Algorithms for graph visualization

Data Structures for Planar Graph Embeddings

Patrizio Angelini

A drawing of a graph

Two drawings of a graph

An embedding of a graph

- Different geometry in the two drawings, but the ordering of the edges around each vertex is the same

Two embeddings of a graph

- Different "topology" in the two drawings

Properties of embeddings

, Fàry's Theorem (1946):
If a graph admits a planar drawing where edges are curves, than it also admits a straight-line planar drawing

- Planarity is a "topological" problem!
- In order to say that a graph is planar, we need to test whether it admits a planar embedding
- Forget about drawings
- Well, it depends on the problem...

How many drawings/embeddings?

- Infinite number of drawings (Continuous space)

- Finite number of embeddings (Discrete space)
- Planar embeddings are equivalence classes of planar drawings
- So, how many planar embeddings?

Connectivity

- A graph is connected if for every pair of vertices there exists a path connecting them
- A graph is k-connected if for every pair of vertices there exist k disjoint paths connecting them

Connectivity

- $\boldsymbol{k}=1$: (simply) connected graph

Connectivity

- $\boldsymbol{k}=2$: biconnected graph

Separation pair

3-connected component

Connectivity

- $\boldsymbol{k}=3$: triconnected graph

4-connected component

Question time

How connected can a planar graph be?

More formally, what is the largest value of k such that there exists a planar graph that is k-connected?

$$
5
$$

at most $3 n-6$ edges

Question time

$$
\text { Why did we stop at } k=3 ?
$$

Even more, why are we speaking about connectivity?

We'll answer both questions in a while

Connectivity - Embeddings

How connected is this graph?

Connectivity - Embeddings

How connected is this graph? 3

Connectivity - Embeddings

How connected is this graph? 3 How many planar embeddings?

Connectivity - Embeddings

How connected is this graph? 3 How many planar embeddings? 2

Connectivity - Embeddings

- Theorem (Whitney, 1932):

A 3-connected planar graph admits only two planar embeddings, which differ by a flip

Connectivity - Embeddings

How connected is this graph?

Connectivity - Embeddings

How connected is this graph? 2

Connectivity - Embeddings

How connected is this graph? 2 How many planar embeddings?

Connectivity - Embeddings

How connected is this graph? 2 How many planar embeddings?

Connectivity - Embeddings

How connected is this graph? 2 How many planar embeddings?

Connectivity - Embeddings

- Permutations of parallel subgraphs - Flips of triconnected subgraphs

Connectivity - Embeddings

So, how many embeddings?

- Permutations of k parallel subgraphs - k!
- Flips of k triconnected subgraphs
- 2^{k}
$O\left(n!2^{n}\right)$

Connectivity - Embeddings

How connected is this graph?

Connectivity - Embeddings

How connected is this graph? 1

Connectivity - Embeddings

How connected is this graph? 1 How many planar embeddings?

Connectivity - Embeddings

Connectivity - Embeddings

- All possible nesting configurations
- Combined with all possible embeddings of the biconnected components

Connectivity - Embeddings

So, how many embeddings?

- All possible nesting configurations
- Combined with all possible embeddings of the biconnected components

Quite a lot!

Connected graphs: data structure

- Block Cut-vertex tree (BC-tree)
- A B-node for each block
- A C-node for each cut-vertex

Biconnected: data structure

Biconnected: data structure

- There exist many separation pairs

Biconnected: data structure

- There exist many separation pairs

Biconnected: data structure

- There exist many separation pairs

Biconnected: data structure

- There exist many separation pairs

Biconnected: data structure

- We need a step-by-step decomposition
- At each step, we look at the graph from the point of view of a particular separation pair

SPQR-tree decomposition

- A split pair $\{u, v\}$ is a pair of vertices such that:
- $\{u, v\}$ is a separation pair, or
- (u, v) is an edge
- An SPQR-tree is a rooted tree whose nodes are of 4 types:
- Series-nodes
- Parallel-nodes
- Q-nodes
- Rigid-nodes

SPQR-trees

- We first select any edge as the root
- At each step we consider a split pair $\{u, v\}$ and add a node whose type depends on how the graph looks like from the point of view of $\{u, v\}$
- Each node of the SPQR-tree is associated with a multigraph, called skeleton, describing how the children of the node are arranged
- Each child corresponds to an edge of the skeleton, called virtual edge

Q-node

- If the graph between the split pair $\{u, v\}$ is an edge, we add a Q-node
- The skeleton of the Q-node is just an edge

S-node

- If the graph between the split pair $\{u, v\}$ is a chain (series) of k components separated by cutvertices, we add an S-node with k children

u

S-node

- If the graph between the split pair $\{u, v\}$ is a chain (series) of k components separated by cutvertices, we add an S-node with k children

- The skeleton of the S-node is a path between u and v whose internal vertices are the cut-vertices
u

S-node

- If the graph between the split pair $\{u, v\}$ is a chain (series) of k components separated by cutvertices, we add an S -node with k children

- We add a (virtual) edge between u and v that represents the "rest of the graph"
u

P-node

- If the graph between the split pair $\{u, v\}$ is a composition of k parallel components, we add a P -node with k children

P-node

- If the graph between the split pair $\{u, v\}$ is a composition of k parallel components, we add a P-node with k children

- The skeleton is composed of $k+1$ edges between u and v (one is for the rest of the graph)

