

 $\mathsf{report}\ v$

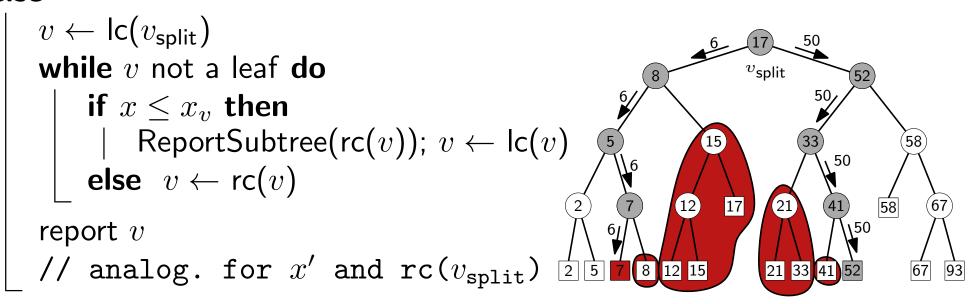
// analog. for x' and $rc(v_{split})$

Can find canonical subset in linear time



Analysis of 1dRangeQuery


```
\begin{aligned} \mathbf{1dRangeQuery}(T, x, x') \\ v_{\mathsf{split}} \leftarrow \mathsf{FindSplitNode}(T, x, x') \\ \mathbf{if} \ v_{\mathsf{split}} \ \mathsf{is} \ \mathsf{leaf} \ \mathbf{then} \ \mathsf{report} \ v_{\mathsf{split}} \\ \mathbf{else} \end{aligned}
```



Theorem 1: A set of n points in \mathbb{R} can preprocessed in $O(n\log n)$ time and stored in O(n) space so that we can answer range queries in $O(k + \log n)$ time, where k is the number of reported points.

Orthogonal Range Queries for d=2

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of

the form $R = [x, x'] \times [y, y']$

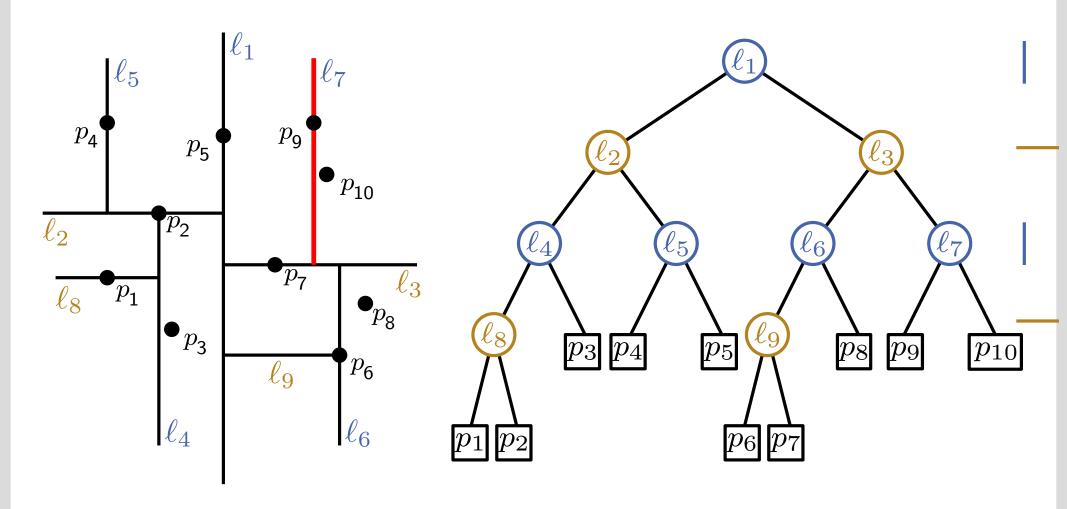
Ideas for generalizing the 1d case?

