Algorithms for graph visualization

Contact representations of planar graphs.
In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.
In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.
In a **contact representation** of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.
In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.
Contact representation

In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

General idea for the construction of a contact representation of a planar graph using \(n \)-gons in worst case.
Contact representation

In a **contact representation** of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

- Each planar graph has a touching disks representation (Koebe 1936)
Contact representation

In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

- Each planar graph has a touching disks representation (Koebe 1936)
- If we want to represent a planar graph as contact of k-gons, how high should k be?
Contact representation

In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

- Each planar graph has a touching disks representation (Koebe 1936)
- If we want to represent a planar graph as contact of k-gons, how high should be k?
- 6-gons are necessary and sufficient for planar graphs! (Gansner et. al. 2010)
Contact representation

In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

- Each planar graph has a touching disks representation (Koebe 1936)
- If we want to represent a planar graph as contact of k-gons, how high should k be?
- 6-gons are necessary and sufficient for planar graphs! (Gansner et. al. 2010)
Contact representation

In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

- Each planar graph has a touching disks representation (Koebe 1936)
- If we want to represent a planar graph as contact of k-gons, how high should k be?
- 6-gons are necessary and sufficient for planar graphs! (Gansner et. al. 2010)
- Rectangles are sufficient for maximal 4-connected graphs!
Contact representation

In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

- Each planar graph has a touching disks representation (Koebe 1936)
- If we want to represent a planar graph as contact of \(k \)-gons, how high should be \(k \)?
- 6-gons are necessary and sufficient for planar graphs! (Gansner et. al. 2010)
- Rectangles are sufficient for maximal 4-connected graphs!
Rectangular Dual

Rectangular Subdivision System

Let R be a rectangle. A **rectangular subdivision system** Φ of R is a partition of R into a set of non-intersecting smaller rectangles such that no four of them meet at the same point.
Rectangular Subdivision System

Let R be a rectangle. A rectangular subdivision system Φ of R is a partition of R into a set of non-intersecting smaller rectangles such that no four of them meet at the same point.

Rectangular Dual

A rectangular dual of a graph $G = (V, E)$ is a rectangular subdivision system Φ and a one-to-one correspondence $f : V \to \Phi$ such that $(u, v) \in E$ if and only if the rectangles $f(u)$ and $f(v)$, corresponding to u and v, share a common boundary.
Rectangular Dual

Rectangular Subdivision System

Let R be a rectangle. A rectangular subdivision system Φ of R is a partition of R into a set of non-intersecting smaller rectangles such that no four of them meet at the same point.

Rectangular Dual

A rectangular dual of a graph $G = (V, E)$ is a rectangular subdivision system Φ and a one-to-one correspondence $f : V \rightarrow \Phi$ such that $(u, v) \in E$ if and only if the rectangles $f(u)$ and $f(v)$, corresponding to u and v, share a common boundary.
Rectangular Subdivision System

Let R be a rectangle. A **rectangular subdivision system** Φ of R is a partition of R into a set of non-intersecting smaller rectangles such that no four of them meet at the same point.

A rectangular dual of a graph $G = (V, E)$ is a rectangular subdivision system Φ and a one-to-one correspondence $f : V \rightarrow \Phi$ such that $(u, v) \in E$ if and only if the rectangles $f(u)$ and $f(v)$, corresponding to u and v, share a common boundary.
Rectangular Dual

- Which graphs have a rectangular dual?
Which graphs have a rectangular dual?

Separating triangle

Let G be a graph. A triangle C of G whose removal results in at least two disconnected components is called a **separating triangle** of G.

![Diagram of a graph with a separating triangle highlighted in red.](image-url)
Which graphs have a rectangular dual?

Separating triangle

Let G be a graph. A triangle C of G whose removal results in at least two disconnected components is called a separating triangle of G.

Does not have a rectangular dual!
(In order to enclose an area we need at least four boxes)
Rectangular Dual

Which graphs have a rectangular dual?

Separating triangle

Let G be a graph. A triangle C of G whose removal results in at least two disconnected components is called a separating triangle of G.

Does not have a rectangular dual!
(In order to enclose an area we need at least four boxes)

No four rectangles meet at a point!
Rectangular Dual

- Which graphs have a rectangular dual?

Separating triangle

Let G be a graph. A triangle C of G whose removal results in at least two disconnected components is called a separating triangle of G.

Does not have a rectangular dual!

(In order to enclose an area we need at least four boxes)

No four rectangles meet at a point! Each face of G must be a triangle!
Rectangular Dual

Necessary conditions for a planar graph G to have a rectangular dual:

- G must have at least 4 vertices on the outer face
- G must have no separating triangle
- each internal face of G must be a triangle
Rectangular Dual

Necessary conditions for a planar graph G to have a rectangular dual:

- G must have at least 4 vertices on the outer face
- G must have no separating triangle
- each internal face of G must be a triangle

We will prove that these conditions are sufficient!
Rectangular Dual

Necessary conditions for a planar graph G to have a rectangular dual:

- G must have at least 4 vertices on the outer face
- G must have no separating triangle
- each internal face of G must be a triangle

We will prove that these conditions are sufficient!

A planar graph $G = (V, E)$ has a rectangular dual R with four rectangles on the boundary of R if and only if the following conditions hold:

- Every interior face of G is a triangle and the exterior face of G is a quadrangle;
- G has no separating triangles
Rectangular Dual

Necessary conditions for a planar graph G to have a rectangular dual:

- G must have at least 4 vertices on the outer face
- G must have no separating triangle
- Each internal face of G must be a triangle

We will prove that these conditions are sufficient!

A planar graph $G = (V, E)$ has a rectangular dual R with four rectangles on the boundary of R if and only if the following conditions hold:

- Every interior face of G is a triangle and the exterior face of G is a quadrangle;
- G has no separating triangles

Proper Triangular Planar Graph (PTP)
Rectangular Dual

In order to construct a rectangular dual we need to partition our edges on vertical and horizontal. Regular edge labeling (REL, for short) is a tool for that.
Rectangular Dual

In order to construct a rectangular dual we need to partition our edges on vertical and horizontal. Regular edge labeling (REL, for short) is a tool for that.

Regular edge labeling

For each internal vertex:

For the boundary vertices:
Rectangular Dual

Theorem

Let $G = (V, E)$ be a PTP graph. There exists a labeling of the vertices of G $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W).
- v_k is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$. If $k \leq k - 2$, v_k has at least 2 neighbors in $G \setminus G_{k-1}$.
Rectangular Dual

Theorem

Let $G = (V, E)$ be a PTP graph. There exists a labeling of the vertices of G $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W).
- v_k is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$. If $k \leq k - 2$, v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

Canonical ordering with extra condition on v_k!
Rectangular Dual

Theorem (Refined canonical ordering)

Let $G = (V, E)$ be a PTP graph. There exists a labeling of the vertices of G $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ such that for every $4 \leq k \leq n$:
- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W).
- v_k is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$. If $k \leq k-2$, v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

Canonical ordering with extra condition on v_k!
Theorem (Refined canonical ordering)

Let $G = (V, E)$ be a PTP graph. There exists a labeling of the vertices of G $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W).
- v_k is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$. If $k \leq k-2$, v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

Canonical ordering with extra condition on v_k!

Home task!
Rectangular Dual

Refined canonical ordering
Rectangular Dual

Refined canonical ordering
Rectangular Dual

Refined canonical ordering

1 v_S
2 v_W
3 v_E
Σ

Σ_N
Rectangular Dual

Refined canonical ordering
Rectangular Dual

Refined canonical ordering

v_N

v_E

v_S

v_W

1 2 3 4
Rectangular Dual

Refined canonical ordering

\begin{tikzpicture}
 \node (vn) at (0,0) [circle, fill, inner sep=2pt] {v_N};
 \node (vw) at (-2,-3) [circle, fill, inner sep=2pt] {v_W};
 \node (ve) at (2,-3) [circle, fill, inner sep=2pt] {v_E};
 \node (v1) at (-1,-4) [circle, fill, inner sep=2pt] {v_1};
 \node (v2) at (-2,-5) [circle, fill, inner sep=2pt] {v_2};
 \node (v3) at (-1,-6) [circle, fill, inner sep=2pt] {v_3};
 \node (v4) at (-2,-7) [circle, fill, inner sep=2pt] {v_4};
 \node (v5) at (-1,-8) [circle, fill, inner sep=2pt] {v_5};
 \node (v6) at (-2,-9) [circle, fill, inner sep=2pt] {v_6};

 \draw (vn) -- (vw);
 \draw (vn) -- (ve);
 \draw (vn) -- (v1);
 \draw (vn) -- (v2);
 \draw (vn) -- (v3);
 \draw (vn) -- (v4);
 \draw (vn) -- (v5);
 \draw (vn) -- (v6);

 \draw (vw) -- (v1);
 \draw (vw) -- (v2);
 \draw (vw) -- (v3);
 \draw (vw) -- (v4);
 \draw (vw) -- (v5);
 \draw (vw) -- (v6);

 \draw (ve) -- (v1);
 \draw (ve) -- (v2);
 \draw (ve) -- (v3);
 \draw (ve) -- (v4);
 \draw (ve) -- (v5);
 \draw (ve) -- (v6);

 \draw (v1) -- (v2);
 \draw (v1) -- (v3);
 \draw (v1) -- (v4);
 \draw (v1) -- (v5);
 \draw (v1) -- (v6);

 \draw (v2) -- (v3);
 \draw (v2) -- (v4);
 \draw (v2) -- (v5);
 \draw (v2) -- (v6);

 \draw (v3) -- (v4);
 \draw (v3) -- (v5);
 \draw (v3) -- (v6);

 \draw (v4) -- (v5);
 \draw (v4) -- (v6);

 \draw (v5) -- (v6);

\end{tikzpicture}
Rectangular Dual

Refined canonical ordering
Rectangular Dual

Refined canonical ordering
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 1
Left edge or right edge can not be a base edge.
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 1
Left edge or right edge can not be a base edge.

Proof: Assume that left edge (v_k, v_{k_1}) is the base edge of v_{k_1}.
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 1
Left edge or right edge can not be a base edge.

Proof: Assume that left edge (v_k, v_{k_1}) is the base edge of v_{k_1}.
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 2

An edge is either a left edge, a right edge or a base edge.

Proof:

- The exclusive “or” follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k.
- v_{t_a} is right point of $v_{t_{a-1}}$, $v_{t_{a-1}}$ is right point of $v_{t_{a-2}}$, generally $v_{t_{i+1}}$ is right point of $v_{t_i}, 1 \leq i < a - 1$.
- Edges $(v_{t_i}, v_{k}), 1 \leq i < a - 1$, are right edges;
- Similarly we prove that edges $(v_{t_i}, v_{k}), a+1 \leq i < l$, are left edges;
Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 2

An edge is either a left edge, a right edge or a base edge.

Proof:

- The exclusive “or” follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k.
- v_{t_a} is right point of v_{t_a-1}, v_{t_a-1} is right point of v_{t_a-2}, generally $v_{t_{i+1}}$ is right point of v_{t_i}, $1 \leq i < a - 1$
- Edges (v_{t_i}, v_k), $1 \leq i < a - 1$, are right edges;
- Similarly we prove that edges (v_{t_i}, v_k), $a + 1 \leq i < l$, are left edges;
Rectangular Dual

right edges

left edges

basis edge

v_k
Rectangular Dual
Rectangular Dual

right edges

left edges

basis edge

v, k
Rectangular Dual

right edges

left edges

basis edge

right edges

left edges

basis edge

basis edge

left edges
We call T_b blue edges and T_r red edges.
We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_l \geq 2$
We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:
We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_l \geq 2$
Rectangular Dual

We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_l \geq 2$
We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_d = \max\{v_{k_1} \cdots v_{k_l}\}$

The base edges of $v_{k_2} \cdots v_{k_{l-1}}$ have $k_l \geq 2$.

Left edge of v_k

Right edge of v_k
We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_d = \max\{v_{k_1}, \ldots, v_{k_l}\}$

$k_1 < k_2 < \cdots < k_d$ and $k_d > k_{d+1} > \cdots > k_l$

\mathcal{U}_{k_1}

left edge of v_k

\mathcal{U}_k

right edge of v_k

$k_l \geq 2$
We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_d = \max\{v_{k_1}, \ldots, v_{k_l}\}$

$k_1 < k_2 < \cdots < k_d$ and $k_d > k_{d+1} > \cdots > k_l$

$\left| k_l \right| \geq 2$
We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_d = \max\{v_{k_1} \ldots v_{k_l}\}$

$k_1 < k_2 < \cdots < k_d$ and $k_d > k_{d+1} > \cdots > k_l$

$(v_k, v_{k_i}), 2 \leq i \leq d - 1$ are red

$(v_k, v_{k_i}), d + 1 \leq i \leq l - 1$ are blue

edge (v_k, v_{k_d}) is either red or blue
We call T_b blue edges and T_r red edges.

Lemma 3

\(\{T_r, T_b\}\) is a regular edge labeling.

Proof:

\[k_d = \max\{ v_{k_1} \ldots v_{k_l} \}\]

\[k_1 < k_2 < \cdots < k_d \text{ and } k_d > k_{d+1} > \cdots > k_l\]

\[(v_{k}, v_{k_i}), 2 \leq i \leq d - 1 \text{ are red}\]

\[(v_{k}, v_{k_i}), d + 1 \leq i \leq l - 1 \text{ are blue}\]

$\text{edge } (v_{k_i}, v_{k_d}) \text{ is either red or blue}$
Rectangular Dual
Rectangular Dual
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

W-E net G_{W-E}
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

Algorithm Rectangular dual
Input: A PTP graph $G = (V, E)$

- Find a REL T_r, T_b of G;
- Construct a S-N net G_{S-N} of G (consists of T_r plus outer edges)
- Construct the dual G_{S-N}^* of G_{S-N} and compute a topological ordering f_{sn} of G_{S-N}^*
- For each vertex $v \in V$, let f and g be the face on the left and face on the right of v. Set $x_1(v) = f_{sn}(f)$ and $x_2(v) = f_{sn}(g)$.
- Define $x_1(v_N) = x_1(v_S) = 1$ and $x_2(v_N) = x_2(v_S) = \max f_{sn} - 1$
Algorithm Rectangular dual

Input: A PTP graph $G = (V, E)$

- Find a REL T_r, T_b of G;
- Construct a S-N net G_{S-N} of G (consists of T_r plus outer edges);
- Construct the dual G^\star_{S-N} of G_{S-N} and compute a topological ordering f_{sn} of G^\star_{S-N};
- For each vertex $v \in V$, let f and g be the face and face v. Set $x_1(v) = f_{sn}(f)$ and $x_2(v) = f_{sn}(g)$.
- Define $x_1(v_{N}) = x_1(v_{S}) = 1$ and $x_2(v_{N}) = x_2(v_{S}) = \max_{f_{sn}} - 1$.

Rectangular Dual

Algorithm Rectangular dual

Input: A PTP graph $G = (V, E)$

1. Find a REL T_r, T_b of G;
2. Construct a W-net G_{W-E} of G (consists of T_b plus outer edges);
3. Construct the dual G_{SN} of G_{SN} and compute a topological ordering f_{SN} of G_{SN};
4. For each vertex $v \in V$, let f and g be the face of v and face through v. Set $x_1(v) = f_{SN}(f)$ and $x_2(v) = f_{SN}(g)$.
5. Define and
Algorithm Rectangular dual

Input: A PTP graph $G = (V, E)$

- Find a REL T_r, T_b of G;
- Construct a W-E net G_{W-E} of G (consists of T_b plus outer edges);
- Construct the dual G^*_{W-E} and compute a topological ordering f_{we} of G^*_{W-E};
- For each vertex $v \in V$, let f and g be the face and face
 of v. Set $f = f_{sn}(f)$ and $g = f_{sn}(g)$.
- Define and
Rectangular Dual

Algorithm Rectangular dual
Input: A PTP graph \(G = (V, E) \)

- Find a REL \(T_r, T_b \) of \(G \);
- Construct a W-E net of \(G \) (consists of \(T_b \) plus outer edges)
- Construct the dual of \(G^* \) and compute a topological ordering \(f_{we} \) of \(G^*_W-E \)
- For each vertex \(v \in V \), let \(f \) and \(g \) be the face below and face above \(v \). Set \(y_1(v) = f_{SN}(f) \) and \(y_2(v) = f_{SN}(g) \).
- Define and
Algorithm Rectangular dual

Input: A PTP graph $G = (V, E)$

- Find a REL T_r, T_b of G;
- Construct a W-net G_{W-E} of G (consists of T_b plus outer edges);
- Construct the dual G^{*}_{W-E} of G_{W-E} and compute a topological ordering f_{we} of G^{*}_{W-E};
- For each vertex $v \in V$, let f and g be the face below and face above v. Set $y_1(v) = f_{sn}(f)$ and $y_2(v) = f_{sn}(g)$.
- Define $y_1(v_W) = y_1(s_E) = 0$ and $y_1(v_W) = y_1(s_E) = \max f_{we}$.
Rectangular Dual

Algorithm Rectangular dual
Input: A PTP graph $G = (V, E)$

- Find a REL T_r, T_b of G;
- Construct a W-E net G_{W-E} of G (consists of T_b plus outer edges)
- Construct the dual G^*_{W-E} of G_{W-E} and compute a topological ordering f_{we} of G^*_{W-E}
- For each vertex $v \in V$, let f and g be the face below and face above v. Set $y_1(v) = f_{sn}(f)$ and $y_2(v) = f_{sn}(g)$.
- Define $y_1(v_W) = y_1(s_E) = 0$ and $y_1(v_W) = y_1(s_E) = \max f_{we}$
- For each $v \in V$, assign a rectangle $R(v)$ bounded by x-coordinates $x_1(v), x_2(v)$ and y-coordinates $y_1(v), y_2(v)$.
Rectangular Dual
Algorithmen zur Visualisierung von Graphen

Tamara Mchedlidze

Institut für Theoretische Informatik
Lehrstuhl Algorithmik I

Rectangular Dual

$x_1(v_N) = 1, \ x_2(v_N) = 15$
$x_1(v_S) = 1, \ x_2(v_S) = 15$
$x_1(v_W) = 0, \ x_2(v_W) = 1$
$x_1(v_E) = 15, \ x_2(v_E) = 16$
$x_1(a) = 1, \ x_2(a) = 3$
$x_1(b) = 3, \ x_2(b) = 5$
$x_1(c) = 5, \ x_2(c) = 14$
$x_1(d) = 14, \ x_2(d) = 15$
$x_1(e) = 13, \ x_2(e) = 15$
Rectangular Dual

$x_1(v_N) = 1, \quad x_2(v_N) = 15$

$x_1(v_S) = 1, \quad x_2(v_S) = 15$

$x_1(v_W) = 0, \quad x_2(v_W) = 1$

$x_1(v_E) = 15, \quad x_2(v_E) = 16$

$x_1(a) = 1, \quad x_2(a) = 3$

$x_1(b) = 3, \quad x_2(b) = 5$

$x_1(c) = 5, \quad x_2(c) = 14$

$x_1(d) = 14, \quad x_2(d) = 15$

$x_1(e) = 13, \quad x_2(e) = 15$
Rectangular Dual

$x_1(v_N) = 1$, $x_2(v_N) = 15$
$x_1(v_S) = 1$, $x_2(v_S) = 15$
$x_1(v_W) = 0$, $x_2(v_W) = 1$
$x_1(v_E) = 15$, $x_2(v_E) = 16$
$x_1(a) = 1$, $x_2(a) = 3$
$x_1(b) = 3$, $x_2(b) = 5$
$x_1(c) = 5$, $x_2(c) = 14$
$x_1(d) = 14$, $x_2(d) = 15$
$x_1(e) = 13$, $x_2(e) = 15$
Rectangular Dual

\[x_1(v_N) = 1, \quad x_2(v_N) = 15 \]
\[x_1(v_S) = 1, \quad x_2(v_S) = 15 \]
\[x_1(v_W) = 0, \quad x_2(v_W) = 1 \]
\[x_1(v_E) = 15, \quad x_2(v_E) = 16 \]
\[x_1(a) = 1, \quad x_2(a) = 3 \]
\[x_1(b) = 3, \quad x_2(b) = 5 \]
\[x_1(c) = 5, \quad x_2(c) = 14 \]
\[x_1(d) = 14, \quad x_2(d) = 15 \]
\[x_1(e) = 13, \quad x_2(e) = 15 \]
Rectangular Dual

$x_1(v_N) = 1, x_2(v_N) = 15$
$x_1(v_S) = 1, x_2(v_S) = 15$
$x_1(v_W) = 0, x_2(v_W) = 1$
$x_1(v_E) = 15, x_2(v_E) = 16$
$x_1(a) = 1, x_2(a) = 3$
$x_1(b) = 3, x_2(b) = 5$
$x_1(c) = 5, x_2(c) = 14$
$x_1(d) = 14, x_2(d) = 15$
$x_1(e) = 13, x_2(e) = 15$
Rectangular Dual

$x_1(v_N) = 1, x_2(v_N) = 15$
$x_1(v_S) = 1, x_2(v_S) = 15$
$x_1(v_W) = 0, x_2(v_W) = 1$
$x_1(v_E) = 15, x_2(v_E) = 16$
$x_1(a) = 1, x_2(a) = 3$
$x_1(b) = 3, x_2(b) = 5$
$x_1(c) = 5, x_2(c) = 14$
$x_1(d) = 14, x_2(d) = 15$
$x_1(e) = 13, x_2(e) = 15$

$y_1(v_W) = 0, y_2(v_W) = 10$
$y_1(v_E) = 0, y_2(v_E) = 10$
$y_1(v_N) = 9, y_2(v_N) = 10$
$y_1(v_S) = 0, y_2(v_S) = 1$
$y_1(a) = 1, y_2(a) = 2$
$y_1(b) = 1, y_2(b) = 2$
$y_1(c) = 1, y_2(c) = 2$
$y_1(d) = 1, y_2(d) = 2$
$y_1(e) = 2, y_2(e) = 3$
Rectangular Dual

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1(v_N)$</td>
<td>1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>$x_1(v_S)$</td>
<td>1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>$x_1(v_W)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$x_1(v_E)$</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>$x_1(a)$</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$x_1(b)$</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$x_1(c)$</td>
<td>5</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>$x_1(d)$</td>
<td>14</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>$x_1(e)$</td>
<td>13</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>$y_1(v_W)$</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>$y_1(v_E)$</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>$y_1(v_N)$</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>$y_1(v_S)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$y_1(a)$</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$y_1(b)$</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$y_1(c)$</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$y_1(d)$</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$y_1(e)$</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Rectangular Dual

$x_1(v_N) = 1, \quad x_2(v_N) = 15$
$x_1(v_S) = 1, \quad x_2(v_S) = 15$
$x_1(v_W) = 0, \quad x_2(v_W) = 1$
$x_1(v_E) = 15, \quad x_2(v_E) = 16$
$x_1(a) = 1, \quad x_2(a) = 3$
$x_1(b) = 3, \quad x_2(b) = 5$
$x_1(c) = 5, \quad x_2(c) = 14$
$x_1(d) = 14, \quad x_2(d) = 15$
$x_1(e) = 13, \quad x_2(e) = 15$

$y_1(v_W) = 0, \quad y_2(v_W) = 10$
$y_1(v_E) = 0, \quad y_2(v_E) = 10$
$y_1(v_N) = 9, \quad y_2(v_N) = 10$
$y_1(v_S) = 0, \quad y_2(v_S) = 1$
$y_1(a) = 1, \quad y_2(a) = 2$
$y_1(b) = 1, \quad y_2(b) = 2$
$y_1(c) = 1, \quad y_2(c) = 2$
$y_1(d) = 1, \quad y_2(d) = 2$
$y_1(e) = 2, \quad y_2(e) = 3$
Rectangular Dual

In the following we prove that presented algorithm constructs a rectangular dual of G.

- Let f_1, \ldots, f_k be the faces of G^*_{S-N} (resp. G^*_{W-E}), enumerated according to st-numbering f_{sn} (resp. f_{we}).

- Let G^i_{S-N} (resp. G^i_{W-E}) denote the subgraph of G that is induced by vertices and edges of f_1, \ldots, f_i.

- We denote P_i (resp. Q_i) the right (resp. top) boundary of G^i_{S-N} (resp. G^i_{W-E}).
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

S-N net G_{S-N}

P_6
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

S-N net G_{S-N}

P_{13}
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

- Paths P_i and Q_j for any i, j (except for (a) $i = 0, j = 0$, (b)
 $i = \max f_{sn} - 1, j = 0$, (c) $i = 0, j = \max f_{we} - 1$, (d)
 $i = \max f_{sn} - 1, j = \max f_{we} - 1$) cross at exactly one vertex.
Rectangular Dual

- Paths P_i and Q_j for any i, j (except for (a) $i = 0, j = 0$, (b) $i = \max f_{sn} - 1, j = 0$, (c) $i = 0, j = \max f_{we} - 1$, (d) $i = \max f_{sn} - 1, j = \max f_{we} - 1$) cross at exactly one vertex.

Lemma 4

Let $v \in V$, f and g are the left and the right face of v. Let $x_1(v) = f_{sn}(f)$ and $x_2(v) = f_{sn}(g)$. Vertex v belongs to path P_i if and only if $x_1(v) \leq i \leq x_2(v) - 1$.

Proof...
Rectangular Dual

- Paths P_i and Q_j for any i, j (except for (a) $i = 0, j = 0$, (b) $i = \max f_{sn} - 1, j = 0$, (c) $i = 0, j = \max f_{we} - 1$, (d) $i = \max f_{sn} - 1, j = \max f_{we} - 1$) cross at exactly one vertex.

Lemma 4

Let $v \in V$, f and g are the left and the right face of v. Let $x_1(v) = f_{sn}(f)$ and $x_2(v) = f_{sn}(g)$. Vertex v belongs to path P_i if and only if $x_1(v) \leq i \leq x_2(v) - 1$.

Proof...

Lemma 5

Let $v \in V$, f and g are the faces below and above v in G_{W-E}. Let $y_1(v) = f_{we}(f)$ and $y_2(v) = f_{we}(g)$. Vertex v belongs to path Q_j if and only if $y_1(v) \leq j \leq y_2(v) - 1$.

Proof (identical)
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.
Rectangular Dual

Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof:
Rectangular Dual

Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there exists a vertex over this box: \(u \in P_i \cap Q_j \)
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is at most one vertex over this box.
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is at most one vertex over this box.
Lemma 6
The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is at most one vertex over this box

\[x_1(u) \leq i \text{ and } i+1 \leq x_2(u) \]
Rectangular Dual

Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is at most one vertex over this box

\[x_1(u) \leq i \text{ and } i+1 \leq x_2(u) \]

(Lemma 4)

\(u \) belongs to \(P_i \)
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is **at most one vertex** over this box

\[x_1(u) \leq i \text{ and } i+1 \leq x_2(u) \]

(Lemma 4)

\[u \text{ belongs to } P_i \]

Similarly: \(v \in P_i, u \in Q_j, v \in Q_j \).
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is **at most one vertex** over this box.

Paths P_i and Q_j intersect at two vertices u and v.

\[
x_1(u) \leq i \text{ and } i + 1 \leq x_2(u)
\]

(Lemma 4)

u belongs to P_i

Similarly: $v \in P_i$, $u \in Q_j$, $v \in Q_j$.

\[
x_1(v) \quad x_2(v)
\]

\[
x_1(u) \quad x_2(u)
\]
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is **at most one vertex** over this box

\[
x_1(u) \leq i \text{ and } i + 1 \leq x_2(u)
\]

(Lemma 4)

\[u \text{ belongs to } P_i\]

Similarly: \(v \in P_i, u \in Q_j, v \in Q_j\).

Paths \(P_i\) and \(Q_j\) intersect at two vertices \(u\) and \(v\).

Which is a contradiction to the property of paths \(P_i, Q_j\) except for the cases when:

(a) \(i = 0, j = 0\), (b) \(i = \max f_{sn} - 1, j = 0\), (c) \(i = 0, j = \max f_{we} - 1\), (d) \(i = \max f_{sn} - 1, j = \max f_{we} - 1\) (corner boxes).
Lemma 7

Let G_{S-N} and G_{W-E}. The following are true:

- If $(u, v) \in G_{W-E}$ then $x_2(u) = x_1(v)$;
- If there exist a directed path from u to v in G_{W-E} containing at least two edges, then $x_2(u) < x_1(v)$;
- If $(u, v) \in G_{S-N}$ then $y_2(u) = y_1(v)$;
- If there exist a directed path from u to v in G_{S-N} containing at least two edges, then $y_2(u) < y_1(v)$.

Proof...
Lemma 7

Let G_{S-N} and G_{W-E}. The following are true:

- If $(u, v) \in G_{W-E}$ then $x_2(u) = x_1(v)$;
- If there exist a directed path from u to v in G_{W-E} containing at least two edges, then $x_2(u) < x_1(v)$;
- If $(u, v) \in G_{S-N}$ then $y_2(u) = y_1(v)$;
- If there exist a directed path from u to v in G_{S-N} containing at least two edges, then $y_2(u) < y_1(v)$.

Proof...

Lemma 8

The assignment provided by the algorithm has the following property: rectangles assigned to vertices u and v have a common segment if and only if there exists edge (u, v) in the graph.

Proof:
Assume $R(u)$ and $R(v)$ have a common boundary.
Assume $R(u)$ and $R(v)$ have a common boundary.

$x_1(v) \leq i$, $i + 1 \leq x_2(v)$ and $x_1(u) \leq i$, $i + 1 \leq x_2(u)$
Assume $R(u)$ and $R(v)$ have a common boundary.

\[x_1(v) \leq i, \quad i + 1 \leq x_2(v) \quad \text{and} \quad x_1(u) \leq i, \quad i + 1 \leq x_2(u) \]

(Lemma 4)

u, v belong to P_i
Assume $R(u)$ and $R(v)$ have a common boundary.

\[
x_1(v) \leq i, \ i + 1 \leq x_2(v) \text{ and } x_1(u) \leq i, \ i + 1 \leq x_2(u)
\]

(Lemma 4)

\[u, v \text{ belong to } P_i\]

If path between u and v has at least 2 edges, then by Lemma 7,
\[y_2(u) < y_1(v)\]
Rectangular Dual

Assume $R(u)$ and $R(v)$ have a common boundary.

If path between u and v has at least 2 edges, then by Lemma 7, $y_2(u) < y_1(v)$

A contradiction to the hypothesis!
Rectangular Dual

- Assume there exists an edge \((u, v) \in G_{W-E}\).

- Let \(Q_j\) be the path of \(G_{W-E}\) where \((u, v)\) belongs. By Lemma 5, \(y_1(u) \leq j\), \(j + 1 \leq y_2(u)\) and \(y_1(v) \leq j\), \(j + 1 \leq y_2(v)\).

- By Lemma 7, \(x_2(u) = x_1(v)\).
Assume there exists an edge \((u, v) \in G_{W-E}\).

Let \(Q_j\) be the path of \(G_{W-E}\) where \((u, v)\) belongs. By Lemma 5, \(y_1(u) \leq j\), \(j + 1 \leq y_2(u)\) and \(y_1(v) \leq j\), \(j + 1 \leq y_2(v)\).

By Lemma 7, \(x_2(u) = x_1(v)\).
Assume there exists an edge \((u, v) \in G_{W-E}\).

Let \(Q_j\) be the path of \(G_{W-E}\) where \((u, v)\) belongs. By Lemma 5, \(y_1(u) \leq j, j + 1 \leq y_2(u)\) and \(y_1(v) \leq j, j + 1 \leq y_2(v)\).

By Lemma 7, \(x_2(u) = x_1(v)\).

Lemma 8 is proved!
Rectangular Dual

Theorem

Every PTP graph G has a rectangular dual which can be computed in linear time.
Theorem

Every PTP graph G has a rectangular dual which can be computed in linear time.

- Compute a planar embedding of G
- Compute a revised canonical ordering of G
- Traverse the graph and color the edges, construct G_{S-N} and G_{E-W}
- Construct the duals G^*_{S-N} and G^*_{E-W} of G_{S-N} and G_{E-W}, respectively
- Compute a topological ordering of G^*_{S-N} and G^*_{E-W}
- Assign coordinates to the rectangles representing vertices.