N{])

- Algorithms for graph visualization

Data Structures for
Planar Graph Embeddings

Patrizio Angelini

UNIVERS[TA DEGLI STUDI

A drawing of a graph

Two drawings of a graph

An embedding of a graph

» Different geometry in the two drawings, but the
ordering of the edges around each vertex is the same

Two embeddings of a graph

» Different “topology” in the two drawings

Properties of embeddings

» Fary’s Theorem (1946):
If a graph admits a planar drawing where edges
are curves, than it also admits a straight-line
planar drawing

III

» Planarity is a “topological” problem!

- In order to say that a graph is planar, we need to test
whether it admits a planar embedding

> Forget about drawings

- Well, it depends on the problem...

How many drawings/embeddings?

» Infinite number of drawings (Continuous space)

1 1 1
2 4 - 42 4
[I B
5 ° 5 ° 5 6

» Finite number of embeddings (Discrete space)

> Planar embeddings are equivalence classes of planar
drawings

> S0, how many planar embeddings?

p—

Connectivity

» A graph is connected if for every pair of vertices
there exists a path connecting them

» A graph is k-connected if for every pair of vertices
there exist k disjoint paths connecting them

p—

Connectivity

» k = 1: (simply) connected graph

cut-vertex

S

2-connected component

Connectivity

» k = 2. biconnected graph

Separation pair

Connectivity

» k = 3: triconnected graph

Separating triplet (triangle)

- 4-connected component

Question time

How connected can a planar graph be?

More formally, what is the largest value of k such
that there exists a planar graph that is k-connected?

5

I at most 3n-6 edges

Question time

Why did we stop at k = 37

Even more, why are we speaking about
connectivity?

We'll answer both questions in a while

p—

Connectivity - Embeddings

How connected is this graph?

p—

Connectivity - Embeddings

How connected is this graph? 3

p—

Connectivity - Embeddings

How connected is this graph? 3

. How many planar embeddings?

Connectivity - Embeddings

How connected is this graph? 3

. How many planar embeddings? 2

Connectivity - Embeddings

» Theorem (Whitney, 1932).

A 3-connected planar graph admits only two planar
embeddings, which differ by a flip

.

Connectivity - Embeddings

How connected is this graph?

p—

Connectivity - Embeddings

How connected is this graph? 2

p—

Connectivity - Embeddings

How connected is this graph? 2

. How many planar embeddings?

Connectivity - Embeddings

How connected is this graph? 2

. How many planar embeddings?

Connectivity - Embeddings

How connected is this graph? 2

. How many planar embeddings?

Connectivity - Embeddings

» Permutations of parallel subgraphs

. » Flips of triconnected subgraphs

Connectivity - Embeddings
So, how many embeddings?

» Permutations of k parallel subgraphs
o Kl

» Flips of k triconnected subgraphs
o Dk

- O(n!2")

Connectivity - Embeddings

How connected is this graph?

p—

Connectivity - Embeddings

How connected is this graph? 1

p—

Connectivity - Embeddings

How connected is this graph? 1

. How many planar embeddings?

Connectivity - Embeddings

<
=

Connectivity - Embeddings

K S =

» All possible nesting configurations

» Combined with all possible embeddings
of the biconnected components

p—

Connectivity - Embeddings

So, how many embeddings?

» All possible nesting configurations

» Combined with all possible embeddings
of the biconnected components

. Quite a lot!

Connected graphs: data structure

» Block Cut-vertex tree (BC-tree)

o A B-node for each block
o A C-node for each cut-vertex

S ED wre

ik
e

.

Biconnected: data structure

Biconnected: data structure

» There exist many separation pairs

.

Biconnected: data structure

» There exist many separation pairs

.

Biconnected: data structure

» There exist many separation pairs

.

Biconnected: data structure

» There exist many separation pairs

.

Biconnected: data structure

» We need a step-by-step decomposition

» At each step, we look at the graph from the point
of view of a particular separation pair

.

