Algorithms for graph visualization

Divide and Conquer - Trees and Series-Parallel Graphs
Balloon Layout

NEVRON—Visualize your success: www.nevron.com

IBM ILOG JViews Diagrammer: www.ibm.com
Balloon Layout

A baloon drawing has the following properties:

- All the children of the same parent lie on circle centered at their parent
- The drawing is planar
- The further an edge from the root is, the shorter it becomes

All subtrees at the same depth have the same size.

Subtrees may have different size, the tree is ordered.

Subtrees may have different size, the tree is unordered. Drawn by Lin & Yen Algorithm.
Balloon Layout

A baloon drawing has the following properties:

- All the children of the same parent lie on circle centered at their parent
- The drawing is planar
- The further an edge from the root is, the shorter it becomes

Induction base:

Induction step:
Balloon Layout

Aesthetics:

- Aspect ratio $= \frac{\text{largest angle}}{\text{smallest angle}}$
- Angular resolution $= \min\{\text{angle between two adjacent edges}\}$

Question: Can we find a balloon drawing with max angular resolution and min aspect ratio in an unordered tree? (Algorithm by Lin & Yen)
Balloon Layout

Aesthetics:

- Aspect ratio = \frac{\text{largest angle}}{\text{smallest angle}}
- Angular resolution = \min\{\text{angle between two adjacent edges}\}

Question: Can we find a balloon drawing with max angular resolution and min aspect ratio in an unordered tree? (Algorithm by Lin & Yen)

- We investigate drawing with **even angles** (drawing with uneven angles might have a better area)
Balloon Layout

Aesthetics:
- Aspect ratio = \(\frac{\text{largest angle}}{\text{smallest angle}} \)
- Angular resolution = \(\min\{\text{angle between two adjacent edges}\} \)

Question: Can we find a balloon drawing with max angular resolution and min aspect ratio in an unordered tree? (Algorithm by Lin & Yen)

- We investigate drawing with even angles (drawing with uneven angles might have a better area)
- An arrangement of the subtree at a level can be described by a permutation \(\sigma = \{1, 4, 2, 3\} \)
- \(\theta_i \) - angle of the wedge containing the subtree \(T_i \)
Assume we are given the radii r_i of the subtrees T_i. How to determine θ_i - angle of the wedge containing the circle r_i?
Balloon Layout. Algorithm by Lin & Yen.

- Assume we are given the radii r_i of the subtrees T_i. How to determine θ_i - angle of the wedge containing the circle r_i?

- Let $C \approx 2 \sum r_i$
Assume we are given the radii r_i of the subtrees T_i. How to determine θ_i - angle of the wedge containing the circle r_i?

- Let $C \approx 2 \sum r_i$
- Let $r_{\text{max}} = \max \{ r_i \}$
Balloon Layout. Algorithm by Lin & Yen.

- Assume we are given the radii r_i of the subtrees T_i. How to determine θ_i - angle of the wedge containing the circle r_i?
- Let $C \approx 2 \sum r_i$
- Let $r_{\text{max}} = \max\{r_i\}$
- In order to avoid overlaps we compare C and $2\pi r_{\text{max}}$
Assume we are given the radii r_i of the subtrees T_i. How to determine θ_i - angle of the wedge containing the circle r_i?

- Let $C \approx 2 \sum r_i$
- Let $r_{\text{max}} = \max \{ r_i \}$
- In order to avoid overlaps we compare C and $2\pi r_{\text{max}}$
- If $C \leq 2\pi r_{\text{max}}$ we set $R = r_{\text{max}}$, otherwise we set $R = \frac{C}{2\pi}$
Assume we are given the radii r_i of the subtrees T_i. How to determine θ_i - angle of the wedge containing the circle r_i?

- Let $C \approx 2 \sum r_i$
- Let $r_{\text{max}} = \max\{r_i\}$
- In order to avoid overlaps we compare C and $2\pi r_{\text{max}}$
- If $C \leq 2\pi r_{\text{max}}$ we set $R = r_{\text{max}}$, otherwise we set $R = \frac{C}{2\pi}$
- Set $\theta_i = 2(r_i + \text{free arc})/R$
Balloon Layout. Algorithm by Lin & Yen.

