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 Different geometry in the two drawings, but the 
ordering of the edges around each vertex is the same 
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 Different “topology” in the two drawings 
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 Fàry’s Theorem (1946):  
If a graph admits a planar drawing where edges 
are curves, than it also admits a straight-line 
planar drawing 

 

 Planarity is a “topological” problem! 

◦ In order to say that a graph is planar, we need to test 
whether it admits a planar embedding 

◦ Forget about drawings 

◦ Well, it depends on the problem… 



 Infinite number of drawings (Continuous space) 

 

 

 

 
 

 Finite number of embeddings (Discrete space) 

◦ Planar embeddings are equivalence classes of planar 
drawings 

◦ So, how many planar embeddings? 
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 A graph is connected if for every pair of vertices 
there exists a path connecting them 

 A graph is k-connected if for every pair of vertices 
there exist k disjoint paths connecting them 



 k = 1: (simply) connected graph 

2-connected component 

cut-vertex 



 k = 2: biconnected graph 

3-connected component 

Separation pair 



 k = 3: triconnected graph 

4-connected component 

Separating triplet (triangle) 



 

How connected can a planar graph be? 
 

More formally, what is the largest value of k such 
that there exists a planar graph that is k-connected? 

 

5 

at most 3n-6 edges 



 

Why did we stop at k = 3? 
 

Even more, why are we speaking about 
connectivity? 

 

We’ll answer both questions in a while 



How connected is this graph? 



How connected is this graph? 3 



How connected is this graph? 3 

How many planar embeddings? 



How connected is this graph? 3 

How many planar embeddings? 2 



 Theorem (Whitney, 1932): 
 
A 3-connected planar graph admits only two planar 
embeddings, which differ by a flip 



How connected is this graph? 



How connected is this graph? 2 



How connected is this graph? 2 

How many planar embeddings? 



How connected is this graph? 2 

How many planar embeddings? 



How connected is this graph? 2 

How many planar embeddings? 



 Permutations of parallel subgraphs 

 Flips of triconnected subgraphs 



So, how many embeddings? 
 

 Permutations of k parallel subgraphs 

◦ k! 

 Flips of k triconnected subgraphs 

◦ 2k 
 

O(n!2n) 



How connected is this graph? 



How connected is this graph? 1 



How connected is this graph? 1 

How many planar embeddings? 





 All possible nesting configurations 

 Combined with all possible embeddings 
of the biconnected components 



So, how many embeddings? 

 

 All possible nesting configurations 

 Combined with all possible embeddings 
of the biconnected components 

 

Quite a lot! 



 Block Cut-vertex tree (BC-tree) 

◦ A B-node for each block 

◦ A C-node for each cut-vertex 
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 There exist many separation pairs 



 There exist many separation pairs 



 There exist many separation pairs 



 There exist many separation pairs 



 We need a step-by-step decomposition 

 At each step, we look at the graph from the point 
of view of a particular separation pair 



 A split pair {u,v} is a pair of vertices such that: 

◦ {u,v} is a separation pair, or 

◦ (u,v) is an edge 

 An SPQR-tree is a rooted tree whose nodes are of 4 
types: 

◦ Series-nodes 

◦ Parallel-nodes 

◦ Q-nodes 

◦ Rigid-nodes 



 We first select any edge as the root 

 At each step we consider a split pair {u,v} and 
add a node whose type depends on how the 
graph looks like from the point of view of {u,v} 

 Each node of the SPQR-tree is associated with a 
multigraph, called skeleton, describing how the 
children of the node are arranged 

◦ Each child corresponds to an edge of the skeleton, 
called virtual edge 



 If the graph between the split pair {u,v} is an 
edge, we add a Q-node 

 The skeleton of the Q-node is just an edge 

u 

v 



 If the graph between the split pair {u,v} is a chain 
(series) of k components separated by cut-
vertices, we add an S-node with k children 

u 
v 



 If the graph between the split pair {u,v} is a chain 
(series) of k components separated by cut-
vertices, we add an S-node with k children 

u 
v 

 The skeleton of the S-node is a path between u 
and v whose internal vertices are the cut-vertices 

u v 



 If the graph between the split pair {u,v} is a chain 
(series) of k components separated by cut-
vertices, we add an S-node with k children 

u 
v 

 We add a (virtual) edge between u and v that 
represents the ‘‘rest of the graph’’ 

u v 



 If the graph between the split pair {u,v} is a 
composition of k parallel components, we add a  
P-node with k children 

u 
v 



 If the graph between the split pair {u,v} is a 
composition of k parallel components, we add a  
P-node with k children 

u 
v 

 The skeleton is composed of k+1 edges between u 
and v (one is for the rest of the graph) 

u 
v 



 In all the other cases, we add an R-node whose 
skeleton (including the edge between u and v) is a 
triconnected graph, and add a child for each edge 
of the skeleton (except for one) 

u v 

u 
v 
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 To describe an embedding: 