SPQR-tree decomposition

» A split pair {u,v} is a pair of vertices such that:
- {U,Vv} is a separation pair, or
> (u,v) is an edge
» An SPQR-tree is a rooted tree whose nodes are of 4
types:
o Series-nodes
- Parallel-nodes
> Q-nodes

- Rigid-nodes

p—

SPQR-trees

» We first select any edge as the root

» At each step we consider a split pair {u,v} and
add a node whose type depends on how the
graph looks like from the point of view of {u,v}

» Each node of the SPQR-tree is associated with a
multigraph, called skeleton, describing how the
children of the node are arranged

- Each child corresponds to an edge of the skeleton,
called virtual edge

p—

Q-node

» If the graph between the split pair {u,v} is an
edge, we add a Q-node

» The skeleton of the Q-node is just an edge

u

— .
p—

S-node

» If the graph between the split pair {u,v} is a chain
(series) of k components separated by cut-
vertices, we add an S-node with k children

LU SN L

p—

S-node

» If the graph between the split pair {u,v} is a chain
(series) of k components separated by cut-
vertices, we add an S-node with k children

LU SN L

» The skeleton of the S-node is a path between u
and v whose internal vertices are the cut-vertices

S-node

» If the graph between the split pair {u,v} is a chain
(series) of k components separated by cut-
vertices, we add an S-node with k children

LU SN L

» We add a (virtual) edge between u and v that
represents the “rest of the graph”

P-node

» If the graph between the split pair {u,v} is a
composition of k parallel components, we add a
P-node with k children

p—

P-node

» If the graph between the split pair {u,v} is a
composition of k parallel components, we add a
P-node with k children

» The skeleton is composed of k+1 edges between u
and v (one is for the rest of the graph)

R-node

» In all the other cases, we add an R-node whose
skeleton (including the edge between u and v) is a
triconnected graph, and add a child for each edge
of the skeleton (except for one)

SPQR-tree: an example

SPQR-tree: an example

Reference (root) edge

SPQR-tree: an example

SPQR-tree: an example

SPQR-tree: an example

SPQR-tree: an example

SPQR-tree: an example

Lk

p—

SPQR-tree: an example

u

I
-
&

SPQR-tree: an example

\

SPQR-tree: an example

\

SPQR-tree: an example

& g

e
%

p—

SPQR-tree: an example

u R@

V

p—

SPQR-tree: an example

@:D
? >
:
®/
U

V

p—

SPQR-tree: an example

Q)
‘s g

—

SPQR-tree: an example

@
©
.
®/

. ke
4
)
&

SPQR-tree: an example

SPQR-tree: an example

SPQR-tree: an example

SPQR-tree: an example

SPQR-tree: an example

SPQR-tree: an example

SPQR-trees - Embeddings

» To describe an embedding:

> Flip of R-nodes skeletons

> Ordering of multi-edges of P-nodes skeletons

» An SPQR-tree rooted at a reference edge e
represents all the embeddings of the graph in
which e is on the outer face

» If you choose a different reference edge, the

resulting SPQR-tree is the same (up to a re-
rooting)

p—

SPQR-trees

» G. Di Battista and R. Tamassia. Incremental
Planarity Testing. FOCS 1989

» G. Di Battista and R. Tamassia. On-Line Planarity
Testing. SIAM Journal on Computing, 1996

» Applications:

o (Dynamic) Planarity testing

- Navigating the graph (recursively) to compute embeddings,
drawings, colorings, ...

