Algorithms for graph visualization

Divide and Conquer - Tree Layouts
Basic Definitions

- Tree - connected graph without cycles
- Binary tree
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Tree - connected graph without cycles

Binary tree
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Depth-first search
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Depth-first search
- Pre-order (First parent, then subtrees)
- In-order (Left child, parent, right child)
- Post-order (First subtrees, then parent)
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Depth-first search
- Pre-order (First parent, then subtrees)
- In-order (Left child, parent, right child)
- Post-order (First subtrees, then parent)

Breadth-first search
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Depth-first search
- Pre-order (First parent, then subtrees)
- In-order (Left child, parent, right child)
- Post-order (First subtrees, then parent)

Breadth-first search
- Assignes vertices to levels corresponding to depth
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Depth-first search
- Pre-order (First parent, then subtrees)
- In-order (Left child, parent, right child)
- Post-order (First subtrees, then parent)

Breadth-first search
- Assignes vertices to levels corresponding to depth

Isomorphism

Simple

Axial
Drawing of a Tree

Given: A rooted binary tree
Given: A rooted binary tree

Question: How would we draw it?
Drawing of a Tree

Given: A rooted binary tree

Question: How would we draw it?
Drawing of a Tree

Given: A rooted binary tree

Question: How would we draw it?
Given: A rooted binary tree
Question: How would we draw it?
Given: A rooted binary tree
Question: How would we draw it?

- Vertices are mapped to levels
Given: A rooted binary tree
Question: How would we draw it?

Vertices are mapped to levels
Given: A rooted binary tree
Question: How would we draw it?

- Vertices are mapped to levels
Drawing of a Tree

Given: A rooted binary tree

Question: How would we draw it?

- Vertices are mapped to levels
- Isomorphic trees are drawn similarly
Given: A rooted binary tree
Question: How would we draw it?

- Vertices are mapped to levels
- Isomorphic trees are drawn similarly
Drawing of a Tree

Given: A rooted binary tree
Question: How would we draw it?

- Vertices are mapped to levels
- Isomorphic trees are drawn similarly
- Parent is centered wrt the children
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:

Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:

![Diagram of a leveled drawing of a binary tree]
Level-based Layout

Algorithm Outline:

Input: A binary tree

Output: A leveled drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:

Some agreed distance
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:

Parent is centered wrt to children
Some agreed distance
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T'(u) \)
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- "Summ up" the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$ to obtain the displ. of the children of v
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- “Summ up” the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$ to obtain the displ. of the children of v
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
- “Summ up” the horizontal displacements of the right boundary of \(T_l(v) \) and the left boundary of \(T_r(v) \) to obtain the displ. of the children of \(v \)
Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- “Summ up” the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$ to obtain the displ. of the children of v
- Store at v the left and the right boundaries of $T(v)$
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

Preorder traversal: Compute x- and y-coordinates.
Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child.

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
- Summ up the horizontal displacements of the right boundary of \(T_l(v) \) and the left boundary of \(T_r(v) \)
- Store at \(v \) the left and the right boundaries of \(T(v) \)

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.

To compute the displacement: constant number of operations at each vertex
Level-based Layout

Time Complexity

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
- Summ up the horizontal displacements of the right boundary of \(T_l(v) \) and the left boundary of \(T_r(v) \)
- Store at \(v \) the left and the right boundaries of \(T(v) \)

Preorder traversal: Compute x- and y-coordinates.

- To compute the displacement: constant number of operations at each vertex
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.

- To compute the displacement: constant number of operations at each vertex
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.

