Karlsruher Institut für Technologie Fakultät für Informatik ITI Wagner

Exercise Sheet 6

Assignment:February 4, 2015Delivery:None, Discussion on February 9, 2015

1 Extended Canonical Ordering for 4-Connected Graphs

A planar graph G = (V, E) is called *proper triangular planar* (PTP, for short) if the following coditions hold:

- Every interior face of G is a triangle and the exterior face of G is a quadrangle;
- G has no separating triangles.

Let G = (V, E) be a PTP graph with vertices a, b, c, d on the outer face. A labeling $v_1 = a, v_2 = c, v_3, \ldots, v_n = d$ of the vertices of G is called an *extended canonical ordering* of G if for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and the boundary C_{k-1} of G_{k-1} contains the edge (a, b);
- v_k is in the exterior face of G_{k-1} , and its neighbors in G_{k-1} form (at least 2-element) subinterval of the path $C_{k-1} \setminus (a, b)$. If $k \leq n-2$, v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

Let G = (V, E) be a PTP graph with vertices a, b, c, d on the outer face.

- (a) Prove that the graph obtained from G by removal of vertices c, d and all edges incident to them is biconnected.
- (b) Let $C = \{a = u_1, \ldots, u_k = b, a\}$ be a simple cycle of G such that $c, d \notin C$. Let G_C denote the graph induced by the vertices of G laying inside C (including the vertices of C). Let $v_i \in C, 2 \leq i \leq k 1$ such that no internal chord of C is incident to v_i . Show that $G \setminus \{v_i\}$ is biconnected.
- (c) Let C be as above and let (v_i, v_j) , $1 \le i < j \le k$, be an internal chord of C. Show that there exists a vertex v_l , i < l < j, which is adjacent to at least two vertices of $G \setminus G_C$.
- (d) Using (a-c) prove that G has an extended canonical ordering such that $v_1 = a, v_2 = b, v_{n-1} = c, v_n = d$.

2 Construction of Rectangular Dual

Consider the graph G of the figure. Check whether G satisfies the necessary conditions to have a rectangular dual. In affirmative, construct a rectangular dual of G.

3 st-Ordering and st-Digraphs

Let G = (V, E) be a biconnected planar graph and let $f : V \to \mathbb{N}$ be the function giving an *st*-ordering of the vertices of G. In the following an undirected edge between vertices u and v is denoted by $\{u, v\}$, and an edge directed from u to v is denoted by (u, v). Let $\vec{G} = (V, \vec{E})$ be a directed graph, where $\vec{E} = \{(u, v) | \{u, v\} \in E \& f(u) < f(v)\}$. I.e. \vec{G} is just an orientation of G, where each edge $\{u, v\}$ is assigned a direction from u to v if f(u) < f(v) or a direction from v to u, otherwise. Prove that \vec{G} is an *st*-digraph.

Hint: To achieve that prove that:

- (a) \overrightarrow{G} contains a single source vertex and a single sink vertex. A *source* (*sink*) of a directed graph is a vertex without incoming (outgoing) edges.
- (b) \overrightarrow{G} is acyclic, i.e. it does not contain any directed cycle.

4 Property of *st*-Ordering

Let G = (V, E) be a biconnected planar graph with a given embedding and let v_1, \ldots, v_n be an *st*-ordering of G such that v_1, v_n belong to the outer face of G. Let G_i denote the plane subgraph of G induced by the vertices v_1, \ldots, v_i . Prove that v_{i+1} belongs to the outer face of G_i .

5 Ear decomposition.

Let G = (V, E) such that for each edge $\{s, t\} \in E$, G has an open ear decomposition that starts with $\{s, t\}$. Show that G is 2-connected. (Recall that the reverse statement was proven in the lecture.)