

Theoretische Grundlagen der Informatik Vorlesung am 11. November 2014

Turing-Maschinen und Berechenbarkeit

Beobachtung:

Endliche Automaten sind als Berechnungsmodell nicht mächtig genug.

Frage:

Gibt es ein mächtigeres, realistisches Rechnermodell, das als Grundlage für allgemeine theoretische Aussagen über Berechenbarkeit, Entscheidbarkeit und Komplexität geeignet ist?

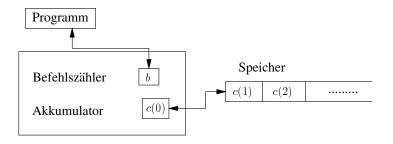
Hauptfrage in diesem Kapitel:

Welche Probleme sind berechenbar?

Die Registermaschine (RAM)

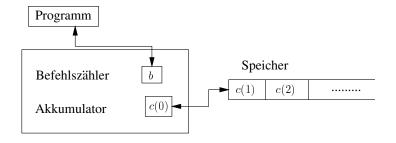
Die RAM besteht aus

- Befehlszähler (zeigt auf den nächsten Befehl im Programm),
- Akkumulatoren (endlicher Speicher zum Ausführen der Befehle),
- Registern (unendlicher Speicher), und
- Programm.



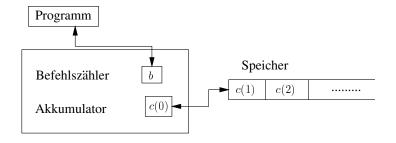
Die Registermaschine (RAM)

- Ein Programm besteht aus einer Folge von Befehlen.
- Programmzeilen sind durchnummeriert.
- Der Befehlszähler b startet bei 1 und enthält jeweils die Nummer des nächsten auszuführenden Befehls.



Die Registermaschine (RAM)

- In den ersten Registern steht zu Beginn der Berechnung die Eingabe.
- In den übrigen Registern steht 0.
- Am Ende der Berechnung stehen die Ausgabedaten in vorher festgelegten Registern.
- **Den Inhalt des Registers** i bezeichnen wir mit c(i).



07.11.2014

Befehle der Registermaschine (RAM)

Befehl	Wirkung
LOAD i	c(0) := c(i); b := b + 1
STORE i	c(i) := c(0); b := b + 1
ADD i	c(0) := c(0) + c(i); b := b + 1
SUB i	$c(0) := \max\{0, c(0) - c(i)\}; b := b + 1$
MULT i	$c(0) := c(0) \cdot c(i); b := b + 1$
DIV i	$c(0) := \left \frac{c(0)}{c(i)} \right ; b := b+1$
GOTO j	b := j
IF $c(0) \# \ell$ GOTO i	$egin{cases} b := j & ext{falls } c(0) \# \ell \ b := b + 1 & ext{sonst} \end{cases}$
11 0(0)#6 0010]	b := b + 1 sonst
	wobei $\# \in \{ \le, \ge, <, >, \ne, = \}$
END	b := b

Befehle der Registermaschine (RAM)

Befehl	Wirkung
LOAD <i>i</i> STORE <i>i</i> ADD <i>i</i> SUB <i>i</i>	$c(0) := c(i); b := b + 1$ $c(i) := c(0); b := b + 1$ $c(0) := c(0) + c(i); b := b + 1$ $c(0) := \max\{0, c(0) - c(i)\}; b := b + 1$
MULT i	$c(0) := c(0) \cdot c(i); b := b+1$
DIV i	$c(0) := \left \frac{c(0)}{c(i)} \right ; b := b+1$
GOTO j	b := j
IF c(0)#/ GOTO i	$egin{cases} b:=j & ext{falls } c(0)\#\ell \ b:=b+1 & ext{sonst} \end{cases}$
ii σ(σ)πε σσισ j	b := b + 1 sonst
	wobei $\# \in \{ \le, \ge, <, >, \ne, = \}$
END	b := b

Befehle können modifiziert werden zu:

CLOAD, CSTORE, CADD, CSUB, CMULT, CDIV ersetze hierzu immer c(i) durch die Konstante *i*

Befehle der Registermaschine (RAM)