◦ Flip of R-nodes skeletons 

◦ Ordering of multi-edges of P-nodes skeletons 

 An SPQR-tree rooted at a reference edge e 
represents all the embeddings of the graph in 
which e is on the outer face 

 If you choose a different reference edge, the 
resulting SPQR-tree is the same (up to a re-
rooting) 



 G. Di Battista and R. Tamassia. Incremental 
Planarity Testing. FOCS 1989 

 G. Di Battista and R. Tamassia. On-Line Planarity 
Testing. SIAM Journal on Computing, 1996 

 Applications: 

◦ (Dynamic) Planarity testing 

◦ Navigating the graph (recursively) to compute embeddings, 
drawings, colorings, … 

◦ Computing an embedding that has some property or that is 
optimal with respect to some measure 



 Input: 

◦ A biconnected planar graph G; 

◦ A simple cycle C of G; 

◦ A partition of the vertices of G/C in 
two sets V1 and V2 

 Output: 

◦ An embedding of G such that the 
vertices of V1 and those of V2 are 
separated by C 

 vertices of V1 are inside C and those of 
V2 are outside, or vice versa 





 Given a split pair and a component with 
respect to it, there exist 3 possibilities: 

1. No vertex of C belongs to the component 

u 

v 



 Given a split pair and a component with 
respect to it, there exist 3 possibilities: 

1. No vertex of C belongs to the component 

 All the vertices of the component must belong to the 
same set 

u 

v 



 Given a split pair and a component with 
respect to it, there exist 3 possibilities: 

1. No vertex of C belongs to the component 

 All the vertices of the component must belong to the 
same set 

 The node is 1-colored 
u 

v 



2. All the vertices of C belong to the component 

 The node contains C 

u 

v 



2. All the vertices of C belong to the component 

 The node contains C 

 Vertices must be ‘‘correctly placed’’ inside/outside C 

u 

v 



3. Some (but not all) of the vertices of C belong 
to the component 

 The node is traversed 

u 

v 



3. Some (but not all) of the vertices of C belong 
to the component 

 The node is traversed  

 Vertices of the component that are separated by the 
path of C between u and v must belong to different sets 

 The node is well-separated 

u 

v 



 Compute the SPQR-tree T of G rooted at any 
reference edge 

 Perform a bottom-up visit of T 

◦ At each step, consider a node of T and test whether there 
exists an embedding of the skeleton of the node that 
satisfies the properties with respect to the cycle 

◦ The test is based on the fact that the all the children of 
the node in T have already been tested (and embedded) 

◦ Depending on the type of the node, the test and the 
embedding algorithm is different 



 If one of the children of the node is traversed by 
the cycle, then all the children are traversed (and 
the node itself is traversed) 

◦ Since all the children are well-separated by induction, the 
S-node can be made well-separated by flipping the 
children in such a way that elements of the same set are 
on the same side 

u 
v 



 If none of the children is traversed, then all of 
them (possibly except one) are 1-colored 

◦ Just check that the color is the same! 

◦ If one of the children contains C, then check if the color 
outside C is the same as the color of the others 

u 
v 



 If none of the children is traversed, then all of 
them (possibly except one) are 1-colored 

◦ Just check that the color is the same! 

◦ If one of the children contains C, then check if the color 
outside C is the same as the color of the others 

u v 



 If one of the children is traversed, then some of 
the others are traversed. Two cases: 

◦ If the node contains the whole cycle 

 All the not-traversed children are 1-colored 

 just check whether the color is the correct one 

 All the traversed children are well-separated 

 choose the correct flip 

u v 



◦ If the node contains part of the cycle (the node is traversed) 

 All the not-traversed children are 1-colored 

 just check whether the color is the correct one to make the node well-
separated 

 All the traversed children are well-separated 

 choose the correct flip 

u v 



 If none of the children is traversed, then all of them 
(possibly except one) are 1-colored 

◦ Just check that the color is the same! 

◦ If one of the children contains C, then check if the color 
outside C is the same as the color of the others 

u 
v 



 At most 2 children are traversed 

 If they are 2, the node contains the cycle 

◦ Order (permute) the children so that the 1-colored children are 
correctly placed inside/outside C 

 To choose the inside/outside, look at any vertex in the rest of the graph 

◦ Flip the 2 traversed children correctly 

u 
v 



 If there is 1 traversed child, the node is traversed 

◦ Order (permute) the children so that the 1-colored children are on 
different sides of the traversed child 

 Any left/right subdivision is good, we can flip the whole component later, 
if needed 

◦ Flip the traversed child correctly 

u 
v 



 If the conditions are satisfied for every node, and in 
particular for the unique child of the root (that is 
considered at the last step of the bottom-up visit), 
the test is positive 

u 

v 
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