- Computing an embedding that has some property or that is
ptimal with respect to some measure

—

An application

» Input:

- A biconnected planar graph G;
- A simple cycle C of G;

o A partition of the vertices of G/C in
two sets V1 and V2

» Output:

- An embedding of G such that the
vertices of V1 and those of V2 are
separated by C

- vertices of V1 are inside C and those of
V2 are outside, or vice versa

An application

» Given a split pair and a component with
respect to it, there exist 3 possibilities:

1. No vertex of C belongs to the component

~ o——— -
~ -—
=k==

An application

» Given a split pair and a component with
respect to it, there exist 3 possibilities:

1. No vertex of C belongs to the component

- All the vertices of the component must belong to the
same set

~ P LIS -
S -
=k==Z

An application

» Given a split pair and a component with
respect to it, there exist 3 possibilities:

1. No vertex of C belongs to the component

- All the vertices of the component must belong to the
same set

- The node is 1-colored

~ P LIS -
S -
=k==Z

An application

2. All the vertices of C belong to the component
- The node contains C

An application

2. All the vertices of C belong to the component

- The node contains C
- Vertices must be “correctly placed” inside/outside C

An application

3. Some (but not all) of the vertices of C belong
to the component

- The node is traversed

~.-_————

An application

3. Some (but not all) of the vertices of C belong
to the component

- The node is traversed

- Vertices of the component that are separated by the
path of C between u and v must belong to different sets

- The node is well-separated

~.-_————

Algorithm

» Compute the SPQR-tree T of G rooted at any
reference edge

» Perform a bottom-up visit of T

- At each step, consider a node of T and test whether there
exists an embedding of the skeleton of the node that
satisfies the properties with respect to the cycle

- The test is based on the fact that the all the children of
the node in T have already been tested (and embedded)

- Depending on the type of the node, the test and the
embedding algorithm is different

Algorithm: S-node

» If one of the children of the node is traversed by
the cycle, then all the children are traversed (and
the node itself is traversed)

- Since all the children are well-separated by induction, the
S-node can be made well-separated by flipping the
children in such a way that elements of the same set are
on the same side

Algorithm: S-node

» If none of the children is traversed, then all of
them (possibly except one) are 1-colored

o Just check that the color is the samel

o If one of the children contains C, then check if the color
outside C is the same as the color of the others

u
\Y

Algorithm: R-node

» If none of the children is traversed, then all of
them (possibly except one) are 1-colored

o Just check that the color is the samel

o If one of the children contains C, then check if the color
outside C is the same as the color of the others

=

Algorithm: R-node

» If one of the children is traversed, then some of
the others are traversed. Two cases:

- If the node contains the whole cycle

- All the not-traversed children are 1-colored
- just check whether the color is the correct one

- All the traversed children are well-separated
- choose the correct flip

Algorithm: R-node

o If the node contains part of the cycle (the node is traversed)

- All the not-traversed children are 1-colored

- just check whether the color is the correct one to make the node well-
separated

- All the traversed children are well-separated
- choose the correct flip

Algorithm: P-node

v

If none of the children is traversed, then all of them
(possibly except one) are 1-colored

o Just check that the color is the samel!

o If one of the children contains C, then check if the color
outside C is the same as the color of the others

Algorithm: P-node

» At most 2 children are traversed

» If they are 2, the node contains the cycle

o Order (permute) the children so that the 1-colored children are
correctly placed inside/outside C

- To choose the inside/outside, look at any vertex in the rest of the graph
> Flip the 2 traversed children correctly

Algoritmo: P-node

» If there is 1 traversed child, the node is traversed

o Order (permute) the children so that the 1-colored children are on
different sides of the traversed child

- Any left/right subdivision is good, we can flip the whole component later,
if needed

> Flip the traversed child correctly

Algorithm

» If the conditions are satisfied for every node, and in
particular for the unique child of the root (that is
considered at the last step of the bottom-up visit),
the test is positive

References

G. Di Battista and R. Tamassia. Incremental Planarity
Testing. FOCS 1989

» G. Di Battista and R. Tamassia. On-Line Planarity
Testing. SIAM Journal on Computing, 1996

» P. Mutzel. The SPQR-tree Data Structure in Graph
Drawing. ICALP 2003

» P. Angelini, P. Cortese, G. Di Battista, M. Patrignani.
Topological Morphing of Planar Graphs. Theoretical
Computer Science, 2013

» C. Gutwenger, P. Mutzel. A Linear-Time
Implementation of SPQR-Trees. International
Symposium on Graph Drawing (GD) 2001

v