Befehl	Wirkung
LOAD i	c(0) := c(i); b := b + 1
STORE i	c(i) := c(0); b := b + 1
ADD i	c(0) := c(0) + c(i); b := b + 1
SUB i	$c(0) := \max\{0, c(0) - c(i)\}; b := b + 1$
MULT i	$c(0) := c(0) \cdot c(i); b := b + 1$
DIV i	$c(0) := \left\lfloor rac{c(0)}{c(i)} \right vert; b := b+1$
GOTO j	b := j
IF $c(0)\#\ell$ GOTO j	$\int b := j$ falls $c(0) \# \ell$
	b := b + 1 sonst
	wobei $\# \in \{ \le, \ge, <, >, \ne, = \}$
END	b := b

Befehle können modifiziert werden zu:

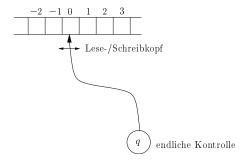
INDLOAD, INDSTORE, INDADD, INDSUB, INDMULT, INDDIV ersetze hierzu immer c(i) durch c(c(i)) (indirekte Addressierung)

Kostenmodell der Registermaschine (RAM)

- Üblicherweise wird das uniforme Kostenmodell verwendet.
- Dabei kostet jede Programmzeile bis auf END eine Einheit.
- Dieses Modell ist gerechtfertigt solange keine großen Zahlen auftreten.
- Ansonsten ist das **logarithmische** Kostenmodell realistischer.
- Kosten entsprechen dann der Länge der benutzten Zahlen.

Eine TM besteht aus

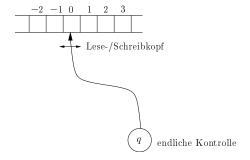
- beidseitig unendlichen Eingabe- und Rechenband,
- freibeweglichem Lese-/Schreibkopf, und
- endlicher Kontrolle.



07.11.2014

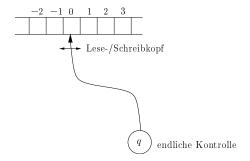
Die Kontrolle

- ist immer in einem von endlich vielen Zuständen, und
- entspricht dem Befehlszähler der RAM.



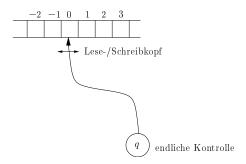
Das Eingabe- und Rechenband

- enthält eine Folge von Symbolen (höchstens eins pro Zelle), und
- entspricht den Registern der RAM.



Ausgehend vom aktuellen Zustand verhält sich die TM wie folgt:

- lese das Symbol auf der aktuellen Position des Lese-/ Schreibkopfes,
- gehe in einen Folgezustand über,
- überschreibe evtl. das Symbol, und
- bewege den Lese-/ Schreibkopf nach rechts, links oder gar nicht.



Formale Definition der Turingmaschine

Eine deterministische Turing-Maschine ((D)TM) besteht aus:

- Q, einer endlicher Zustandsmenge,
- lacksquare Σ , einem endlichen Eingabealphabet,
- \sqcup , einem Blanksymbol mit $\sqcup \not\in \Sigma$,
- Γ , einem endlichen Bandalphabet mit $\Sigma \cup \{\sqcup\} \subseteq \Gamma$,
- $s \in Q$, einem Startzustand,
- δ: Q × Γ → Q × Γ × {L, R, N}, einer Übergangsfunktion.
 Dabei bedeutet L eine Bewegung des Lese-/Schreibkopfes nach links, R eine Bewegung nach rechts und N ein Stehenbleiben. Die Übergangsfunktion beschreibt, wie das aktuell eingelesene Zeichen verarbeitet werden soll.
- F ⊆ Q, einer Menge von Endzuständen.Die Menge der Endzustände kann auch entfallen.

Bemerkungen zur TM

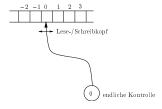
• Der Übergang $\delta(q, a) = (p, b, L)$ wird graphisch wie folgt dargestellt

$$(q)$$
 $a|b, L$ (p)

Bedeutung:

Ist die Turing-Maschine im Zustand q und liest das Symbol a, so

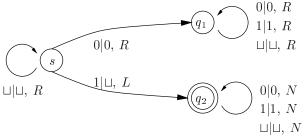
- überschreibt sie dieses a mit b,
- geht auf dem Band eine Stelle nach links, und
- wechselt in den Zustand p.