- Assume we are given the radii r_i of the subtrees T_i. How to determine θ_i - angle of the wedge containing the circle r_i?

- Let $C \approx 2 \sum r_i$
- Let $r_{\text{max}} = \max \{r_i\}$
- In order to avoid overlaps we compare C and $2\pi r_{\text{max}}$
- If $C \leq 2\pi r_{\text{max}}$ we set $R = r_{\text{max}}$, otherwise we set $R = \frac{C}{2\pi}$
- Set $\theta_i = 2(r_i + \text{free arc})/R$
- Let σ be the permutation of the subtrees
Balloon Layout. Algorithm by Lin & Yen.

Assume we are given the radii r_i of the subtrees T_i. How to determine θ_i - angle of the wedge containing the circle r_i?

- Let $C \approx 2 \sum r_i$
- Let $r_{\text{max}} = \max \{ r_i \}$
- In order to avoid overlaps we compare C and $2\pi r_{\text{max}}$
- If $C \leq 2\pi r_{\text{max}}$ we set $R = r_{\text{max}}$, otherwise we set $R = \frac{C}{2\pi}$
- Set $\theta_i = 2(r_i + \text{free arc})/R$
- Let σ be the permutation of the subtrees

$$\frac{\theta_{\sigma_i} + \theta_{\sigma_i+1}}{2}$$ - angle between two consecutive edges
Balloon Layout. Algorithm by Lin & Yen.

\[\frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \] - angle between two edges
Balloon Layout. Algorithm by Lin & Yen.

- $\frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2}$ - angle between two edges

- $\text{AngResl}_\sigma = \min_{1 \leq i \leq n} \left\{ \frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \right\}$
Balloon Layout. Algorithm by Lin & Yen.

- $\frac{\theta_{\sigma_i} + \theta_{\sigma_i+1}}{2}$ - angle between two edges
- $\text{AngResl}_\sigma = \min_{1 \leq i \leq n} \left\{ \frac{\theta_{\sigma_i} + \theta_{\sigma_i+1}}{2} \right\}$
- Permute the circles (σ) so that the AngleResl_σ is maximized.
Balloon Layout. Algorithm by Lin & Yen.

- $\frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2}$ - angle between two edges
- $\text{AngResl}_\sigma = \min_{1 \leq i \leq n} \{ \frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \}$
- Permute the circles (σ) so that the AngleResl_σ is maximized.
- Let $m_1, m_2, \ldots, m_k, \text{mid}, M_k, M_{k-1}, \ldots, M_2, M_1$ be the angles θ in the increasing ordering, i.e. m_i (M_i) is i-th min (max), mid-unique medium, in case of odd number of circles and even k.
Balloon Layout. Algorithm by Lin & Yen.

- $\frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2}$ - angle between two edges

- $AngResl_\sigma = \min_{1 \leq i \leq n}\left\{ \frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \right\}$

- Permute the circles (σ) so that the $AngleResl_\sigma$ is maximized.

Let $m_1, m_2, \ldots, m_k, \text{mid}, M_k, M_{k-1}, \ldots, M_2, M_1$ be the angles θ in the increasing ordering, i.e. $m_i (M_i)$ is i-th min (max), mid-unique medium, in case of odd number of circles and even k.

- Let $\sigma = \{M_1, m_2, M_3, m_4, \ldots, M_{k-1}, m_k, \text{mid}, M_k, m_{k-1}, \ldots, M_4, m_3, M_2, m_1\}$. We show that σ gives maximum angle resolution.
Balloon Layout. Algorithm by Lin & Yen.

- \(\frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \) - angle between two edges

- \(\text{AngResl}_\sigma = \min_{1 \leq i \leq n} \left\{ \frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \right\} \)

- Permute the circles (\(\sigma \)) so that the \(\text{AngleResl}_\sigma \) is maximized.

