

4

3

1 2

5

6

1

4 2

5
6

3

4

3

1 2

5

6

2

4 3

1 5

6

1

4 2

5
6

3

1
4

2 5

6

3

 Different geometry in the two drawings, but the
ordering of the edges around each vertex is the same

4

3

1 2

5

6

2

4 3

1 5

6

1

4 2

5
6

3

1
4

2 5

6

3

 Different “topology” in the two drawings

4

3

1 2

5

6

4 3

1 5

6

1

4 2

5
6

3

1
4

2 5

6
3

 Fàry’s Theorem (1946):
If a graph admits a planar drawing where edges
are curves, than it also admits a straight-line
planar drawing

 Planarity is a “topological” problem!

◦ In order to say that a graph is planar, we need to test
whether it admits a planar embedding

◦ Forget about drawings

◦ Well, it depends on the problem…

 Infinite number of drawings (Continuous space)

 Finite number of embeddings (Discrete space)

◦ Planar embeddings are equivalence classes of planar
drawings

◦ So, how many planar embeddings?

1

4 2

5
6

3

1

4 2

5
6

3

1

4
2

5
6

3 …

 A graph is connected if for every pair of vertices
there exists a path connecting them

 A graph is k-connected if for every pair of vertices
there exist k disjoint paths connecting them

 k = 1: (simply) connected graph

2-connected component

cut-vertex

 k = 2: biconnected graph

3-connected component

Separation pair

 k = 3: triconnected graph

4-connected component

Separating triplet (triangle)

How connected can a planar graph be?

More formally, what is the largest value of k such
that there exists a planar graph that is k-connected?

5

at most 3n-6 edges

Why did we stop at k = 3?

Even more, why are we speaking about
connectivity?

We’ll answer both questions in a while

How connected is this graph?

How connected is this graph? 3

How connected is this graph? 3

How many planar embeddings?

How connected is this graph? 3

How many planar embeddings? 2

 Theorem (Whitney, 1932):

A 3-connected planar graph admits only two planar
embeddings, which differ by a flip

How connected is this graph?

How connected is this graph? 2

How connected is this graph? 2

How many planar embeddings?

How connected is this graph? 2

How many planar embeddings?

How connected is this graph? 2

How many planar embeddings?

 Permutations of parallel subgraphs

 Flips of triconnected subgraphs

So, how many embeddings?

 Permutations of k parallel subgraphs

◦ k!

 Flips of k triconnected subgraphs

◦ 2k

O(n!2n)

How connected is this graph?

How connected is this graph? 1

How connected is this graph? 1

How many planar embeddings?

 All possible nesting configurations

 Combined with all possible embeddings
of the biconnected components

So, how many embeddings?

 All possible nesting configurations

 Combined with all possible embeddings
of the biconnected components

Quite a lot!

 Block Cut-vertex tree (BC-tree)

◦ A B-node for each block

◦ A C-node for each cut-vertex

5 4

2 1
B1 B2 C1

C2

B3

C3

B5

B4

C4

B6

B7

3

 There exist many separation pairs

 There exist many separation pairs

 There exist many separation pairs

 There exist many separation pairs

 We need a step-by-step decomposition

 At each step, we look at the graph from the point
of view of a particular separation pair

 A split pair {u,v} is a pair of vertices such that:

◦ {u,v} is a separation pair, or

◦ (u,v) is an edge

 An SPQR-tree is a rooted tree whose nodes are of 4
types:

◦ Series-nodes

◦ Parallel-nodes

◦ Q-nodes

◦ Rigid-nodes

 We first select any edge as the root

 At each step we consider a split pair {u,v} and
add a node whose type depends on how the
graph looks like from the point of view of {u,v}

 Each node of the SPQR-tree is associated with a
multigraph, called skeleton, describing how the
children of the node are arranged

