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 Different geometry in the two drawings, but the 
ordering of the edges around each vertex is the same 
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 Different “topology” in the two drawings 

4 

3 

1 2 

5 

6 

4 3 

1 5 

6 

1 

4 2 

5 
6 

3 

1 
4 

2 5 

6 
3 



 Fàry’s Theorem (1946):  
If a graph admits a planar drawing where edges 
are curves, than it also admits a straight-line 
planar drawing 

 

 Planarity is a “topological” problem! 

◦ In order to say that a graph is planar, we need to test 
whether it admits a planar embedding 

◦ Forget about drawings 

◦ Well, it depends on the problem… 



 Infinite number of drawings (Continuous space) 

 

 

 

 
 

 Finite number of embeddings (Discrete space) 

◦ Planar embeddings are equivalence classes of planar 
drawings 

◦ So, how many planar embeddings? 
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 A graph is connected if for every pair of vertices 
there exists a path connecting them 

 A graph is k-connected if for every pair of vertices 
there exist k disjoint paths connecting them 



 k = 1: (simply) connected graph 

2-connected component 

cut-vertex 



 k = 2: biconnected graph 

3-connected component 

Separation pair 



 k = 3: triconnected graph 

4-connected component 

Separating triplet (triangle) 



 

How connected can a planar graph be? 
 

More formally, what is the largest value of k such 
that there exists a planar graph that is k-connected? 

 

5 

at most 3n-6 edges 



 

Why did we stop at k = 3? 
 

Even more, why are we speaking about 
connectivity? 

 

We’ll answer both questions in a while 



How connected is this graph? 



How connected is this graph? 3 



How connected is this graph? 3 

How many planar embeddings? 



How connected is this graph? 3 

How many planar embeddings? 2 



 Theorem (Whitney, 1932): 
 
A 3-connected planar graph admits only two planar 
embeddings, which differ by a flip 



How connected is this graph? 



How connected is this graph? 2 



How connected is this graph? 2 

How many planar embeddings? 



How connected is this graph? 2 

How many planar embeddings? 



How connected is this graph? 2 

How many planar embeddings? 



 Permutations of parallel subgraphs 

 Flips of triconnected subgraphs 



So, how many embeddings? 
 

 Permutations of k parallel subgraphs 

◦ k! 

 Flips of k triconnected subgraphs 

◦ 2k 
 

O(n!2n) 



How connected is this graph? 



How connected is this graph? 1 



How connected is this graph? 1 

How many planar embeddings? 





 All possible nesting configurations 

 Combined with all possible embeddings 
of the biconnected components 



So, how many embeddings? 

 

 All possible nesting configurations 

 Combined with all possible embeddings 
of the biconnected components 

 

Quite a lot! 



 Block Cut-vertex tree (BC-tree) 

◦ A B-node for each block 

◦ A C-node for each cut-vertex 
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 There exist many separation pairs 



 There exist many separation pairs 



 There exist many separation pairs 



 There exist many separation pairs 



 We need a step-by-step decomposition 

 At each step, we look at the graph from the point 
of view of a particular separation pair 



 A split pair {u,v} is a pair of vertices such that: 

◦ {u,v} is a separation pair, or 

◦ (u,v) is an edge 

 An SPQR-tree is a rooted tree whose nodes are of 4 
types: 

◦ Series-nodes 

◦ Parallel-nodes 

◦ Q-nodes 

◦ Rigid-nodes 



 We first select any edge as the root 

 At each step we consider a split pair {u,v} and 
add a node whose type depends on how the 
graph looks like from the point of view of {u,v} 

 Each node of the SPQR-tree is associated with a 
multigraph, called skeleton, describing how the 
children of the node are arranged 

◦ Each child corresponds to an edge of the skeleton, 
called virtual edge 



 If the graph between the split pair {u,v} is an 
edge, we add a Q-node 

 The skeleton of the Q-node is just an edge 

u 

v 



 If the graph between the split pair {u,v} is a chain 
(series) of k components separated by cut-
vertices, we add an S-node with k children 

u 
v 



 If the graph between the split pair {u,v} is a chain 
(series) of k components separated by cut-
vertices, we add an S-node with k children 

u 
v 

 The skeleton of the S-node is a path between u 
and v whose internal vertices are the cut-vertices 

u v 



 If the graph between the split pair {u,v} is a chain 
(series) of k components separated by cut-
vertices, we add an S-node with k children 

u 
v 

 We add a (virtual) edge between u and v that 
represents the ‘‘rest of the graph’’ 

u v 



 If the graph between the split pair {u,v} is a 
composition of k parallel components, we add a  
P-node with k children 

u 
v 



 If the graph between the split pair {u,v} is a 
composition of k parallel components, we add a  
P-node with k children 

u 
v 

 The skeleton is composed of k+1 edges between u 
and v (one is for the rest of the graph) 

u 
v 



 In all the other cases, we add an R-node whose 
skeleton (including the edge between u and v) is a 
triconnected graph, and add a child for each edge 
of the skeleton (except for one) 

u v 

u 
v 
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 To describe an embedding: 

◦ Flip of R-nodes skeletons 

◦ Ordering of multi-edges of P-nodes skeletons 

 An SPQR-tree rooted at a reference edge e 
represents all the embeddings of the graph in 
which e is on the outer face 