- Let \(m_1, m_2, \ldots, m_k, \text{mid}, M_k, M_{k-1}, \ldots, M_2, M_1 \) be the angles \(\theta \) in the increasing ordering, i.e. \(m_i \) (\(M_i \)) is \(i \)-th min (max), \(\text{mid} \)-unique medium, in case of odd number of circles and even \(k \).

- Let \(\sigma = \{ M_1, m_2, M_3, m_4, \ldots, M_{k-1}, m_k, \text{mid}, M_k, m_{k-1}, \ldots, M_4, m_3, M_2, m_1 \} \).

 We show that \(\sigma \) gives maximum angle resolution.

- Let \(\alpha_{ij} = \frac{M_i + m_j}{2} \). Angles \(\frac{\text{mid} + M_k}{2}, \alpha_{(i-1)i}, \frac{M_k + \text{mid}}{2}, \alpha_{i(i-1)} \) are in \(\sigma \).
Balloon Layout. Algorithm by Lin & Yen.

- \(\frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \) - angle between two edges
- \(\text{AngResl}_\sigma = \min_{1 \leq i \leq n} \left\{ \frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \right\} \)
- Permute the circles (\(\sigma \)) so that the \(\text{AngleResl}_\sigma \) is maximized.
- Let \(m_1, m_2, \ldots, m_k, \text{mid}, M_k, M_{k-1}, \ldots, M_2, M_1 \) be the angles \(\theta \) in the increasing ordering, i.e. \(m_i \) (\(M_i \)) is \(i \)-th min (max), \(\text{mid} \)-unique medium, in case of odd number of circles and even \(k \).
- Let \(\sigma = \{ M_1, m_2, M_3, m_4, \ldots, M_{k-1}, m_k, \text{mid}, M_k, m_{k-1}, \ldots, M_4, m_3, M_2, m_1 \} \). We show that \(\sigma \) gives maximum angle resolution.
- Let \(\alpha_{ij} = \frac{M_i + m_j}{2} \). Angles \(\frac{\text{mid} + m_k}{2}, \alpha_{(i-1)i}, \frac{M_k + \text{mid}}{2}, \alpha_{i(i-1)} \) are in \(\sigma \).
- Relations among \(\alpha_{ij} \):
Balloon Layout. Algorithm by Lin & Yen.

- \(\frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \) - angle between two edges

- \(\text{AngResl}_\sigma = \min_{1 \leq i \leq n} \{ \frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \} \)

- Permute the circles (\(\sigma \)) so that the \(\text{AngleResl}_\sigma \) is maximized.

- Let \(m_1, m_2, \ldots, m_k, \text{mid}, M_k, M_k-1, \ldots, M_2, M_1 \) be the angles \(\theta \) in the increasing ordering, i.e. \(m_i \) (\(M_i \)) is \(i \)-th min (max), \(\text{mid} \)-unique medium, in case of odd number of circles and even \(k \).

Let \(\sigma = \{ M_1, m_2, M_3, m_4, \ldots, M_k-1, m_k, \text{mid}, M_k, m_{k-1}, \ldots, M_4, m_3, M_2, m_1 \} \).
We show that \(\sigma \) gives maximum angle resolution.

- Let \(\alpha_{ij} = \frac{M_i+m_j}{2} \). Angles \(\frac{\text{mid}+m_k}{2}, \alpha_{(i-1)i}, \frac{M_k+\text{mid}}{2}, \alpha_{i(i-1)} \) are in \(\sigma \).

- Relations among \(\alpha_{ij} \):

\[
\begin{align*}
\alpha_{12} &> \alpha_{32} < \alpha_{34} > \cdots > \alpha_{j(j-1)} < \cdots > \alpha_{k(k-1)} < \frac{M_k+\text{mid}}{2} > \frac{\text{mid}+m_k}{2} < \\
\alpha_{(k-1)k} &> \cdots > \alpha_{43} < \alpha_{23} > \alpha_{21} < \alpha_{12}.
\end{align*}
\]
Balloon Layout. Algorithm by Lin & Yen.

