

Theoretische Grundlagen der Informatik

Vorlesung am 18. Dezember 2014

Definition

Zu einem polynomialen Approximationsalgorithmus ${\mathcal A}$ sei

$$\mathcal{R}_{\mathcal{A}}^{\infty} := \inf \left\{ r \geq 1 \; \left| \begin{array}{c} \text{ es gibt ein } \textit{N}_0 > 0 \text{, so dass } \mathcal{R}_{\mathcal{A}}(\textit{I}) \leq r \\ \text{ für alle } \textit{I mit OPT}(\textit{I}) \geq \textit{N}_0 \end{array} \right. \right\}$$

$$\mathcal{R}_{\mathcal{A}}^{\infty} := \inf \left\{ r \geq 1 \; \middle| \; \begin{array}{c} \text{es gibt ein } \textit{N}_0 > 0 \text{, so dass } \mathcal{R}_{\mathcal{A}}(\textit{I}) \leq r \\ \text{für alle } \textit{I} \; \text{mit OPT}(\textit{I}) \geq \textit{N}_0 \end{array} \right.$$

Problem COLOR (Optimalwertfassung)

Gegeben: Graph G = (V, E)

Frage: Wieviele Farben benötigt man um V zu färben,

so dass je zwei adjazente Knoten verschiedene Farben

besitzen?

Satz:

Falls $\mathcal{P} \neq \mathcal{NP}$, dann existiert kein relativer Approximationsalgorithmus \mathcal{A} für COLOR mit $\mathcal{R}^{\infty}_{\mathcal{A}} < \frac{4}{3}$.

$$\mathcal{R}_{\mathcal{A}}^{\infty} := \inf \left\{ r \geq 1 \; \left| \; \begin{array}{c} \text{es gibt ein } \textit{N}_0 > 0 \text{, so dass } \mathcal{R}_{\mathcal{A}}(\textit{I}) \leq r \\ \text{für alle } \textit{I} \; \text{mit OPT}(\textit{I}) \geq \textit{N}_0 \end{array} \right. \right\}$$

Satz:

Falls $\mathcal{P} \neq \mathcal{NP}$, dann existiert kein relativer Approximationsalgorithmus \mathcal{A} für COLOR mit $\mathcal{R}^{\infty}_{\mathcal{A}} < \frac{4}{3}$.

Beweis:

- Angenommen es gibt einen relativen Approximationsalgorithmus \mathcal{A} für COLOR mit $\mathcal{R}^{\infty}_{\mathcal{A}} < \frac{4}{3}$.
- Wir benutzen A um 3COLOR zu lösen.
- Dies ist ein Widerspruch zu $P \neq \mathcal{NP}$

Zu zwei Graphen

$$G_1 = (V_1, E_1) \text{ und } G_2 = (V_2, E_2)$$

sei

$$G := (V, E) := G_1[G_2]$$

definiert durch

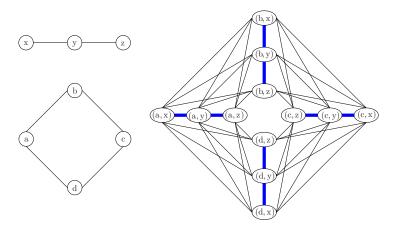
$$V := V_1 \times V_2$$

und

$$E := \left\{ \{(u_1, u_2), (v_1, v_2)\} \middle| \begin{array}{c} \text{entweder } \{u_1, v_1\} \in E_1, \text{oder} \\ u_1 = v_1 \text{ und } \{u_2, v_2\} \in E_2 \end{array} \right\}$$

Anschaulich

- Jeder Knoten aus G₁ wird durch eine Kopie von G₂ ersetzt
- Jede Kante aus E₁ durch einen vollständig bipartiten Graphen zwischen den entsprechenden Kopien.