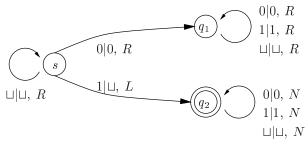
Bemerkungen zur TM

Konventionen

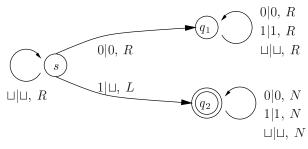
- Die Turing-Maschine startet im Zustand s.
- Der Lese-/Schreibkopf startet an der linkesten Stelle des Bandes, in der ein Eingabesymbol steht.
- Die Turing-Maschine stoppt, wenn sie
 - zum ersten Mal in einen Endzustand kommt, oder
 - lacktriangle in einem Zustand q ein Symbol a liest und $\delta(q,a)=(q,a,N)$ ist.
- Das bedeutet, dass Übergänge, die aus Endzuständen herausführen, sinnlos sind.



Frage: Was erkennt / berechnet diese TM?

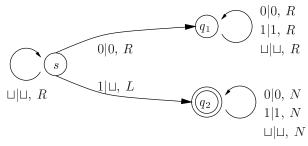


- Die TM erkennt alle Wörter aus $\{0,1\}^*$, die mit einer Eins beginnen.
- Die TM löscht die die führende Eins, falls vorhanden.
- Alles andere auf dem Band bleibt unverändert.
- Der Lese-/Schreibkopf steht nach dem Stop links neben der Stelle an der die führende Eins gelesen wurde.
- Der Zustand q₁ ist unwesentlich.

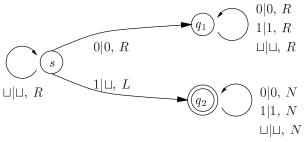


- Es gibt Eingaben, für die eine Turing-Maschine unter Umständen niemals stoppt.
- Welche Eingaben sind dies in diesem Beispiel?

07.11.2014

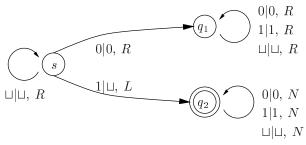


Die TM stoppt nicht, falls die Eingaben nicht mit Eins beginnt.



- Eine Turing-Maschine erkennt nicht nur eine Sprache,
- sondern sie verändert auch die Eingabe, und
- hat insofern auch eine Ausgabe
 (= Inhalt des Bandes nach der Bearbeitung).
- Die Turing-Maschine realisiert also eine partielle Funktion $f \colon \Sigma^* \to \Gamma^*$.

07.11.2014

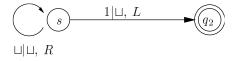


- Die Turing-Maschine realisiert also eine partielle Funktion $f \colon \Sigma^* \to \Gamma^*$.
- Im Beispiel ist

$$f(w) = \begin{cases} v & \text{falls } w = 1v\\ \text{undefiniert} & \text{sonst} \end{cases}$$

Bemerkungen zur TM

- Oft werden wir die Turing-Maschine beziehungsweise deren Übergangsfunktion nur unvollständig beschreiben.
- Beispiel:



- Eine Vervollständigung ist immer möglich.
- Wenn für eine bestimmte Kombination q, a kein Übergang $\delta(q,a)$ definiert ist, dann stoppt die Turing-Maschine im Zustand q.

Definitionen zur TM

- Eine Turing-Maschine **akzeptiert** eine Eingabe $w \in \Sigma^*$, wenn sie nach Lesen von w in einem Zustand aus F stoppt.
- Sie akzeptiert eine Sprache L genau dann, wenn sie ausschließlich Wörter aus w ∈ L als Eingabe akzeptiert.
- Eine Sprache $L \subseteq \Sigma^*$ heißt **rekursiv** oder **entscheidbar**, wenn es eine Turing-Maschine gibt, die auf allen Eingaben stoppt und eine Eingabe w genau dann akzeptiert, wenn $w \in L$ gilt.
- Eine Sprache $L \subseteq \Sigma^*$ heißt **rekursiv-aufzählbar** oder **semi-entscheidbar**, wenn es eine Turing-Maschine gibt, die genau die Eingaben w akzeptiert für die $w \in L$.
 - Das Verhalten der Turing-Maschine für Eingaben $w \notin L$ ist damit nicht definiert. D.h., die Turing-Maschine stoppt entweder nicht in einem Endzustand oder aber stoppt gar nicht.