- Recall $\alpha_{ij} = \frac{M_i + m_j}{2}$

- Relations among α_{ij}:

 $\alpha_{12} > \alpha_{32} < \alpha_{34} > \cdots > \alpha_{j(j-1)} < \cdots > \alpha_{k(k-1)} < \frac{M_k + \text{mid}}{2} > \frac{\text{mid} + m_k}{2} < \alpha_{(k-1)k} > \cdots > \alpha_{43} < \alpha_{23} > \alpha_{21} < \alpha_{12}$.

- Smallest angle in σ is either: $\frac{\text{mid} + m_k}{2}$ or $\alpha_{j(j-1)}$, while the size of the biggest angle is either $\frac{M_k + \text{mid}}{2}$ or $\alpha_{(l-1)l}$, $j, l \in \{2, \ldots, k\}$.
Balloon Layout. Algorithm by Lin & Yen.

- Recall $\alpha_{ij} = \frac{M_i + m_j}{2}$

- Relations among α_{ij}:
 $\alpha_{12} > \alpha_{32} < \alpha_{34} > \cdots > \alpha_{j(j-1)} < \cdots > \alpha_{k(k-1)} < \frac{M_k + \text{mid}}{2} > \frac{\text{mid} + m_k}{2} < \alpha_{(k-1)k} > \cdots > \alpha_{43} < \alpha_{23} > \alpha_{21} < \alpha_{12}$.

- Smallest angle in σ is either: $\frac{\text{mid} + m_k}{2}$ or $\alpha_{j(j-1)}$, while the size of the biggest angle is either $\frac{M_k + \text{mid}}{2}$ or $\alpha_{(l-1)l}$, $j, l \in \{2, \ldots, k\}$.

- Assume the min angle of σ is $\alpha_{i(i-1)} = \frac{M_i + m_i - 1}{2}$, and assume σ is not optimal.
Balloon Layout. Algorithm by Lin & Yen.

- Recall $\alpha_{ij} = \frac{M_i + m_j}{2}$

- Relations among α_{ij}:
 $\alpha_{12} > \alpha_{32} < \alpha_{34} > \cdots > \alpha_{j(j-1)} < \cdots > \alpha_{k(k-1)} < \frac{M_k + \text{mid}}{2} > \frac{\text{mid} + m_k}{2} < \alpha_{(k-1)k} > \cdots > \alpha_{43} < \alpha_{23} > \alpha_{21} < \alpha_{12}$.

- Smallest angle in σ is either: $\frac{\text{mid} + m_k}{2}$ or $\alpha_{j(j-1)}$, while the size of the biggest angle is either $\frac{M_k + \text{mid}}{2}$ or $\alpha_{(l-1)l}$, $j, l \in \{2, \ldots, k\}$.

- Assume the min angle of σ is $\alpha_{i(i-1)} = \frac{M_i + m_{i-1}}{2}$, and assume σ is not optimal.

- Let δ be a permutation with maximum angle resolution.
Balloon Layout. Algorithm by Lin & Yen.

- Recall $\alpha_{ij} = \frac{M_i + m_j}{2}$

- Relations among α_{ij}:

 \[
 \alpha_{12} > \alpha_{32} < \alpha_{34} > \cdots > \alpha_{j(j-1)} < \cdots > \alpha_{k(k-1)} < \frac{M_k + mid}{2} > \frac{mid + m_k}{2} < \\
 \alpha_{(k-1)k} > \cdots > \alpha_{43} < \alpha_{23} > \alpha_{21} < \alpha_{12}.
 \]

- Smallest angle in σ is either: $\frac{mid + m_k}{2}$ or $\alpha_{j(j-1)}$, while the size of the biggest angle is either $\frac{M_k + mid}{2}$ or $\alpha_{(l-1)l}$, $j, l \in \{2, \ldots, k\}$.

- Assume the min angle of σ is $\alpha_{i(i-1)} = \frac{M_i + m_{i-1}}{2}$, and assume σ is not optimal.