$$\mathcal{R}_{\mathcal{A}}^{\infty} := \inf \left\{ r \geq 1 \; \left| \; \begin{array}{c} \text{es gibt ein } \textit{N}_0 > 0 \text{, so dass } \mathcal{R}_{\mathcal{A}}(\textit{I}) \leq r \\ \text{für alle } \textit{I} \; \text{mit OPT}(\textit{I}) \geq \textit{N}_0 \end{array} \right. \right\}$$

- Angenommen es gibt einen relativen Approximationsalgorithmus $\mathcal A$ für COLOR mit $\mathcal R^\infty_{\mathcal A}<\frac43$.
- Dann existiert ein $N \in \mathbb{N}$ so, dass $\mathcal{A}(G) < \frac{4}{3} \operatorname{OPT}(G)$ für alle Graphen G mit $\operatorname{OPT}(G) \geq N$.

- Dann existiert ein $N \in \mathbb{N}$ so, dass $\mathcal{A}(G) < \frac{4}{3} \operatorname{OPT}(G)$ für alle Graphen G mit $\operatorname{OPT}(G) \geq N$.
- Sei also G = (V, E) ein beliebiges Beispiel für 3COLOR.
- Dann definiere $G^* := K_N[G]$, wobei K_N der vollständige Graph über N Knoten ist.
- Dann gilt: $OPT(G^*) = N \cdot OPT(G) \ge N$.

Fallunterscheidung:

Falls G dreifärbbar ist, gilt:

$$\mathcal{A}(\textit{G}^*) < \frac{4}{3} \operatorname{\mathsf{OPT}}(\textit{G}^*) = \frac{4}{3} \cdot \textit{N} \cdot \operatorname{\mathsf{OPT}}(\textit{G}) \leq \frac{4}{3} \cdot \textit{N} \cdot 3 = 4\textit{N}.$$

Andererseits, falls G nicht dreifärbbar ist, gilt

$$\mathcal{A}(G^*) \ge \mathsf{OPT}(G^*) = N \cdot \mathsf{OPT}(G) \ge 4N.$$

Fazit: G ist dreifärbbar genau dann, wenn $A(G^*) < 4N$.

- Die Größe von G* ist polynomial in der Größe von G.
- Also kann G* in polynomialer Zeit konstruiert werden.
- Damit ist die Anwendung von A auf G* polynomial in der Größe von G.
- Also haben wir einen polynomialen Algorithmus zur Lösung von 3COLOR konstruiert.
- Dies ist ein Widerspruch zur Annahme, dass $P \neq \mathcal{NP}$.

TSP-Optimalwertproblem mit Dreiecksungleichung

Gegeben: Graph G = (V, E) vollständig und gewichtet mit

Gewichtsfunktion $c \colon E \to \mathbb{Q}$.

Es gilt $c(u, w) \le c(u, v) + c(v, w)$ für alle $u, v, w \in V$

Frage: Wie lange ist eine optimale Tour zu *G* bezüglich *c*?

Satz:

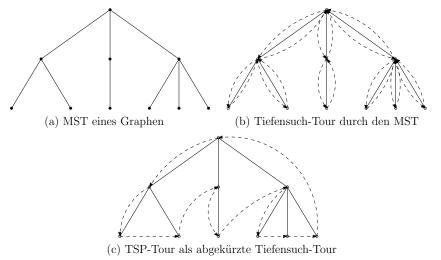
Für das TSP-Optimalwertproblem mit Dreiecksungleichung existiert ein Approximationsalgorithmus \mathcal{A} mit $\mathcal{R}_{\mathcal{A}} \leq 2$ für alle Instanzen I.

Beweis.

Sei (G = (V, E), c) eine Instanz des TSP-Optimalwertproblems mit Dreiecksungleichung.