To compute the displacement: constant number of operations at each vertex
Level-based Layout

Theorem (Reingold & Tilford)

Let T be a binary tree with n vertices. Algorithm (R & T) constructs a drawing Γ of T in $O(n)$ time, such that:

- Γ is planar and straight-line
- $\forall v \in T$ y-coordinate of v is $-\text{depth}(v)$
- Vertical and horizontal distance is at least 1
- Area of Γ is
Level-based Layout

Theorem (Reingold & Tilford)

Let \(T \) be a binary tree with \(n \) vertices. Algorithm (R & T) constructs a drawing \(\Gamma \) of \(T \) in \(O(n) \) time, such that:

- \(\Gamma \) is planar and straight-line
- \(\forall v \in T \) y-coordinate of \(v \) is \(-\text{depth}(v)\)
- Vertical and horizontal distance is at least 1
- Area of \(\Gamma \) is \(O(n^2) \)
Theorem (Reingold & Tilford)

Let T be a binary tree with n vertices. Algorithm (R & T) constructs a drawing Γ of T in $O(n)$ time, such that:

- Γ is planar and straight-line
- $\forall v \in T$ y-coordinate of v is $-\text{depth}(v)$
- Vertical and horizontal distance is at least 1
- Area of Γ is $O(n^2)$
- Each vertex is centered with respect to its children
Level-based Layout

Theorem (Reingold & Tilford)

Let T be a binary tree with n vertices. Algorithm (R & T) constructs a drawing Γ of T in $O(n)$ time, such that:

- Γ is planar and straight-line
- $\forall v \in T$ y-coordinate of v is $-\text{depth}(v)$
- Vertical and horizontal distance is at least 1
- Area of Γ is $O(n^2)$
- Each vertex is centered with respect to its children
- Simply isomorphic subtrees have congruent (coincident) drawing, up to translation
- Axially isomorphic trees have congruent drawing, up to translation and reflection around y-axis
Level-based Layout

- The presented algorithm tries to minimize width
Level-based Layout

- The presented algorithm tries to minimize width
Level-based Layout

- The presented algorithm tries to minimize width
- Does not achieve that!
The presented algorithm tries to minimize width

Does not achieve that!

Divide-and-conquer strategy cannot achieve optimal width
The presented algorithm tries to minimize width
Does not achieve that!
Divide-and-conquer strategy cannot achieve optimal width

Drawing with min width and properties of our algorithm can be constructed by an LP
Level-based Layout

- The presented algorithm tries to minimize width
- Does not achieve that!
- Divide-and-conquer strategy cannot achieve optimal width
- Drawing with min width and properties of our algorithm can be constructed by an LP
- If integer coordinates are required, then it is NP-hard
Algorithm Outline:
Input: A rooted tree
Output: A layered drawing of T
Base case: A single vertex
Divide: Assume that T has subtrees $T_1, \ldots T_m$. Draw each T_i recursively.
Conquer:
Level-based Layout - General trees

Algorithm Outline:
Input: A rooted tree
Output: A layered drawing of T

Base case: A single vertex
Divide: Assume that T has subtrees T_1, \ldots, T_m. Draw each T_i recursively.

Conquer: For $i = 1, \ldots, m$ place the drawing of T_i to the right of the drawing of T_{i-1} and at horizontal distance at least 1 from it.
Position the root half-way between the roots of T_1 and T_m.
Applications of Level-based Layout

Chart to aid students in shaping geographical questions by Gaultier, 1821
Applications of Level-based Layout

Chart to aid students in shaping geographical questions by Gaultier, 1821

X-MEN FAMILY TREE

CONFUSED? READ MORE COMICS.

ORIGINAL IMAGE BY JOE STONE (JOESTONE.TUMBLR.COM)
Can we draw trees differently?
Can we draw trees differently?
Can we draw trees differently?

Divide & Conquer Approach:

HV-Layout
HV-Layout

Idea for binary trees:
- Children are vertically and horizontally aligned with the root
- The bounding boxes of the children do not intersect

Induction base:

Induction step: combine layouts

horizontal combination
(Area: 3 × 7)

vertical combination
(Area: 6 × 4)
HV-Layout

Idea for binary trees:
- Children are vertically and horizontally aligned with the root
- The bounding boxes of the children do not intersect

Induction base:

Induction step: combine layouts

Compute minimum area using Dynamic Programming

horizontal combination
(Area: 3 × 7)

vertical combination
(Area: 6 × 4)
Right-Heavy HV-Layout

Right-Heavy approach:
- At every induction step apply horizontal combination
- Place the larger subtree to the right
Right-Heavy HV-Layout

Right-Heavy approach:
- At every induction step apply horizontal combination
- Place the larger subtree to the right

Lemma
Let T be a binary tree. The height of the drawing constructed by Right-Heavy approach is at most $\log n$.
Right-Heavy HV-Layout

Right-Heavy approach:
- At every induction step apply horizontal combination
- Place the larger subtree to the right

Lemma

Let T be a binary tree. The height of the drawing constructed by Right-Heavy approach is at most $\log n$.