- Let δ be a permutation with maximum angle resolution

- If M_i and m_{i-1} neighbor in δ then $\text{optAngResl} = \alpha_{i,i-1}$ (???)
Balloon Layout. Algorithm by Lin & Yen.

- Recall $\alpha_{ij} = \frac{M_i + m_j}{2}$

- Relations among α_{ij}:

\[
\alpha_{12} > \alpha_{32} < \alpha_{34} > \cdots > \alpha_{j(j-1)} < \cdots > \alpha_{k(k-1)} < \frac{M_k + \text{mid}}{2} > \frac{\text{mid} + m_k}{2} < \alpha_{(k-1)k} > \cdots > \alpha_{43} < \alpha_{23} > \alpha_{21} < \alpha_{12}.
\]

- Smallest angle in σ is either: $\frac{\text{mid} + m_k}{2}$ or $\alpha_{j(j-1)}$, while the size of the biggest angle is either $\frac{M_k + \text{mid}}{2}$ or $\alpha_{(l-1)l}$, $j, l \in \{2, \ldots, k\}$.

- Assume the min angle of σ is $\alpha_{i(i-1)} = \frac{M_i + m_{i-1}}{2}$, and assume σ is not optimal.

- Let δ be a permutation with maximum angle resolution

- If M_i and m_{i-1} neighbor in δ then $\text{optAngRes} = \alpha_{i,i-1}$ (???)

- If they do not, let x, y be the neighbors of m_{i-1} in δ, then:

\[
\begin{align*}
 m_1 & < \cdots < m_{i-1} < \cdots < M_i < \cdots < x < \cdots < y < M_1 \\
 & \quad \downarrow \quad \downarrow \quad \downarrow
\end{align*}
\]
Balloon Layout. Algorithm by Lin & Yen.

Thus, M_i and m_{i-1} neighbor in δ and therefore $\text{AngRes}_\sigma = \text{AngRes}_\delta$, i.e. σ maximizes the size of the smallest angle.
Balloon Layout. Algorithm by Lin & Yen.

- Thus, M_i and m_{i-1} neighbor in δ and therefore $AngRes_\sigma = AngRes_\delta$, i.e. σ maximizes the size of the smallest angle.

- Similarly, we can show that σ minimizes the largest angle.
Balloon Layout. Algorithm by Lin & Yen.

Thus, M_i and m_{i-1} neighbor in δ and therefore $AngRes_\sigma = AngRes_\delta$, i.e. σ maximizes the size of the smallest angle.

Similarly, we can show that σ minimizes the largest angle.

Recall that: $AspRatio_\sigma = \frac{\max_{1 \leq i \leq n} \left\{ \frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \right\}}{\min_{1 \leq i \leq n} \left\{ \frac{\theta_{\sigma_i} + \theta_{\sigma_{i+1}}}{2} \right\}}$
Balloon Layout. Algorithm by Lin & Yen.

- Thus, M_i and m_{i-1} neighbor in δ and therefore $\text{AngRes}_\sigma = \text{AngRes}_\delta$, i.e. σ maximizes the size of the smallest angle.

- Similarly, we can show that σ minimizes the largest angle.

- Recall that: $\text{AspRatio}_\sigma = \frac{\max_{1 \leq i \leq n} \left\{ \frac{\theta_\sigma_i + \theta_\sigma_{i+1}}{2} \right\}}{\min_{1 \leq i \leq n} \left\{ \frac{\theta_\sigma_i + \theta_\sigma_{i+1}}{2} \right\}}$

- The radii and therefore the angles are independent on each level.
Balloon Layout. Algorithm by Lin & Yen.

- Thus, M_i and m_{i-1} neighbor in δ and therefore $AngRes_\sigma = AngRes_\delta$, i.e. σ maximizes the size of the smallest angle.

- Similarly, we can show that σ minimizes the largest angle.

- Recall that: $AspRatio_\sigma = \max_{1 \leq i \leq n} \{ \frac{\theta_{\sigma_i} + \theta_{\sigma_i+1}}{2} \} / \min_{1 \leq i \leq n} \{ \frac{\theta_{\sigma_i} + \theta_{\sigma_i+1}}{2} \}$

- The radii and therefore the angles are independent on each level.