Betrachte folgenden Algorithmus:

- Berechne einen MST (Minimum Spanning Tree) von G.
- Wähle einen beliebigen Knoten w als Wurzel.
- Durchlaufe den MST in einer Tiefensuche mit Startpunkt w
- Ergebnis: Tour T mit Start- und Endpunkt w, die jede Kante zweimal durchläuft.
- Konstruiere aus T eine Tour T', indem bereits besuchte Knoten übersprungen werden und die Tour beim nächsten unbesuchten Knoten fortgesetzt wird.



lacktriangle Bezeichne c(G') die Summe der Kantengewichte in Subgraph G' Es gilt

$$c(T') \leq c(T) = 2 \cdot c(MST)$$
.

Eine TSP-Tour kann als ein aufspannender Baum plus eine zusätzliche Kante betrachtet werden. Also gilt

$$c(MST) \leq c(OPT)$$
.

Insgesamt erhält man

$$c(T') \leq c(T) = 2 \cdot c(MST) \leq 2 \cdot c(OPT),$$

also

$$\mathcal{R}_{\mathcal{A}} = rac{oldsymbol{c}(oldsymbol{T}')}{oldsymbol{c}(\mathsf{OPT})} \leq 2$$
 .

Ein (polynomiales) **Approximationsschema** (**PAS**) für ein Optimierungsproblem Π ist eine Familie von Algorithmen $\{\mathcal{A}_{\epsilon} \mid \epsilon > 0\}$, so dass für alle $\epsilon > 0$

- $\mathcal{R}_{\mathcal{A}_{\varepsilon}} \leq 1 + \varepsilon$ ist (d.h. $\mathcal{A}_{\varepsilon}$ ist ein ε –approximierender Algorithmus).
- $\mathcal{A}_{\varepsilon}$ polynomial in der Größe des Inputs ist.

Ein Approximationsschema $\{\mathcal{A}_{\epsilon} \mid \epsilon>0\}$ heißt **vollpolynomial** (**FPAS**) falls seine Laufzeit zudem polynomial in $\frac{1}{\epsilon}$ ist.

Bezeichne $\langle I \rangle$ die Kodierungslänge der Eingabe-Instanz I.

Satz:

Sei Π ein \mathcal{NP} -schweres Optimierungsproblem mit

- OPT $(I) \in \mathbb{N}$ für alle $I \in D_{\Pi}$, und
- es existiert ein Polynom q mit $\mathsf{OPT}(I) < q(\langle I \rangle)$ für alle $I \in \mathcal{D}_\Pi$.

Falls $\mathcal{P} \neq \mathcal{NP}$, so gibt es kein FPAS $\{\mathcal{A}_{\epsilon} \mid \epsilon > 0\}$ für Π .

Satz:

Sei Π ein \mathcal{NP} -schweres Optimierungsproblem mit

- OPT(I) ∈ \mathbb{N} für alle I ∈ D_{Π} , und
- es existiert ein Polynom q mit $\mathsf{OPT}(I) < q(\langle I \rangle)$ für alle $I \in \mathcal{D}_\Pi$.

Falls $\mathcal{P} \neq \mathcal{NP}$, so gibt es kein FPAS $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ für Π .

Beweis:

- $lue{}$ O.B.d.A. sei Π ein Maximierungsproblem.
- Sei $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ ein FPAS für Π
- Zu $I \in D_{\Pi}$ sei $\varepsilon_0 := \frac{1}{q(\langle I \rangle)}$
- Dann ist $\mathcal{A}_{arepsilon_0}$ polynomial in $\langle \emph{I}
 angle$ und in $rac{1}{arepsilon_0} = q(\langle \emph{I}
 angle)$

Satz:

Sei Π ein \mathcal{NP} -schweres Optimierungsproblem mit

- OPT(I) ∈ \mathbb{N} für alle I ∈ D_{Π} , und
- es existiert ein Polynom q mit $\mathsf{OPT}(I) < q(\langle I \rangle)$ für alle $I \in \mathcal{D}_\Pi$.