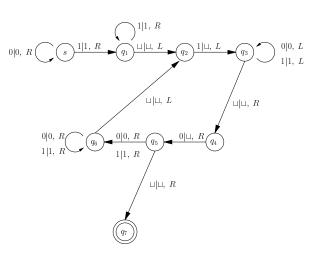
Notation: Konfiguration

- Situation in der sich eine TM M := (Q, Σ, Γ, δ, s, F) befindet wird durch die Angabe der Konfiguration codiert.
- Eine Konfiguration hat die Form w(q)av, wobei
 - lacksquare w, $v \in \Gamma^*$
 - a ∈ Γ
 - q ∈ Q

Bedeutung:

- lacktriangle \mathcal{M} befindet sich gerade im Zustand q.
- Der Lesekopf steht auf dem Zeichen a.
- Links vom Lesekopf steht das Wort w auf dem Rechenband.
- Rechts vom Lesekopf steht das Wort v auf dem Rechenband.

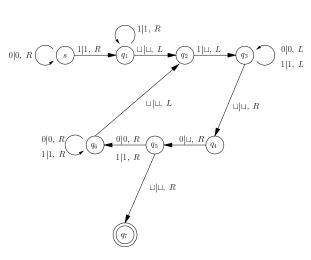
Beispiel: Konfiguration

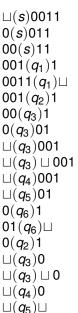


TM akzeptiert $\{0^n1^n : n \ge 1\}.$

Eingabe: 0011

Beispiel: Konfiguration



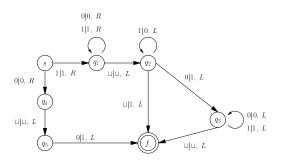


 $\sqcup (q_7) \sqcup$

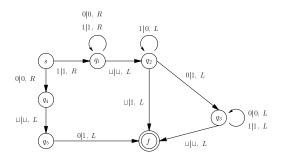
Definition: berechenbar / totalrekursiv

- Eine Funktion $f \colon \Sigma^* \to \Gamma^*$ heißt (Turing-)berechenbar oder totalrekursiv, wenn es eine Turing-Maschine gibt, die bei Eingabe von $w \in \Sigma^*$ den Funktionswert $f(w) \in \Gamma^*$ ausgibt.
- Eine Turing-Maschine **realisiert** eine Funktion $f: \Sigma^* \to \Gamma^*$, falls gilt:

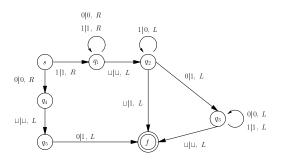
$$f(w) = \begin{cases} \text{Ausgabe der Turing-Maschine, wenn sie bei Eingabe } w \text{ stoppt} \\ \text{undefiniert sonst} \end{cases}$$



- Fasse die Eingabe w als binäre Zahl auf.
- Es sollen nur Eingaben ohne führende Nullen und die Null selbst akzeptiert werden.
- Addiere zur Eingabe $w \in (0 \cup 1)^*$ eine Eins.

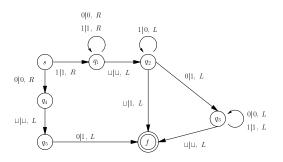


$$\text{Es gilt: } f(w) = \begin{cases} w+1 & \text{falls } w \in 0 \cup 1 (0 \cup 1)^*, \\ & w \text{ interpretiert als Binärzahl} \\ \text{undefiniert} & \text{sonst} \end{cases}$$



Dabei sind die Zustände jeweils für die folgenden Aufgaben verantwortlich:

- q₁ Bewegung des Lese-/Schreibkopfes nach rechts bis zum Eingabeende,
- q₂ Bildung des Übertrages, der durch die Addition von Eins zu einer bereits vorhandenen Eins entsteht,



Dabei sind die Zustände jeweils für die folgenden Aufgaben verantwortlich:

- q₃ Bewegung des Lese-/Schreibkopfes nach links, nachdem die Aufsummierung abgeschlossen ist (kein Übertrag mehr),
- q₄, q₅ Sonderbehandlung für den Fall der Eingabe 0, und
- f Endzustand.

Entscheidbarkeit und Berechenbarkeit

Entscheidbarkeit von Sprachen und Berechenbarkeit von Funktionen sind verwandt:

- Eine Turing-Maschine akzeptiert eine Sprache L, wenn sie genau auf den Eingaben $w \in L$ in einem ausgezeichneten Endzustand stoppt.
- L ist entscheidbar, wenn es eine Turing-Maschine gibt, die auf allen Eingaben stoppt und L akzeptiert.
- Die Funktion f heißt berechenbar, wenn eine Turing-Maschine existiert, die f realisiert.