- Therefore, if we apply σ at each level, we obtain an optimal aspect ratio.
Applications of (almost) Ballon Layout

Stefanie Posavec: Writing without words

D. McCandless and W. Tyrer: Taste Buds
Series-parallel Graphs

Graph G is **series-parallel**, if

- It contains a single edge (s, t) (s-source, t-sink)
- It consists of two series-parallel graphs G_1, G_2 with sources s_1, s_2 and sinks t_1, t_2 which are combined using one of the following rules:

Series composition:
Identify t_1 and s_2,
s_1 is the source of G, t_2 is the sink of G

Parallel composition:
Identify s_1, s_2 and set it to be source of G
Identify t_1, t_2 and set it to be sink of G
Series-parallel Graphs. Decomposition Tree.

Lemma

Series-parallel graphs are acyclic and planar.

In order to proof this statement we can use a decomposition tree of \(G \), which is a binary tree \(T \) with nodes of three types: S,P and Q-type.
Lemma

Series-parallel graphs are acyclic and planar.

In order to prove this statement we can use a decomposition tree of G, which is a binary tree T with nodes of three types: S, P and Q-type.

- If G is a single edge, then the corresponding node is Q-node.
Series-parallel Graphs. Decomposition Tree.

Lemma

Series-parallel graphs are acyclic and planar.

In order to proof this statement we can use a decomposition tree of G, which is a binary tree T with nodes of three types: S,P and Q-type.

- If G is a single edge, then the corresponding node is Q-node
- If G is a parallel composition of G_1 (with tree T_1) and G_2 (with tree T_2), then the root of T is P-node and T_1 is its left subtree, T_2 is its right subtree
Series-parallel Graphs. Decomposition Tree.

Lemma

Series-parallel graphs are acyclic and planar.

In order to proof this statement we can use a decomposition tree of G, which is a binary tree T with nodes of three types: S,P and Q-type.

- If G is a single edge, then the corresponding node is Q-node
- If G is a parallel composition of G_1 (with tree T_1) and G_2 (with tree T_2), then the root of T is P-node and T_1 is its left subtree, T_2 is its right subtree
- If G is a series composition of G_1 (with tree T_1) and G_2 (with tree T_2), then the root of T is S-node and T_1 is its left subtree, T_2 is its right subtree
Series-parallel Graphs. Decomposition Example.

Flowcharts

PERT-Diagrams
(Program Evaluation and Review Technique)

Flowcharts

Computational Complexity: Linear time algorithms for \mathcal{NP}-hard problems (e.g. Maximum Matching, Maximum Independent Set, Hamiltonian Completion)
Straight-line Drawing of SP-Graphs

- Draw graph G inside a right-angled isosceles bounding triangle $\Delta(G)$
Straight-line Drawing of SP-Graphs

- Draw graph G inside a right-angled isosceles bounding triangle $\Delta(G)$
- Q-Nodes (Induction base):
Straight-line Drawing of SP-Graphs

- Draw graph G inside a right-angled isosceles bounding triangle $\Delta(G)$
- Q-Nodes (Induction base):
- S-Nodes (series composition)
Straight-line Drawing of SP-Graphs

- Draw graph G inside a right-angled isosceles bounding triangle $\Delta(G)$
- Q-Nodes (Induction base):
- S-Nodes (series composition)
- P-Nodes (parallel composition)
Straight-line Drawing of SP-Graphs

- Draw graph G inside a right-angled isosceles bounding triangle $\Delta(G)$
- Q-Nodes (Induction base):
- S-Nodes (series composition)
- P-Nodes (parallel composition)
Straight-line Drawing of SP-Graphs

- Draw graph G inside a right-angled isosceles bounding triangle $\Delta(G)$
- Q-Nodes (Induction base):
- S-Nodes (series composition)
- P-Nodes (parallel composition)
Straight-line Drawing of SP-Graphs