Falls $\mathcal{P} \neq \mathcal{NP}$, so gibt es kein FPAS $\{\mathcal{A}_{\epsilon} \mid \epsilon > 0\}$ für Π .

$$OPT(I) \leq (1 + \varepsilon_0) \mathcal{A}_{\varepsilon_0}(I)$$
 und

$$OPT(I) < q(\langle I \rangle) = \frac{1}{\varepsilon_0}$$

Also auch

$$\mathsf{OPT}(I) - \mathcal{A}_{\varepsilon_0}(I) \le \varepsilon_0 \cdot \mathcal{A}_{\varepsilon_0}(I) \le \varepsilon_0 \cdot \mathsf{OPT}(I) < 1$$

- Da OPT(I) \in \mathbb{N} , ist OPT(I) = $\mathcal{A}_{\varepsilon_0}(I)$
- Widerspruch zur Annahme, dass $P \neq \mathcal{NP}$.

Problem KNAPSACK

Gegeben: Eine endliche Menge *M*,

eine Gewichtsfunktion $w: M \to \mathbb{N}_0$,

eine Kostenfunktion $c: M \to \mathbb{N}_0, \ W \in \mathbb{N}$.

Aufgabe: Gib eine Teilmenge M' von M an, so dass

 $\sum_{i \in M'} w_i \leq W$ und $\sum_{i \in M'} c_i$ maximal ist.

Ein pseudopolynomialer, optimaler Algorithmus für KNAPSACK

Bezeichne, für
$$r \in \mathbb{N}_0$$

$$w_r^j := \min_{M' \subseteq \{1, \dots, j\}} \left\{ \sum_{i \in M'} w_i \mid \sum_{i \in M'} c_i = r \right\}$$

Initialisierung

Für
$$1 \le j \le n$$
 setze $w_0^j := 0$ ansonsten setze $c := \sum_{i=1}^n c_i$

Berechung

Solange $w_r^j \le W$ berechne für $2 \le j \le n$ und $1 \le r \le c$ den Wert

$$w_r^j = \min\left\{w_{r-c_j}^{j-1} + w^j, w_r^{j-1}\right\}$$
 .

Ausgabe

$$c^* := \max_{1 \le i \le n} \left\{ r \mid w_r^j \le W \right\}$$

und die entsprechende Menge $M' \subseteq M$ mit $c^* = \sum_{i \in M'} c_i$.

Ein pseudopolynomialer, optimaler Algorithmus für KNAPSACK

Bezeichne, für
$$r \in \mathbb{N}_0$$

$$w_r^j := \min_{M' \subseteq \{1, \dots, j\}} \left\{ \sum_{i \in M'} w_i \mid \sum_{i \in M'} c_i = r \right\}$$

Initialisierung

Für $1 \le j \le n$ setze $w_0^j := 0$ ansonsten setze $c := \sum_{i=1}^n c_i$

Berechung

Solange $w_r^j \le W$ berechne für $2 \le j \le n$ und $1 \le r \le c$ den Wert

$$w_r^j = \min \left\{ w_{r-c_j}^{j-1} + w^j, w_r^{j-1} \right\} .$$

Ausgabe

$$c^* := \max_{1 \le i \le n} \left\{ r \mid w_r^j \le W \right\}$$

und die entsprechende Menge $M' \subseteq M$ mit $c^* = \sum_{i \in M'} c_i$.

- **Laufzeit:** in $\mathcal{O}(n \cdot c)$. **Lösung:** optimal.
- ⇒Optimaler pseudopolynomialer Algorithmus.

- Bezeichne \mathcal{A} obigen pseudopolynomialen Algorithmus mit Laufzeit $\mathcal{O}(n \cdot c)$ für KNAPSACK.
- Sei k beliebig aber fest.
- Betrachte das skalierte Problem Π_k zu mit $c_i' := \lfloor \frac{c_i}{k} \rfloor$ für alle $i \in M$.
- Dann liefert \mathcal{A} für jedes $I_k \in \Pi_k$ eine Menge $M' \subseteq M$ mit $\sum_{i \in M'} c'_i = \mathsf{OPT}(I_k)$.
- Setze nun $c_{\max} := \max_{i \in M} c_i$.
- **2** Zu $\varepsilon > 0$ sei $\mathcal{A}_{\varepsilon}$ Algorithmus \mathcal{A} angewendet auf I_k , wobei

$$k := \frac{c_{\max}}{\left(\frac{1}{\varepsilon} + 1\right) \cdot n}$$

Satz:

 $\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) \leq 1 + \varepsilon$ für alle $I \in \mathcal{D}_{\Pi}$ und die Laufzeit von $\mathcal{A}_{\varepsilon}$ ist in $\mathcal{O}(n^3 \cdot \frac{1}{\varepsilon})$ für alle $\varepsilon > 0$, d.h. $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ ist ein FPAS für KNAPSACK.

Satz:

 $\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) \leq 1 + \varepsilon$ für alle $I \in \mathcal{D}_{\Pi}$ und die Laufzeit von $\mathcal{A}_{\varepsilon}$ ist in $\mathcal{O}(n^3 \cdot \frac{1}{\varepsilon})$ für alle $\varepsilon > 0$, d.h. $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ ist ein FPAS für KNAPSACK.

Beweis:

Die Laufzeit von $\mathcal{A}_{\varepsilon}$ ist in $\mathcal{O}(n \cdot \sum_{i=1}^{n} c_{i}')$ und

$$\sum_{i=1}^n c_i' < \sum_{i=1}^n \frac{c_i}{k} \le n \cdot \frac{c_{\max}}{k} = \left(\frac{1}{\varepsilon} + 1\right) n^2.$$

Also ist die Laufzeit von $\mathcal{A}_{\varepsilon}$ in $\mathcal{O}(n^3 \cdot \frac{1}{\varepsilon})$ für alle $\varepsilon > 0$.

Für die Abschätzung von $\mathcal{R}_{\mathcal{A}_{\varepsilon}}$ betrachte M' mit $\mathsf{OPT}(I) = \sum_{i \in M'} c_i$. Es gilt

$$\mathsf{OPT}(I_k) \geq \sum_{i \in M'} \left\lfloor \frac{c_i}{k} \right\rfloor \geq \sum_{i \in M'} \left(\frac{c_i}{k} - 1 \right).$$

Also ist

$$\mathsf{OPT}(I) - k \cdot \mathsf{OPT}(I_k) \le k \cdot n.$$

Da $\frac{1}{k}\mathcal{A}_{\varepsilon}(I) \geq \mathsf{OPT}(I_k)$ ist, folgt

$$\mathsf{OPT}(I) - \mathcal{A}_{\varepsilon}(I) \leq k \cdot n$$

und wegen $\mathsf{OPT}(I) \geq c_{\mathsf{max}}$ (wir setzen wieder o.B.d.A. $W \geq w_i$ für alle $i \in M$ voraus) folgt

$$\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) = \frac{\mathsf{OPT}(I)}{\mathcal{A}_{\varepsilon}(I)} \leq \frac{\mathcal{A}_{\varepsilon}(I) + kn}{\mathcal{A}_{\varepsilon}(I)} = 1 + \frac{kn}{\mathcal{A}_{\varepsilon}(I)} \leq 1 + \frac{kn}{\mathsf{OPT}(I) - kn}$$

$$\leq 1 + \frac{kn}{c_{\mathsf{max}} - kn} = 1 + \frac{1}{\frac{1}{\varepsilon} + 1 - 1} = 1 + \varepsilon .$$

18.12.2014

Ein allgemeineres Resultat

Mit einem ähnlichen Beweis kann man zeigen:

Satz:

Sei Π ein Optimierungsproblem für das gilt:

- OPT(I) ∈ \mathbb{N} für alle I ∈ D_{Π}
- es existiert ein Polynom q mit $\mathsf{OPT}(I) \leq q(\langle I \rangle + \mathsf{max} \#(I))$ ($\mathsf{max} \#(I)$ ist die größte in I vorkommende Zahl)

Falls Π ein FPAS hat, so hat es einen pseudopolynomialen optimalen Algorithmus.