◦ Each child corresponds to an edge of the skeleton,
called virtual edge

 If the graph between the split pair {u,v} is an
edge, we add a Q-node

 The skeleton of the Q-node is just an edge

u

v

 If the graph between the split pair {u,v} is a chain
(series) of k components separated by cut-
vertices, we add an S-node with k children

u
v

 If the graph between the split pair {u,v} is a chain
(series) of k components separated by cut-
vertices, we add an S-node with k children

u
v

 The skeleton of the S-node is a path between u
and v whose internal vertices are the cut-vertices

u v

 If the graph between the split pair {u,v} is a chain
(series) of k components separated by cut-
vertices, we add an S-node with k children

u
v

 We add a (virtual) edge between u and v that
represents the ‘‘rest of the graph’’

u v

 If the graph between the split pair {u,v} is a
composition of k parallel components, we add a
P-node with k children

u
v

 If the graph between the split pair {u,v} is a
composition of k parallel components, we add a
P-node with k children

u
v

 The skeleton is composed of k+1 edges between u
and v (one is for the rest of the graph)

u
v

 In all the other cases, we add an R-node whose
skeleton (including the edge between u and v) is a
triconnected graph, and add a child for each edge
of the skeleton (except for one)

u v

u
v

1

2

3

5 4

6

1

2

3

5 4

Reference (root) edge

6

1

2

3

5 4

1

3

6

v

u
1

2

3

5 4

1

3

6

v

u
1

2

3

5 4

1

3

6

v

u
1

2

3

5 4

1

3

6

1

2

3

v

u
1

2

3

5 4

1

3

6

1

2

3

v

u
1

2

3

5 4

1

3

6

1

2

3

1

2

v

u

1

2

3

5 4

1

3

6

1

2

3

1

2

v

u

1

5 4

1

3

6

1

2

3

1

2

3

2

v

u

1

5 4

1

3

6

1

2

3

1

2

3

2 3

2

v

u

1

5 4

1

3

6

1

2

3

1

2

3

2 3

2

v

u

1

5 4

1

3

6

1

2

3

1

2

3

2 3

2

3

2

v

u

1

5 4

1

3

6

1

2

3

1

2

3

2 3

2

3

2

v

u

1

1

3

6

1

2

3

1

2

3

2

3

2 5 4

2

3

v

u

1

1

3

6

1

2

3

1

2

3

2

3

2 5 4

2

3

2

5

3

4

vu

1

1

3

6

1

2

3

1

2

3

2

3

2 5 4

2

3

2

5

3

4

vu

1

1

3

6

1

2

3

1

2

3

2

3

2 5 4

2

3

2

5

3

4

4

5

v

u

1

1

3

1

2

3

1

2

3

2

3

2 4

2

2

5

3

4

4

5

6

5

3

v

u

1

1

3

1

2

3

1

2

3

2

3

2 4

2

2

5

3

4

4

5

6

5

3

5

6

3

1

1

3

1

2

3

1

2

3

2

3

2 4

2

2

5

3

4

4

5

6

5

3

5

6

3

3

4

6

3

5

2

4

2

6

5

 To describe an embedding:

◦ Flip of R-nodes skeletons

◦ Ordering of multi-edges of P-nodes skeletons

 An SPQR-tree rooted at a reference edge e
represents all the embeddings of the graph in
which e is on the outer face

 If you choose a different reference edge, the
resulting SPQR-tree is the same (up to a re-
rooting)

 G. Di Battista and R. Tamassia. Incremental
Planarity Testing. FOCS 1989

 G. Di Battista and R. Tamassia. On-Line Planarity
Testing. SIAM Journal on Computing, 1996

 Applications:

◦ (Dynamic) Planarity testing

◦ Navigating the graph (recursively) to compute embeddings,
drawings, colorings, …

◦ Computing an embedding that has some property or that is
optimal with respect to some measure

 Input:

◦ A biconnected planar graph G;

◦ A simple cycle C of G;

◦ A partition of the vertices of G/C in
two sets V1 and V2

 Output:

◦ An embedding of G such that the
vertices of V1 and those of V2 are
separated by C

 vertices of V1 are inside C and those of
V2 are outside, or vice versa

 Given a split pair and a component with
respect to it, there exist 3 possibilities:

1. No vertex of C belongs to the component

u

v

 Given a split pair and a component with
respect to it, there exist 3 possibilities:

1. No vertex of C belongs to the component

 All the vertices of the component must belong to the
same set

u

v

 Given a split pair and a component with
respect to it, there exist 3 possibilities:

1. No vertex of C belongs to the component

 All the vertices of the component must belong to the
same set

 The node is 1-colored
u

v

2. All the vertices of C belong to the component

 The node contains C

u

v

2. All the vertices of C belong to the component

 The node contains C

 Vertices must be ‘‘correctly placed’’ inside/outside C

u

v

3. Some (but not all) of the vertices of C belong
to the component

 The node is traversed

u

v

3. Some (but not all) of the vertices of C belong
to the component

 The node is traversed

 Vertices of the component that are separated by the
path of C between u and v must belong to different sets

 The node is well-separated

u

v

 Compute the SPQR-tree T of G rooted at any
reference edge

 Perform a bottom-up visit of T

◦ At each step, consider a node of T and test whether there
exists an embedding of the skeleton of the node that
satisfies the properties with respect to the cycle

◦ The test is based on the fact that the all the children of
the node in T have already been tested (and embedded)

◦ Depending on the type of the node, the test and the
embedding algorithm is different

 If one of the children of the node is traversed by
the cycle, then all the children are traversed (and
the node itself is traversed)

◦ Since all the children are well-separated by induction, the
S-node can be made well-separated by flipping the
children in such a way that elements of the same set are
on the same side

u
v

 If none of the children is traversed, then all of
them (possibly except one) are 1-colored

◦ Just check that the color is the same!

◦ If one of the children contains C, then check if the color
outside C is the same as the color of the others

u
v

 If none of the children is traversed, then all of
them (possibly except one) are 1-colored

◦ Just check that the color is the same!

◦ If one of the children contains C, then check if the color
outside C is the same as the color of the others

u v

 If one of the children is traversed, then some of
the others are traversed. Two cases:

◦ If the node contains the whole cycle

 All the not-traversed children are 1-colored

 just check whether the color is the correct one

 All the traversed children are well-separated

 choose the correct flip

u v

◦ If the node contains part of the cycle (the node is traversed)

 All the not-traversed children are 1-colored

 just check whether the color is the correct one to make the node well-
separated

 All the traversed children are well-separated

 choose the correct flip

u v

 If none of the children is traversed, then all of them
(possibly except one) are 1-colored

◦ Just check that the color is the same!

◦ If one of the children contains C, then check if the color
outside C is the same as the color of the others

u
v

 At most 2 children are traversed

 If they are 2, the node contains the cycle

◦ Order (permute) the children so that the 1-colored children are
correctly placed inside/outside C

 To choose the inside/outside, look at any vertex in the rest of the graph

◦ Flip the 2 traversed children correctly

u
v

 If there is 1 traversed child, the node is traversed

◦ Order (permute) the children so that the 1-colored children are on
different sides of the traversed child

 Any left/right subdivision is good, we can flip the whole component later,
if needed

◦ Flip the traversed child correctly

u
v

 If the conditions are satisfied for every node, and in
particular for the unique child of the root (that is
considered at the last step of the bottom-up visit),
the test is positive

u

v

 G. Di Battista and R. Tamassia. Incremental Planarity
Testing. FOCS 1989

 G. Di Battista and R. Tamassia. On-Line Planarity
Testing. SIAM Journal on Computing, 1996

 P. Mutzel. The SPQR-tree Data Structure in Graph
Drawing. ICALP 2003

 P. Angelini, P. Cortese, G. Di Battista, M. Patrignani.
Topological Morphing of Planar Graphs. Theoretical
Computer Science, 2013

 C. Gutwenger, P. Mutzel. A Linear-Time
Implementation of SPQR-Trees. International
Symposium on Graph Drawing (GD) 2001