- Draw graph G inside a right-angled isosceles bounding triangle $\Delta(G)$
- Q-Nodes (Induction base):
- S-Nodes (series composition)
- P-Nodes (parallel composition)

change embedding!
Straight-line Drawing of SP-Graphs

- Draw graph G inside a right-angled isosceles bounding triangle $\Delta(G)$
- Q-Nodes (Induction base):
- S-Nodes (series composition)
- P-Nodes (parallel composition)

change embedding!
Straight-line Drawing of SP-Graphs

- Draw graph G inside a right-angled isosceles bounding triangle $\Delta(G)$
- Q-Nodes (Induction base):
- S-Nodes (series composition)
- P-Nodes (parallel composition)
Straight-line Drawing of SP-Graphs

- Draw graph G inside a right-angled isosceles bounding triangle $\Delta(G)$
- Q-Nodes (Induction base):
- S-Nodes (series composition)
- P-Nodes (parallel composition)
What makes parallel composition possible without creating crossings?
Straight-line Drawing of SP-Graphs

What makes parallel composition possible without creating crossings?
Straight-line Drawing of SP-Graphs

What makes parallel composition possible without creating crossings?
What makes parallel composition possible without creating crossings?
What makes parallel composition possible without creating crossings?
Straight-line Drawing of SP-Graphs

What makes parallel composition possible without creating crossings?
Straight-line Drawing of SP-Graphs

What makes parallel composition possible without creating crossings?
Straight-line Drawing of SP-Graphs

What makes parallel composition possible without creating crossings?
What makes parallel composition possible without creating crossings?

Lemma If this condition holds then parallel composition results in a planar drawing.
Straight-line Drawing of SP-Graphs

- What makes parallel composition possible without creating crossings?

Lemma If this condition holds then parallel composition results in a planar drawing.

- The condition can be preserved during the induction step.
Straight-line Drawing of SP-Graphs

- What makes parallel composition possible without creating crossings?

Lemma If this condition holds then parallel composition results in a planar drawing.

- The condition can be preserved during the induction step.

- The area of the drawing is?
Straight-line Drawing of SP-Graphs

- What makes parallel composition possible without creating crossings?

Lemma If this condition holds then parallel composition results in a planar drawing.

- The condition can be preserved during the induction step.

- The area of the drawing is? $O(m^2)$, m is the number of edges
What makes parallel composition possible without creating crossings?

Theorem
A series-parallel graph G (with variable embedding) admits an **upward planar** straight-line drawing with $O(n^2)$ area.
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]

There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]
There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:
Theorem [Bertolazzi et al. 94]

There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]

There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:

\[G_0 \]

\[G_{n+1} \]
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]
There exists a 2^n-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]

There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]

There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:

![Diagram showing the construction of G_n and G_{n+1}]
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]
There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]

There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]

There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:

- We have that: $Area(\Pi) > 2 \cdot Area(G_n)$
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]
There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:

- We have that: $\text{Area}(\Pi) > 2 \cdot \text{Area}(G_n)$
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]

There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:

- We have that: $\text{Area}(\Pi) > 2 \cdot \text{Area}(G_n)$
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]
There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:
- We have that: $\text{Area}(\Pi) > 2 \cdot \text{Area}(G_n)$
- $\text{Area}(G_{n+1}) \geq 2 \cdot \text{Area}(\Pi)$
Lower Bound for the Area

Theorem [Bertolazzi et al. 94]

There exists a $2n$-vertex series-parallel graph G_n such that any upward planar drawing of G_n respecting embedding requires area $\Omega(4^n)$.

Proof:

- We have that: $\text{Area}(\Pi) > 2 \cdot \text{Area}(G_n)$
- $\text{Area}(G_{n+1}) \geq 2 \cdot \text{Area}(\Pi)$
- $\text{Area}(G_{n+1}) \geq 4 \cdot \text{Area}(G_n)$
Property of the Algorithm
Property of the Algorithm
Property of the Algorithm
Property of the Algorithm
Algorithm by Hong, Eades and Lee (2000) creates symmetrical drawings of series-parallel graphs.