Proof:
- Each vertical edge has length 1
- Let w be the lowest node in the drawing
- Let P be a path from w to the root of T
- For every edge (u, v) in P: $|T(v)| > 2|T(u)|$
- $\Rightarrow P$ contains at most $\log n$ edges
Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:
Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
Right-Heavy HV-Layout

Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most
Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most $n-1$
Theorem

Let \(T \) be a binary tree with \(n \) vertices. The Right-Heavy algorithm constructs in \(O(n) \) time a drawing \(\Gamma \) of \(T \) such that:

- \(\Gamma \) is HV-drawing (planar, orthogonal)
- The width of \(\Gamma \) is at most \(n-1 \)
- The height is at most \(\log n \)
Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most $n-1$
- The height is at most $\log n$
- The area is $O(n \log n)$
Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most $n-1$
- The height is at most $\log n$
- The area is $O(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings, up to translation
Theorem

Let T be a binary tree with n vertices. The Right-Heavy algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is HV-drawing (planar, orthogonal)
- The width of Γ is at most $n-1$
- The height is at most $\log n$
- The area is $O(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings, up to translation

General rooted tree:

![General rooted tree diagram](image-url)
Application of HV-Layout

Cons cell diagram in LISP

1 --- 3 --- 4
 | | |
 5 --- 10 --- 11
 | / |
 9 12 /

2 --- 6 --- 7 --- 8

http://gajon.org/
More tree drawings...

Radial Layout
Radial Layout

Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v)-1}$
Radial Layout

Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v)-1}$
Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v)-1}$
Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v) - 1}$
Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v)-1}$
Radial Layout

Example:

Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v) - 1}$
Radial Layout

Example: Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v) - 1}$
Radial Layout

Example:

Angle corresponding to the subtree rooted at u: $\tau_u = \frac{\ell(u)}{\ell(v) - 1}$

\[\ell(u) \]

\[u \]

\[v \]

\[\frac{9}{10} \cdot \frac{1}{8} \]

\[\frac{9}{10} \cdot \frac{1}{8} \]

\[\frac{9}{10} \cdot \frac{7}{8} \cdot \frac{1}{6} \]

\[\frac{9}{10} \cdot \frac{1}{8} \]

\[\frac{1}{10} \]
Radial Layout

How to avoid crossings:

- τ_u - angle of the wedge corresponding to vertex u
- ρ_i - radius of layer i
- $\ell(v)$ - number of nodes in the subtree rooted at v
- $\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$
Radial Layout

How to avoid crossings:

- τ_u - angle of the wedge corresponding to vertex u
- ρ_i - radius of layer i
- $\ell(v)$ - number of nodes in the subtree rooted at v
- $\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$
Radial Layout

How to avoid crossings:

- τ_u - angle of the wedge corresponding to vertex u
- ρ_i - radius of layer i
- $\ell(v)$ - number of nodes in the subtree rooted at v

$\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$

$\tau_u = 2 \arccos \frac{\rho_i}{\rho_{i+1}}$ (correction)
Radial Layout

How to avoid crossings:

- τ_u - angle of the wedge corresponding to vertex u
- ρ_i - radius of layer i
- $\ell(v)$ - number of nodes in the subtree rooted at v

\[
\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}
\]

\[
\tau_u = 2 \arccos \frac{\rho_i}{\rho_{i+1}} \quad \text{(correction)}
\]

Alternatively use number of leaves in the subtree to subdivide the angles

[book Di Battista et al.]
Applications of Radial Layout

Genealogical tree by Estabrook and Davenport, 1912

Organization chart of a company by W.H. Smith, 1924
Applications of Radial Layout

Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family by Ribbecca, 2011