R-node

- In all the other cases, we add an R-node whose skeleton (including the edge between u and v) is a triconnected graph, and add a child for each edge of the skeleton (except for one)

SPQR-tree: an example

SPQR-tree: an example

Reference (root) edge

SPQR-tree: an example

${ }^{\text {© }}$:

SPQR-tree: an example

SPQR-tree: an example

(Q) © ${ }^{(1)}$

SPQR-tree: an example

SPQR-trees - Embeddings

- To describe an embedding:
- Flip of R-nodes skeletons
- Ordering of multi-edges of P-nodes skeletons
- An SPQR-tree rooted at a reference edge e represents all the embeddings of the graph in which e is on the outer face
- If you choose a different reference edge, the resulting SPQR-tree is the same (up to a rerooting)

SPQR-trees

- G. Di Battista and R. Tamassia. Incremental Planarity Testing. FOCS 1989
- G. Di Battista and R. Tamassia. On-Line Planarity Testing. SIAM Journal on Computing, 1996
- Applications:
- (Dynamic) Planarity testing
- Navigating the graph (recursively) to compute embeddings, drawings, colorings, ...
- Computing an embedding that has some property or that is optimal with respect to some measure

An application

- Input:
- A biconnected planar graph G;
- A simple cycle C of G;
- A partition of the vertices of G/C in two sets V1 and V2
, Output:
- An embedding of G such that the
 vertices of V1 and those of V2 are separated by C
- vertices of V1 are inside C and those of V2 are outside, or vice versa

An application

An application

- Given a split pair and a component with respect to it, there exist 3 possibilities:

1. No vertex of C belongs to the component

An application

- Given a split pair and a component with respect to it, there exist 3 possibilities:

1. No vertex of C belongs to the component

- All the vertices of the component must belong to the same set

An application

- Given a split pair and a component with respect to it, there exist 3 possibilities:

1. No vertex of C belongs to the component

- All the vertices of the component must belong to the same set
- The node is 1 -colored

An application

2. All the vertices of C belong to the component

- The node contains C

An application

2. All the vertices of C belong to the component

- The node contains C
- Vertices must be "correctly placed" inside/outside C

An application

3. Some (but not all) of the vertices of C belong to the component

- The node is traversed

An application

3. Some (but not all) of the vertices of C belong to the component

- The node is traversed
- Vertices of the component that are separated by the path of C between u and v must belong to different sets
- The node is well-separated

Algorithm

- Compute the SPQR-tree T of G rooted at any reference edge
- Perform a bottom-up visit of T
- At each step, consider a node of T and test whether there exists an embedding of the skeleton of the node that satisfies the properties with respect to the cycle
- The test is based on the fact that the all the children of the node in T have already been tested (and embedded)
- Depending on the type of the node, the test and the embedding algorithm is different

Algorithm: S-node

- If one of the children of the node is traversed by the cycle, then all the children are traversed (and the node itself is traversed)
- Since all the children are well-separated by induction, the S-node can be made well-separated by flipping the children in such a way that elements of the same set are on the same side
u

Algorithm: S-node

- If none of the children is traversed, then all of them (possibly except one) are 1-colored
- Just check that the color is the same!
- If one of the children contains C, then check if the color outside C is the same as the color of the others
u

Algorithm: R-node

- If none of the children is traversed, then all of them (possibly except one) are 1-colored
- Just check that the color is the same!
- If one of the children contains C, then check if the color outside C is the same as the color of the others

Algorithm: R-node

- If one of the children is traversed, then some of the others are traversed. Two cases:
- If the node contains the whole cycle
- All the not-traversed children are 1-colored
- just check whether the color is the correct one
- All the traversed children are well-separated
- choose the correct flip

Algorithm: R-node

- If the node contains part of the cycle (the node is traversed)
- All the not-traversed children are 1-colored
- just check whether the color is the correct one to make the node wellseparated
- All the traversed children are well-separated
- choose the correct flip

Algorithm: P-node

- If none of the children is traversed, then all of them (possibly except one) are 1-colored
- Just check that the color is the same!
- If one of the children contains C, then check if the color outside C is the same as the color of the others

Algorithm: P-node

- At most 2 children are traversed
- If they are 2 , the node contains the cycle
- Order (permute) the children so that the 1-colored children are correctly placed inside/outside C
- To choose the inside/outside, look at any vertex in the rest of the graph
- Flip the 2 traversed children correctly

Algoritmo: P-node

- If there is 1 traversed child, the node is traversed
- Order (permute) the children so that the 1-colored children are on different sides of the traversed child
- Any left/right subdivision is good, we can flip the whole component later, if needed
- Flip the traversed child correctly

Algorithm

- If the conditions are satisfied for every node, and in particular for the unique child of the root (that is considered at the last step of the bottom-up visit), the test is positive

References

- G. Di Battista and R. Tamassia. Incremental Planarity Testing. FOCS 1989
- G. Di Battista and R. Tamassia. On-Line Planarity Testing. SIAM Journal on Computing, 1996
- P. Mutzel. The SPQR-tree Data Structure in Graph Drawing. ICALP 2003
- P. Angelini, P. Cortese, G. Di Battista, M. Patrignani. Topological Morphing of Planar Graphs. Theoretical Computer Science, 2013
- C. Gutwenger, P. Mutzel. A Linear-Time Implementation of SPQR-Trees. International Symposium on Graph Drawing (GD) 2001