Solutions:

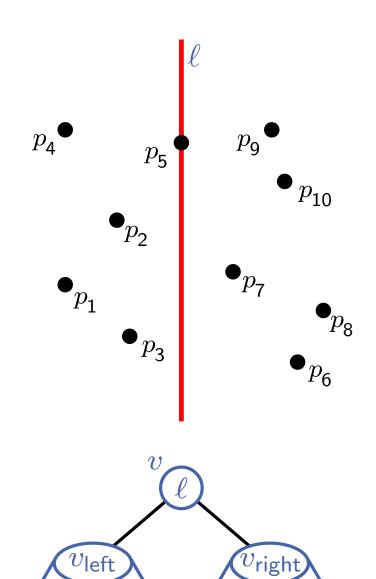
- one search tree, alternate search for x and y coordinates $\rightarrow kd$ -Tree
- primary search tree on x-coordinates, several secondary search trees on y-coordinates
 - → Range Tree

Temporary assumption: general position, that is no two points have the same x- or y-coordinates

kd-Trees: Example



kd-Trees: Construction



 $\begin{aligned} & \textbf{BuildKdTree}(P, depth) \\ & \textbf{if } |P| = 1 \textbf{ then} \\ & | \textbf{ return leaf with a point in } P \\ & \textbf{else} \\ & | \textbf{ if } depth \textbf{ even then} \end{aligned}$

divide P vertically at $\ell: x = x_{\mathsf{median}(P)}$ in P_1 (Points left of or on ℓ) and $P_2 = P \setminus P_1$

else

divide P horizontal at $\ell: y = y_{\mathsf{median}(P)}$ in P_1 (points above or on ℓ) and $P_2 = P \setminus P_1$

 $v_{\mathsf{left}} \leftarrow \mathsf{BuildKdTree}(P_1, depth + 1)$ $v_{\mathsf{right}} \leftarrow \mathsf{BuildKdTree}(P_2, depth + 1)$ Create node v, which stores ℓ make v_{left} and v_{right} children of vreturn v

Analysis of kd-Tree Construction

Lemma 1: A kd-tree for n points in \mathbb{R}^2 can be constructed in $O(n\log n)$ time, using O(n) space.

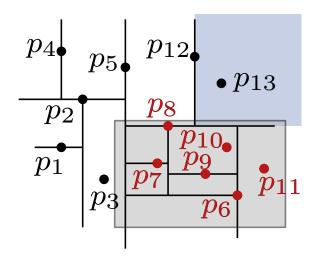
Proof sketch:

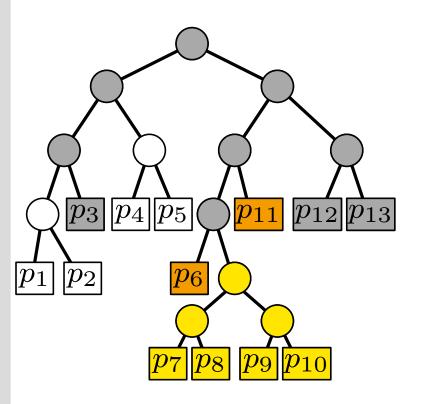
- Determine median:
 - make two lists sorted on x- and y-coordinates
 - at each step, determine median and divide the lists
- We get the following recurrence:

$$T(n) \; = \; \begin{cases} O(1) & \text{if } n=1 \\ O(n) + 2T(\lceil n/2 \rceil) & \text{otherwise} \end{cases}$$

- Solves to $T(n) = O(n \log n)$ (analogous to MergeSort)
- ullet Linear space, since we are using a binary tree with n leaves.