Entscheidbarkeit und Berechenbarkeit

Entscheidbarkeit von Sprachen und Berechenbarkeit von Funktionen sind verwandt:

- Man kann eine Turing-Maschine \mathcal{M} , die auf allen Eingaben stoppt, so modifizieren, dass es zwei ausgezeichnete Zustände q_J und q_N gibt und dass \mathcal{M} stets in einem der Zustände q_J oder q_N hält.
- Dabei stoppt sie bei der Eingabe w genau dann in q_J , wenn sie w akzeptiert, ansonsten in q_N .
- Damit ist die Sprache L genau dann entscheidbar, wenn es eine Turing-Maschine gibt, die immer in einem der Zustände $\{q_J, q_N\}$ stoppt, wobei sie gerade für $w \in L$ in q_J hält.

Korollar

Eine Sprache $L \subseteq \Sigma^*$ ist **entscheidbar** genau dann, wenn ihre **charakteristische Funktion** χ_L berechenbar ist, wobei gilt:

$$\chi_L \colon \Sigma^* \to \{0,1\}$$
 mit $\chi_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ 0 & \text{sonst} \end{cases}$

Eine Sprache L ist **semi-entscheidbar** genau dann, wenn die Funktion χ_I^* berechenbar ist, wobei gilt:

$$\chi_L^*(w) = \begin{cases} 1 & \text{falls } w \in L \\ \text{undefiniert} & \text{sonst} \end{cases}$$

Die Church'sche These

Church'sche These

Die Menge der (Turing-)berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne überhaupt berechenbaren Funktionen.

Die Church'sche These

Church'sche These

Die Menge der (Turing-)berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne überhaupt berechenbaren Funktionen.

Interpretation

- Turing-Maschinen sind formale Modelle für Algorithmen.
- Kein Berechnungsverfahren kann algorithmisch genannt werden, wenn es nicht von einer Turing-Maschine ausführbar ist.

Bemerkung

- Die Church'sche These ist nur eine These, kann also nicht bewiesen werden.
- Sie ist aber in der Informatik allgemein akzeptiert.

Die Church'sche These

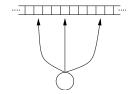
Church'sche These

Die Menge der (Turing-)berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne überhaupt berechenbaren Funktionen.

Begründung

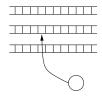
- Es existieren keine Beispiele von Funktionen, die als intuitiv berechenbar angesehen werden, aber nicht Turing-berechenbar sind.
- Alle Versuche, realistische Modelle aufzustellen, die mächtiger sind als Turing-Maschinen, schlugen fehl.
- Eine Reihe von völlig andersartigen Ansätzen, den Begriff der Berechenbarkeit formal zu fassen, wie zum Beispiel die Registermaschine, haben sich als äquivalent erwiesen.

Mehrere Lese-/Schreibköpfe



- Mehrere Lese-/Schreibköpfe $(n \in \mathbb{N})$ greifen auf das eine Eingabeband zu und werden von der endlichen Kontrolle gesteuert.
- Die Übergangsfunktion ist dann vom Typ $\delta \colon Q \times \Gamma^n \to Q \times \Gamma^n \times \{L, N, R\}^n$.
- Die Zustände $q \in Q$ kann man als n-Tupel auffassen.
- Es ist nötig eine Prioritätenregel für die einzelnen Köpfe anzugeben, falls mehrere auf einem Feld des Eingabebandes stehen.

Mehrere Bänder



- Ein Lese-/Schreibkopf kann auf mehrere Eingabebänder ($n \in \mathbb{N}$) zugreifen.
- Die Übergangsfunktion ist dann vom Typ

$$\delta \colon Q \times \Gamma \times \{1, \ldots, n\} \to Q \times \Gamma \times \{L, N, R\} \times \{1, \ldots, n\}.$$

Mehrere Lese-/Schreibköpfe für mehrere Bänder

- Wir haben jetzt m Bänder und n Lese-/Schreibköpfe.
- Die Übergangsfunktion ist dann vom Typ

$$\delta \colon Q \times \Gamma^n \times \{1, \dots, m\}^n \to Q \times \Gamma^n \times \{L, N, R\}^n \times \{1, \dots, m\}^n.$$

Mehrdimensionale Bänder

- Das Eingabeband ist nun mehrdimensional und hat hier im Beispiel die Dimension zwei.
- Wir sprechen dann von einem Arbeitsfeld.
- Dabei ist

$$\delta \colon Q \times \Gamma \to Q \times \Gamma \times \{L(eft), U(p), R(ight), D(own), N(othing)\}$$

Bemerkungen

- Fragestellungen der Art:
 - Wann stoppt eine Mehrkopf-Maschine?
 - Welcher Kopf ,gewinnt', wenn mehrere Köpfe (verschiedene) Symbole an dieselbe Stelle schreiben wollen?

müssen bei solchen Modifikationen noch geklärt werden.