 If you choose a different reference edge, the 
resulting SPQR-tree is the same (up to a re-
rooting) 



 G. Di Battista and R. Tamassia. Incremental 
Planarity Testing. FOCS 1989 

 G. Di Battista and R. Tamassia. On-Line Planarity 
Testing. SIAM Journal on Computing, 1996 

 Applications: 

◦ (Dynamic) Planarity testing 

◦ Navigating the graph (recursively) to compute embeddings, 
drawings, colorings, … 

◦ Computing an embedding that has some property or that is 
optimal with respect to some measure 



 Input: 

◦ A biconnected planar graph G; 

◦ A simple cycle C of G; 

◦ A partition of the vertices of G/C in 
two sets V1 and V2 

 Output: 

◦ An embedding of G such that the 
vertices of V1 and those of V2 are 
separated by C 

 vertices of V1 are inside C and those of 
V2 are outside, or vice versa 





 Given a split pair and a component with 
respect to it, there exist 3 possibilities: 

1. No vertex of C belongs to the component 

u 

v 



 Given a split pair and a component with 
respect to it, there exist 3 possibilities: 

1. No vertex of C belongs to the component 

 All the vertices of the component must belong to the 
same set 

u 

v 



 Given a split pair and a component with 
respect to it, there exist 3 possibilities: 

1. No vertex of C belongs to the component 

 All the vertices of the component must belong to the 
same set 

 The node is 1-colored 
u 

v 



2. All the vertices of C belong to the component 

 The node contains C 

u 

v 



2. All the vertices of C belong to the component 

 The node contains C 

 Vertices must be ‘‘correctly placed’’ inside/outside C 

u 

v 



3. Some (but not all) of the vertices of C belong 
to the component 

 The node is traversed 

u 

v 



3. Some (but not all) of the vertices of C belong 
to the component 

 The node is traversed  

 Vertices of the component that are separated by the 
path of C between u and v must belong to different sets 

 The node is well-separated 

u 

v 



 Compute the SPQR-tree T of G rooted at any 
reference edge 

 Perform a bottom-up visit of T 

◦ At each step, consider a node of T and test whether there 
exists an embedding of the skeleton of the node that 
satisfies the properties with respect to the cycle 

◦ The test is based on the fact that the all the children of 
the node in T have already been tested (and embedded) 

◦ Depending on the type of the node, the test and the 
embedding algorithm is different 



 If one of the children of the node is traversed by 
the cycle, then all the children are traversed (and 
the node itself is traversed) 

◦ Since all the children are well-separated by induction, the 
S-node can be made well-separated by flipping the 
children in such a way that elements of the same set are 
on the same side 

u 
v 



 If none of the children is traversed, then all of 
them (possibly except one) are 1-colored 

◦ Just check that the color is the same! 

◦ If one of the children contains C, then check if the color 
outside C is the same as the color of the others 

u 
v 



 If none of the children is traversed, then all of 
them (possibly except one) are 1-colored 

◦ Just check that the color is the same! 

◦ If one of the children contains C, then check if the color 
outside C is the same as the color of the others 

u v 



 If one of the children is traversed, then some of 
the others are traversed. Two cases: 

◦ If the node contains the whole cycle 

 All the not-traversed children are 1-colored 

 just check whether the color is the correct one 

 All the traversed children are well-separated 

 choose the correct flip 

u v 



◦ If the node contains part of the cycle (the node is traversed) 

 All the not-traversed children are 1-colored 

 just check whether the color is the correct one to make the node well-
separated 

 All the traversed children are well-separated 

 choose the correct flip 

u v 



 If none of the children is traversed, then all of them 
(possibly except one) are 1-colored 

◦ Just check that the color is the same! 

◦ If one of the children contains C, then check if the color 
outside C is the same as the color of the others 

u 
v 



 At most 2 children are traversed 

 If they are 2, the node contains the cycle 

◦ Order (permute) the children so that the 1-colored children are 
correctly placed inside/outside C 

 To choose the inside/outside, look at any vertex in the rest of the graph 

◦ Flip the 2 traversed children correctly 

u 
v 



 If there is 1 traversed child, the node is traversed 

◦ Order (permute) the children so that the 1-colored children are on 
different sides of the traversed child 

 Any left/right subdivision is good, we can flip the whole component later, 
if needed 

◦ Flip the traversed child correctly 

u 
v 



 If the conditions are satisfied for every node, and in 
particular for the unique child of the root (that is 
considered at the last step of the bottom-up visit), 
the test is positive 

u 

v 



 G. Di Battista and R. Tamassia. Incremental Planarity 
Testing. FOCS 1989 

 G. Di Battista and R. Tamassia. On-Line Planarity 
Testing. SIAM Journal on Computing, 1996 

 P. Mutzel. The SPQR-tree Data Structure in Graph 
Drawing. ICALP 2003 

 P. Angelini, P. Cortese, G. Di Battista, M. Patrignani. 
Topological Morphing of Planar Graphs. Theoretical 
Computer Science, 2013 

 C. Gutwenger, P. Mutzel. A Linear-Time 
Implementation of SPQR-Trees. International 
Symposium on Graph Drawing (GD) 2001 

 