Range Queries in a kd-Tree





```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```

Analysis of Queries in kd-Trees

Lemma 2: A range query with an axis-aligned rectangle R in a kd-tree on n points may use $O(\sqrt{n}+k)$ time, where k is the number of reported points.

Proof sketch:

- Calls to ReportSubtree take O(k) time in total
- Still missing:
 Number of remaining nodes visited
 - \rightarrow Exercise

Orthogonal Range Queries for d=2

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of the form $R = [x, x'] \times [y, y']$

Ideas for generalizing the 1d case?

Solutions:

ullet one search tree, alternate search for x and y coordinates

$$\rightarrow kd$$
-Tree \checkmark

• primary search tree on x-coordinates, several secondary search trees on y-coordinates

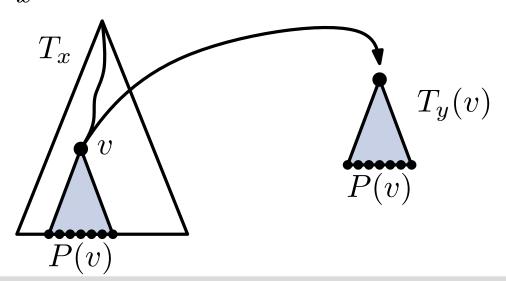
\rightarrow Range Tree

Temporary assumption: general position, that is no two points have the same x- or y-coordinates

Range Trees

Idea: Use 1-dimensional search trees on two levels:

- lacktriangle a 1d search tree T_x on x-coordinates
- in each node v of T_x a 1d search tree $T_y(v)$ stores the canonical subset P(v) on y-coordinates
- compute the points by x-query in T_x and subsequent y-queries in the auxiliary structures T_y for the subtrees in T_x



Range Trees: Construction


```
BuildRangeTree(P)
```

```
if |P| = 1 then
```

Create leaf v for the point in P

else

```
Split P at x_{\text{median}} into P_1 = \{p \in P \mid p_x \leq x_{\text{median}}\}, P_2 = P \setminus P_1 v_{\text{left}} \leftarrow \text{BuildRangeTree}(P_1) v_{\text{right}} \leftarrow \text{BuildRangeTree}(P_2) Create node v with pivot v_{\text{median}} and children v_{\text{left}} and v_{\text{right}}
```

 $T_y(v) \leftarrow \text{binary search tree for } P \text{ w.r.t } y\text{-coordinates}$

return v

Problem: How much space and runtime does BuildRangeTree use?

Lemma 3: A Range Tree for n points in \mathbb{R}^2 uses $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.

Range Queries in a Range Tree

Reminder:

```
1dRangeQuery(T, x, x') 2dRangeQuery(T, [x, x'] \times [y, y'])
   v_{\mathsf{split}} \leftarrow \mathsf{FindSplitNode}(T, x, x')
   if v_{\rm split} is leaf then report v_{\rm split}
   else
       v \leftarrow \mathsf{lc}(v_{\mathsf{split}})
        while v not leaf do
             if x < x_v then
            ReportSubtree(rc(v)) 1dRangeQuery(T_y(rc(v)), y, y') v \leftarrow \text{lc}(v)
         else v \leftarrow rc(v)
        report v
        // analogous for x' and rc(v_{split})
```

Lemma 4: A range query in a Range Tree takes $O(\log^2 n + k)$ time, where k is the number of reported points.

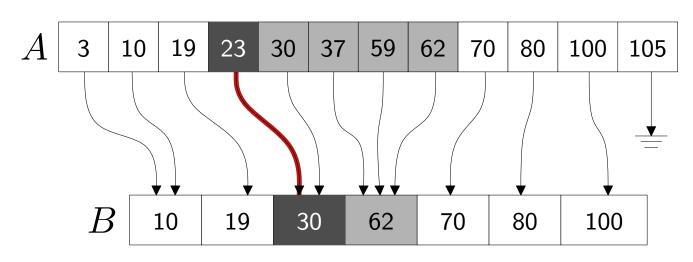
Range Queries with Fractional Cascading

Observation: Range queries in a Range Tree perform $O(\log n)$ 1d queries, each taking $O(\log n + k_v)$ time. The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays



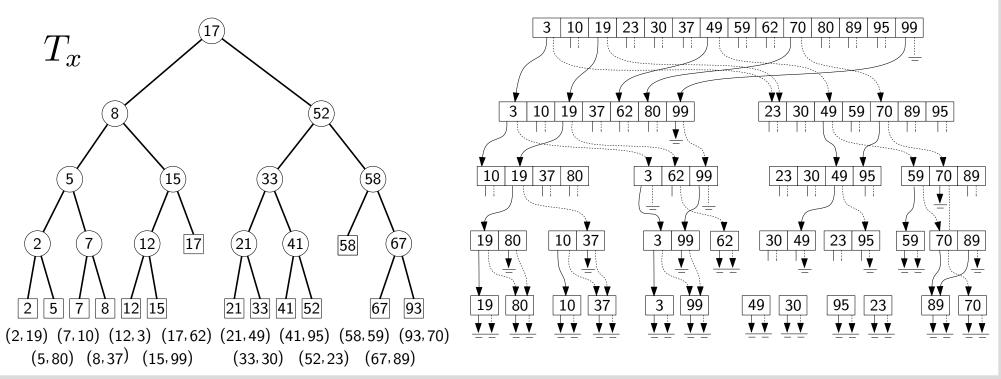
link $a \in A$ with smallest $b \ge a$ in B

Search interval [20,65]

Pointer yields starting point for second search in ${\cal O}(1)$ time

Speed-up with Fractional Cascading

- In Range Trees we have $P(lc(v)) \subseteq P(v)$ and $P(rc(v)) \subseteq P(v)$ as the canonical sets.
- ullet Define for each array element A(v)[i] two pointers into the arrays $A({\rm lc}(v))$ and $A({\rm rc}(v))$
 - → Layered Range Tree
- In the split node a binary search takes $O(\log n)$ time, then it takes O(1) time to follow the pointers in the children



Speed-up with Fractional Cascading

- In Range Trees we have $P(lc(v)) \subseteq P(v)$ and $P(rc(v)) \subseteq P(v)$ as the canonical sets.
- lacktriangle Define for each array element A(v)[i] two pointers into the arrays $A({\rm lc}(v))$ and $A({\rm rc}(v))$
 - → Layered Range Tree
- In the split node a binary search takes $O(\log n)$ time, then it takes O(1) time to follow the pointers in the children
- **Theorem 2:** A Layered Range Tree on n points in \mathbb{R}^2 can be constructed in $O(n\log n)$ time and space. Range queries take $O(\log n + k)$ time, where k is the number of reported points.

Arbitrary Point Sets

So far: Points in general position, where no two points have the same x- or y-coordinate

Idea: Instead of \mathbb{R} , use pairs of numbers (a|b) with total order ↔ lexicographic order

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x)) \longrightarrow$$

Rectangle $R = [x, x'] \times [y, y']$ unique coord.

$$\hat{R} = [(x|-\infty), (x'|+\infty)] \times [(y|-\infty), (y'|+\infty)]$$

Then: $p \in R \iff \hat{p} \in \hat{R}$

Summary

Given: Set P of n points in \mathbb{R}^2

Construct: Data structures with efficient range queries of the form $R = [x,x'] \times [y,y']$

→ We have seen two alternatives

	kd-Tree	Range Tree
Preprocessing	$O(n \log n)$	$O(n \log n)$
Space	O(n)	$O(n \log n)$
Query time	$O(\sqrt{n}+k)$	$O(\log^2 n + k)$

Discussion

How can the data structures generalize to *d*-dimensions?

- kd-Trees function analogously and by dividing the points alternately on d coordinates. Space is still O(n), construction $O(n \log n)$ and the query time is $O(n^{1-1/d} + k)$.
- Range Trees can be built recursively: the auxiliary search tree on the first coordinate is a (d-1)-dimensional Range Tree. The construction and space takes $O(n \log^{d-1} n)$ time; a query takes $O(\log^d n + k)$ time, and with fractional cascading, $O(\log^{d-1} n + k)$ time.

Is it possible to query for other objects (e.g., polygons) with these data structures?

Yes, we can transform any polygon into a point in 4d space (exercise) or we can use windowing queries (comes in a later lecture).

Dynamic Range Queries

Question: Can we adapt these data structures for dynamic point sets?

- Inserting points
- Removing points
- 1) Divided kd-trees [van Kreveld, Overmars '91] support updates in $O(\log n)$ time, but the query time is $O(\sqrt{n\log n} + k)$
- 2) Augmented dynamic range trees [Mehlhorn, Näher '90] support updates in $O(\log n \log \log n)$ time and queries in $O(\log n \log \log n + k)$ time