- Es hat sich allerdings gezeigt, dass keine dieser Erweiterungen mehr leistet, als eine normale Turing-Maschine.
- Alle angegebenen Modifikationen k\u00f6nnen durch eine normale
 1-Band Turing-Maschine simuliert werden.

Die universelle Turing-Maschine

Ziel

- Bisher: Nur Turing-Maschinen, die eine bestimmte Aufgabe erfüllen.
- Jetzt: Konstruktion einer Turing-Maschine, die als Eingabe
 - ein Programm und
 - eine spezielle Eingabe

erhält.

 Die Aufgabe besteht darin, das gegebene Programm auf der gegebenen speziellen Eingabe auszuführen.

Die universelle Turing-Maschine

Wir betrachten dazu eine normierte Turing-Maschine, d.h.

- $Q := \{q_1, \ldots, q_n\}$
- $\Sigma := \{a_1, \ldots, a_k\}$
- $\Gamma := \{a_1, \ldots, a_k, a_{k+1}, \ldots, a_l\}$
- $s := q_1$
- $F := \{q_2\}$
- Dies bedeutet keine Einschränkung in der Mächtigkeit der Turing-Maschinen:
 - Jede beliebige Turing-Maschine kann durch eine derart normiert Turing-Maschine der obigen Form simuliert werden.
 - Jede normierte Turing-Maschine $\mathcal M$ lässt sich eindeutig als Wort aus $(0 \cup 1)^*$ kodieren.

Die Gödelnummer

Sei $\mathcal{M} := (Q, \Sigma, \Gamma, \delta, s, F)$ eine Turing-Maschine.

Die Gödelnummer von \mathcal{M} , bezeichnet als $\langle \mathcal{M} \rangle$, ist definiert durch folgende Kodierungsvorschrift:

Kodiere

$$\delta(q_i, a_j) = (q_r, a_s, d_t) \text{ durch } 0^i \ 1 \ 0^j \ 1 \ 0^r \ 1 \ 0^s \ 1 \ 0^t,$$

- wobei $d_t \in \{d_1, d_2, d_3\}$ und
 - *d*₁ für *L*,
 - d₂ für R und
 - d₃ für N steht.
- Die Turing-Maschine wird dann kodiert durch:

111code₁11code₂11...11code_z111,

wobei code $_i$ für $i=1,\ldots,z$ alle Funktionswerte von δ in beliebiger Reihenfolge beschreibt.

Die Gödelnummer - Bemerkungen

- Die eigentlichen Werte der Turing-Maschine werden also (unär) durch Nullen beschrieben und die Einsen dienen als Begrenzung der Eingabewerte.
- Jede Turing-Maschine kann also durch ein Wort aus $(0 \cup 1)^*$ kodiert werden.
- Umgekehrt beschreibt jedes Wort aus $(0 \cup 1)^*$ (höchstens) eine Turing-Maschine.
- Wir vereinbaren, dass ein Wort, das keine Turing-Maschine in diesem Sinne beschreibt, (zum Beispiel ε , 0, 000) eine Turing-Maschine kodiert, die \varnothing akzeptiert.
- Eine *universelle Turing-Maschine* erhält als Eingabe ein Paar $(\langle \mathcal{M} \rangle, w)$, wobei $w \in \{0, 1\}^*$ ist, und sie simuliert \mathcal{M} auf w.

Die Gödelnummer - Beispiel

Sei
$$\mathcal{M}=(\{q_1,q_2,q_3\},\{0,1\},\sqcup,\{0,1,\sqcup\},\delta,q_1,\{q_2\}),$$
 mit
$$\delta(q_1,1)=(q_3,0,R)$$

$$\delta(q_3,0)=(q_1,1,R)$$

$$\delta(q_3,1)=(q_2,0,R)$$

$$\delta(q_3,\sqcup)=(q_3,1,L)$$

 \mathcal{M} zusammen mit der Eingabe 1011 ist dann: