Algorithms for graph visualization

Incremental algorithms. Orthogonal drawing.
Definition: Orthogonal Drawing

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if its vertices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.
Definition

Definition: Orthogonal Drawing

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if its vertices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.
Definition: Orthogonal Drawing

A drawing Γ of a graph $G = (V, E)$ is called \textit{orthogonal} if its vertices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

- Edges lie on the grid, i.e., \textit{bends} lie on grid points.
Definition: Orthogonal Drawing

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if its vertices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

- Edges lie on the grid, i.e., **bends** lie on grid points
- Degree of each vertex has to be at most 4
Definition: *st*-ordering

An *st*-ordering of a graph $G = (V, E)$ is an ordering of the vertices \{v_1, v_2, \ldots, v_n\}, such that for each j, $2 \leq j \leq n - 1$, vertex v_j has at least one neighbour v_i with $i < j$, and at least one neighbour v_k with $k > j$.

Definition: st-ordering

An *st-ordering* of a graph $G = (V, E)$ is an ordering of the vertices \{\(v_1, v_2, \ldots, v_n\}\), such that for each \(j, 2 \leq j \leq n - 1\), vertex \(v_j\) has at least one neighbour \(v_i\) with \(i < j\), and at least one neighbour \(v_k\) with \(k > j\).

![Example of an st-ordering](image)
**Definition: **st-ordering

An **st-ordering** of a graph \(G = (V, E) \) is an ordering of the vertices \(\{v_1, v_2, \ldots, v_n\} \), such that for each \(j, 2 \leq j \leq n - 1 \), vertex \(v_j \) has at least one neighbour \(v_i \) with \(i < j \), and at least one neighbour \(v_k \) with \(k > j \).

Theorem [Lempel, Even, Cederbaum, 66]

Let \(G \) be a biconnected graph \(G \) and let \(s, t \) be vertices of \(G \). \(G \) has an st-ordering such that \(s \) appears as the first and \(t \) as the last vertex in this ordering.

Example of an **st-ordering**
Biedl & Kant Orthogonal Drawing Algorithm
Biedl & Kant Orthogonal Drawing Algorithm

first vertex
Biedl & Kant Orthogonal Drawing Algorithm

first vertex
Biedl & Kant Orthogonal Drawing Algorithm

first vertex
Biedl & Kant Orthogonal Drawing Algorithm

first vertex indegree = 1
Biedl & Kant Orthogonal Drawing Algorithm

first vertex indegree = 1
Biedl & Kant Orthogonal Drawing Algorithm

first vertex

indegree = 1

indegree = 2
Biedl & Kant Orthogonal Drawing Algorithm

first vertex

indegree = 1

indegree = 2
Biedl & Kant Orthogonal Drawing Algorithm

first vertex

indegree = 1

indegree = 2

indegree = 3
Biedl & Kant Orthogonal Drawing Algorithm

first vertex
indegree = 1
indegree = 2
indegree = 3
Lemma (Area of Biedl & Kant drawing)

The width is \(m - n + 1 \) and the height at most \(n + 1 \).
Lemma (Area of Biedl & Kant drawing)

The width is $m - n + 1$ and the height at most $n + 1$.

Proof

Width: At each step we increase the number of columns by $\text{outdeg}(v_i) - 1$, if $i > 1$ and $\text{outdeg}(v_1)$ for v_1.
Lemma (Area of Biedl & Kant drawing)

The width is $m - n + 1$ and the height at most $n + 1$.

Proof

- **Width**: At each step we increase the number of columns by $\text{outdeg}(v_i) - 1$, if $i > 1$ and $\text{outdeg}(v_1)$ for v_1.

- **Height**: Every vertex except for v_2 is placed at a new row. Vertex v_n uses one more row if $\text{indeg}(v_n) = 4$.

Biedl & Kant Orthogonal Drawing Algorithm

Lemma (Area of Biedl & Kant drawing)

The width is \(m - n + 1 \) and the height at most \(n + 1 \).

Proof

- **Width:** At each step we increase the number of columns by
 \(\text{outdeg}(v_i) - 1 \), if \(i > 1 \) and \(\text{outdeg}(v_1) \) for \(v_1 \).

- **Height:** Every vertex except for \(v_2 \) is placed at a new row. Vertex \(v_n \) uses one more row if \(\text{indeg}(v_n) = 4 \).

Lemma (Number of bends in Biedl & Kant drawing)

There are at most \(2m - 2n + 4 \) bends.
Lemma (Area of Biedl & Kant drawing)

The width is $m - n + 1$ and the height at most $n + 1$.

Proof

- **Width:** At each step we increase the number of columns by $\text{outdeg}(v_i) - 1$, if $i > 1$ and $\text{outdeg}(v_1)$ for v_1.

- **Height:** Every vertex except for v_2 is placed at a new row. Vertex v_n uses one more row if $\text{indeg}(v_n) = 4$.

Lemma (Number of bends in Biedl & Kant drawing)

There are at most $2m - 2n + 4$ bends.

Proof

- Each vertex $v_i, i \neq 1, n$, introduces $\text{indeg}(v_i) - 1$ and $\text{outdeg}(v_i) - 1$ new bends.
<table>
<thead>
<tr>
<th>Lemma (Number of bends per edge in Biedl & Kant drawing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All edges but one bent at most twice. The exceptional edge bents at most three times.</td>
</tr>
</tbody>
</table>
Lemma (Number of bends per edge in Biedl & Kant drawing)

All edges but one bent at most twice. The exceptional edge bends at most three times.

Proof

Let \((v_i, v_j), i < j, i, j \neq 1, n.\) Then \(\text{outdeg}(v_i), \text{indeg}(v_j) \leq 3.\) i.e \((v_i, v_j)\) gets at most one bend after placement of \(v_i\) and at most one before placement of \(v_j.\) Edges outgoing from \(v_1\) can me made 2-bend by using the column below \(v_1\) for the edge \((v_1, v_2).\)
Biedl & Kant Orthogonal Drawing Algorithm

Lemma (Number of bends per edge in Biedl & Kant drawing)
All edges but one bent at most twice. The exceptional edge bends at most three times.

Proof
Let \((v_i, v_j), i < j, i, j \neq 1, n\). Then \(\text{outdeg}(v_i), \text{indeg}(v_j) \leq 3\). I.e \((v_i, v_j)\) gets at most one bend after placement of \(v_i\) and at most one before placement of \(v_j\). Edges outgoing from \(v_1\) can be made 2-bend by using the column below \(v_1\) for the edge \((v_1, v_2)\).

Lemma (planarity)
For planar embedded graphs, with \(v_1\) and \(v_n\) on the outer face, the algorithm produces a planar drawing.
Lemma (Number of bends per edge in Biedl & Kant drawing)

All edges but one bent at most twice. The exceptional edge bends at most three times.

Proof

- Let \((v_i, v_j), i < j, i, j \neq 1, n\). Then \(\text{outdeg}(v_i), \text{indeg}(v_j) \leq 3\). I.e \((v_i, v_j)\) gets at most one bend after placement of \(v_i\) and at most one before placement of \(v_j\). Edges outgoing from \(v_1\) can me made 2-bend by using the column below \(v_1\) for the edge \((v_1, v_2)\).

Lemma (planarity)

For planar embedded graphs, with \(v_1\) and \(v_n\) on the outer face, the algorithm produces a planar drawing.

Proof

- Consider a planar embedding of \(G\). Let \(v_1, \ldots, v_n\) be an \(st\)-ordering of \(G\). Let \(G_i\) be the graph induced by \(v_1, \ldots, v_i\). We will prove later that if \(G\) is planar, vertex \(v_{i+1}\) lies on the outer face of \(G_i\).
Lemma (planarity)

For planar embedded graphs, with \(v_1 \) and \(v_n \) on the outer face, the algorithm produces a planar drawing.

Proof (Continuation)

Let \(E_i \) be the edges outgoing from the vertices of \(G_i \) in the order they appear in the embedded \(G \).
Lemma (planarity)
For planar embedded graphs, with v_1 and v_n on the outer face, the algorithm produces a planar drawing.

Proof (Continuation)
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- By induction we can show that edges of E_i appear in the same order in the orthogonal drawing of G_i.
Lemma (planarity)

For planar embedded graphs, with v_1 and v_n on the outer face, the algorithm produces a planar drawing.

Proof (Continuation)

- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- By induction we can show that edges of E_i appear in the same order in the orthogonal drawing of G_i.
- Since v_{i+1} is on the outer face of G_i, it can be placed without creating any crossing.
Lemma (planarity)

For planar embedded graphs, with v_1 and v_n on the outer face, the algorithm produces a planar drawing.

Proof (Continuation)

- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- By induction we can show that edges of E_i appear in the same order in the orthogonal drawing of G_i.
- Since v_{i+1} is on the outer face of G_i, it can be placed without creating any crossing.
Lemma (planarity)
For planar embedded graphs, with v_1 and v_n on the outer face, the algorithm produces a planar drawing.

Proof (Continuation)
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- By induction we can show that edges of E_i appear in the same order in the orthogonal drawing of G_i.
- Since v_{i+1} is on the outer face of G_i, it can be placed without creating any crossing.
Theorem (Biedl & Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing such that:

- Area is $(m - n + 1) \times n + 1$
- Each edge (except maybe for one) has at most 2 bends
- The exceptional edge has at most 3 bends
- The total number of bends is at most $2m - 2n + 4$
- If G is plane, the orthogonal drawing is planar
- Finally, provided an st-ordering such a drawing can be constructed in $O(n)$ time.
Theorem (Biedl & Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing such that:
- Area is $(m - n + 1) \times n + 1$
- Each edge (except maybe for one) has at most 2 bends
- The exceptional edge has at most 3 bends
- The total number of bends is at most $2m - 2n + 4$
- If G is plane, the orthogonal drawing is planar
- Finally, provided an st-ordering such a drawing can be constructed in $O(n)$ time.

For the construction we have used an st-ordering of G!
Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called source (resp. sink) of G if it has only outgoing (resp. incoming) edges. A directed acyclic graph with one source and one sink is called st-digraph.
Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incomming) edges. A directed acyclic graph with one source and one sink is called **st-digraph**.

Definition: topological ordering

A **topological ordering** of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), $\text{number}(v) > \text{number}(u)$.
Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incoming) edges. A directed acyclic graph with one source and one sink is called **st-digraph**.

Definition: topological ordering

A **topological ordering** of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), $\text{number}(v) > \text{number}(u)$.

![Diagram](image_url)
Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incoming) edges. A directed acyclic graph with one source and one sink is called **st-digraph**.

Definition: topological ordering

A **topological ordering** of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), $\text{number}(v) > \text{number}(u)$.
st-digraph, topological ordering

Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incoming) edges. A directed acyclic graph with one source and one sink is called **st-digraph**.

Definition: topological ordering

A **topological ordering** of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), $\text{number}(v) > \text{number}(u)$.

How to construct a topological ordering?
Construction of an st-ordering:

G is undirected biconnected graph
Construction of an \textit{st}-ordering:

G is undirected \textit{biconnected} graph

Orient edges of G
Construction of an \textit{st}-ordering:

\begin{itemize}
 \item \textit{G} is undirected biconnected graph
 \item Orient edges of \textit{G}
 \item \textit{G'} is an \textit{st}-digraph
\end{itemize}
Construction of an st-ordering:

G is an undirected, biconnected graph

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Orient edges of G
Construction of an \(st\)-ordering:

- \(G\) is undirected biconnected graph
- Orient edges of \(G\)
- \(G'\) is an \(st\)-digraph
- Let \(v_1, \ldots, v_n\) be a topological ordering of \(G'\)

Since \(G'\) is an \(st\)-digraph, for \(v_i\) (\(i \neq 1, n\)) \(\exists (v_j, v_i)\) and \((v_i, v_k)\). By the property of topological ordering \(j < i\) and \(i < k\).
Construction of an st-ordering:

G is undirected biconnected graph

Orient edges of G

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i $(i \neq 1, n)$ there exist (v_j, v_i) and (v_i, v_k). By the property of topological ordering $j < i$ and $i < k$.

v_1, \ldots, v_n is an st-ordering of G
Construction of an st-ordering:

- **G** is an undirected biconnected graph
- Orient edges of **G**
- **G′** is an st-digraph
- Let **v_1, ..., v_n** be a topological ordering of **G′**

Since **G′** is an st-digraph, for **v_i** (i ≠ 1, n) ∃ (v_j, v_i) and (v_i, v_k). By the property of topological ordering j < i and i < k.

v_1, ..., v_n is an st-ordering of **G**

EXAMPLE
Construction of an \textit{st}-ordering:

\textit{G} is undirected biconnected graph \hspace{2cm} \text{HOW?} \hspace{2cm} \textit{G}' is an \textit{st}-digraph \hspace{2cm} Let \(v_1, \ldots, v_n\) be a topological ordering of \textit{G}'

Since \textit{G}' is an \textit{st}-digraph, for \(v_i\) \((i \neq 1, n) \exists (v_j, v_i)\) and \((v_i, v_k)\). By the property of topological ordering \(j < i\) and \(i < k\).

\(v_1, \ldots, v_n\) is an \textit{st}-ordering of \textit{G}

\textbf{EXAMPLE}
Definition: Ear decomposition

An ear decomposition \(D = (P_0, \ldots, P_r) \) of an undirected graph \(G = (V, E) \) is a partition of \(E \) into an ordered collection of edge disjoint paths \(P_0, \ldots, P_r \), such that:

- \(P_0 \) is an edge
- \(P_0 \cup P_1 \) is a simple cycle
- both end-vertices of \(P_i \) belong to \(P_0 \cup \cdots \cup P_{i-1} \)
- no internal vertex of \(P_i \) belong to \(P_0 \cup \cdots \cup P_{i-1} \)

An ear decomposition of open if \(P_0, \ldots, P_r \) are simple paths.
Lemma (Ear decomposition)
Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.
Lemma (Ear decomposition)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

Proof

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
Lemma (Ear decomposition)
Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

Proof
- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_0, \ldots, P_i are ears.
Lemma (Ear decomposition)

Let \(G = (V, E) \) be a biconnected graph \(G \) and let \((s, t) \in E\). \(G \) has an open ear decomposition \((P_0, \ldots, P_r)\), where \(P_0 = (s, t) \).

Proof

- Let \(P_0 = (s, t) \) and \(P_1 \) be path between \(s \) and \(t \), it exists since \(G \) is biconnected.
- Induction hypothesis: \(P_0, \ldots, P_i \) are ears.
- Let \((u, v)\) be an edge in \(G \) such that \(u \in P_0 \cup \cdots \cup P_i \) and \(v \not\in P_0 \cup \cdots \cup P_i \). Let \((u, u')\), such that \(u' \in P_0 \cup \cdots \cup P_i \). Let \(P \) be a path between \(v \) and \(u' \), not passing through \(u \). \(P \) exists since \(G \) is biconnected.
st-ordering

Lemma (Ear decomposition)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

Proof

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.

- Induction hypothesis: P_0, \ldots, P_i are ears.

- Let (u, v) be an edge in G such that $u \in P_0 \cup \cdots \cup P_i$ and $v \notin P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.
Lemma (Ear decomposition)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

Proof

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.

- Induction hypothesis: P_0, \ldots, P_i are ears.

- Let (u, v) be an edge in G such that $u \in P_0 \cup \cdots \cup P_i$ and $v \notin P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.

- Let w be the first vertex of P that is contained in $P_0 \cup \cdots \cup P_i$. Set $P_{i+1} = (u, v) \cup P(v - \cdots - w)$.

\[P_0 \cup \cdots \cup P_i \]

\[P \]

\[u' \]

\[v \]

\[w \]
Lemma (Ear decomposition)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r), where $P_0 = (s, t)$.

Proof

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_0, \ldots, P_i are ears.
- Let (u, v) be an edge in G such that $u \in P_0 \cup \cdots \cup P_i$ and $v \not\in P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.
- Let w be the first vertex of P that is contained in $P_0 \cup \cdots \cup P_i$. Set $P_{i+1} = (u, v) \cup P(v \cdots \cdots w)$.
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.
Lemma \((st\text{-}orientation)\)

Let \(G = (V, E)\) be a biconnected graph \(G\) and let \((s, t) \in E\). There is an orientation \(G'\) of \(G\) which represents an \(st\)-digraph. \(G'\) is called \(st\)-orientation of \(G\).

Proof

- Let \(D = (P_0, \ldots, P_r)\) be an ear decomposition of \(G = (V, E)\). Notice that \(G = P_0 \cup \cdots \cup P_r\).

- Let \(G_i = P_0 \cup \cdots \cup P_i\). We prove that \(G_i\) has an \(st\)-orientation by induction on \(i\).
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

![Diagram](https://via.placeholder.com/150)
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

![Diagram of st-orientation](image)
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

![Diagram of a biconnected graph with an ear decomposition and an st-orientation](image-url)
Lemma (\textit{st}-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an \textit{st}-digraph. G' is called \textit{st}-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an \textit{st}-orientation by induction on i.

- Distinguish two cases based on whether u and v are connected by a directed path or not.
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

 - Distinguish two cases based on whether u and v are connected by a directed path or not.
st-ordering

Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

- Distinguish two cases based on whether u and v are connected by a directed path or not.
Lemma (st-orientation)

Let $G = (V, E)$ be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \ldots, P_r)$ be an ear decomposition of $G = (V, E)$. Notice that $G = P_0 \cup \cdots \cup P_r$.

- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

- Distinguish two cases based on whether u and v are connected by a directed path or not.
Construction of an st-ordering:

G is undirected biconnected graph

HOW?

Orient edges of G

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i ($i \neq 1, n$) $\exists (v_j, v_i)$ and (v_i, v_k). By the property of topological ordering $j < i$ and $i < k$.

v_1, \ldots, v_n is an st-ordering of G
Construction of an st-ordering:

G is an undirected biconnected graph

HOW?

Orient edges of G

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i

$(i \neq 1, n) \exists (v_j, v_i)$

and (v_i, v_k). By the property of topological ordering $j < i$ and $i < k$.

v_1, \ldots, v_n is an st-ordering of G.

Ear decomposition of G
Construction of an \(st \)-ordering:

\(G \) is undirected biconnected graph

\(G' \) is an \(st \)-digraph

Let \(v_1, \ldots, v_n \) be a topological ordering of \(G' \)

Since \(G' \) is an \(st \)-digraph, for \(v_i \)

\((i \neq 1, n) \exists (v_j, v_i) \)

and \((v_i, v_k)\). By the property of topological ordering \(j < i \) and

\(i < k \).

\(v_1, \ldots, v_n \) is an \(st \)-ordering of \(G \)
Construction of an \(st\)-ordering:

\(G\) is undirected biconnected graph

HOW?

Orient edges of \(G\)

\(G'\) is an \(st\)-digraph

Let \(v_1, \ldots, v_n\) be a topological ordering of \(G'\)

Since \(G'\) is an \(st\)-digraph, for \(v_i\) \((i \neq 1, n)\) \(\exists (v_j, v_i)\) and \((v_i, v_k)\). By the property of topological ordering \(j < i\) and \(i < k\).

\(v_1, \ldots, v_n\) is an \(st\)-ordering of \(G\)

Ear decomposition of \(G\)

Orient ears
Direct construction of st-ordering from ear decomposition
Direct construction of st-ordering from ear decomposition

- We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.

We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.

- For G_1, let $P_1 = \{u_1, \ldots, u_p\}$, here $u_1 = s$ and $u_p = t$. The sequence $L = \{u_1, \ldots, u_p\}$ is an st-ordering of G_1.

Assume that L contains an st-ordering of G_i and let ear $P_{i+1} = \{v_1, \ldots, v_q\}$. We insert vertices v_1, \ldots, v_q to L after vertex v_1.

- Why this is an st-ordering?

Let G'_i be an st-orientation of G_i as constructed in the previous proof. L is a topological ordering of G'_i and therefore an st-ordering of G_i (other argument?)
Direct construction of \textit{st}-ordering from ear decomposition

- We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.

- For G_1, let $P_1 = \{u_1, \ldots, u_p\}$, here $u_1 = s$ and $u_p = t$. The sequence $L = \{u_1, \ldots, u_p\}$ is an \textit{st}-ordering of G_1.
Direct construction of \(st \)-ordering from ear decomposition

- We construct it incrementally, considering \(G_i = P_0 \cup \cdots \cup P_i, i = 0, \ldots, r \).

- For \(G_1 \), let \(P_1 = \{u_1, \ldots, u_p\} \), here \(u_1 = s \) and \(u_p = t \). The sequence \(L = \{u_1, \ldots, u_p\} \) is an \(st \)-ordering of \(G_1 \).

- Assume that \(L \) contains an \(st \)-ordering of \(G_i \) and let ear \(P_{i+1} = \{v_1, \ldots, v_q\} \). We insert vertices \(v_1, \ldots, v_q \) to \(L \) after vertex \(v_1 \).
Direct construction of \(st \)-ordering from ear decomposition

- We construct it incrementally, considering \(G_i = P_0 \cup \cdots \cup P_i, \ i = 0, \ldots, r \).

- For \(G_1 \), let \(P_1 = \{u_1, \ldots, u_p\} \), here \(u_1 = s \) and \(u_p = t \). The sequence \(L = \{u_1, \ldots, u_p\} \) is an \(st \)-ordering of \(G_1 \).

- Assume that \(L \) contains an \(st \)-ordering of \(G_i \) and let ear \(P_{i+1} = \{v_1, \ldots, v_q\} \). We insert vertices \(v_1, \ldots, v_q \) to \(L \) after vertex \(v_1 \).
Direct construction of \textit{st}-ordering from ear decomposition

- We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.

- For G_1, let $P_1 = \{u_1, \ldots, u_p\}$, here $u_1 = s$ and $u_p = t$. The sequence $L = \{u_1, \ldots, u_p\}$ is an \textit{st}-ordering of G_1.

- Assume that L contains an \textit{st}-ordering of G_i and let ear $P_{i+1} = \{v_1, \ldots, v_q\}$. We insert vertices v_1, \ldots, v_q to L after vertex v_1.

- \textbf{Why this is an \textit{st}-ordering?} Let G'_{i+1} be an \textit{st}-orientation of G_i as constructed in the previous proof. L is a topological ordering of G'_{i+1} and therefore an \textit{st}-ordering of G_i (other argument?)
Algorithm: \textit{st}-ordering (example)
(Implementation details - Based on DFS)
Algorithm: st-ordering (example)
(Implementation details - Based on DFS)
Algorithm: \textit{st}-ordering (example)
(Implementation details - Based on DFS)
Algorithm: st-ordering (example)
(Implementation details - Based on DFS)
Algorithm: \(st\)-ordering (example)
(Implementation details - Based on DFS)
Algorithm: \textit{st}-ordering (example)

(Implementation details - Based on DFS)

\textbf{Algorithm: \textit{st}-ordering (example)}

\begin{itemize}
\item Start at \textit{s}
\item Visit \textit{b, f, g, t}
\end{itemize}
Algorithm: \textit{st-ordering} (example)

(Implementation details - Based on DFS)
Algorithm: st-ordering (example)
(Implementation details - Based on DFS)
Algorithm: \textit{st}-ordering (example)
(Implementation details - Based on DFS)

\begin{align*}
 s, b, f, g, h, t
\end{align*}
Algorithm: st-ordering (example)
(Implementation details - Based on DFS)

s, b, f, g, h, t
Algorithm: \textit{st}-ordering (example)

(Implementation details - Based on DFS)

\begin{itemize}
 \item \textit{st}-ordering (example)
 \item (Implementation details - Based on DFS)
\end{itemize}
Algorithm: \textit{st}-ordering \textit{(example)}
(Implementation details - Based on DFS)
st-ordering

Algorithm: st-ordering (example)
(Implementation details - Based on DFS)

Algorithm:
st-ordering (example)
(Implementation details - Based on DFS)
Algorithm: st-ordering (example)
(Implementation details - Based on DFS)

\[s, e, b, a, f, g, h, t \]
Algorithm: st-ordering (example)

(Implementation details - Based on DFS)

s, e, b, a, f, g, h, t
Algorithm: \(st \)-ordering (example)
(Implementation details - Based on DFS)

\[s, e, b, a, f, g, h, t \]
Algorithm: \textit{st}-ordering (example)

(Implementation details - Based on DFS)

\textit{s, e, b, a, f, c, d, g, h, t}
Algorithm \textit{st}-ordering

\textbf{Data:} Undirected biconnected graph $G = (V, E)$, edge \{s, t\} \in E

\textbf{Result:} List L of nodes representing an \textit{st}-ordering of G

\begin{algorithmic}
 \begin{verbatim}
 dfs(vertex v) begin
 \State $i \leftarrow i + 1$; $DFS[v] \leftarrow i$
 \While{there exists non-enumerated $e = \{v, w\}$} \Do
 \State $DFS[e] \leftarrow DFS[v];$
 \If{w not enumerated} \Then
 \State $CHILDEDGE[v] \leftarrow e; PARENT[w] \leftarrow v;$
 \State $dfs(w);$
 \Else \EndIf
 \State \{w, x\} \leftarrow $CHILDEDGE[w]; D[\{w, x\}] \leftarrow D[\{w, x\}] \cup \{e\}$;
 \If{$x \in L$} \Then
 \State \text{process_ears}(w \rightarrow x);
 \EndIf
 \EndWhile
 \end{verbatim}
 \begin{verbatim}
 begin
 initialize L as \{s, t\};
 $DFS[s] \leftarrow 1$; $i \leftarrow 1$; $DFS[\{s, t\}] \leftarrow 1$; $CHILDEDGE[s] \leftarrow \{s, t\}$;
 $dfs(t);$
 \end{verbatim}
\end{algorithmic}
Function `process_ears`:

```plaintext
process_ears(tree edge \( w \rightarrow x \)) begin
  foreach \( v \leftarrow w \in D[w \rightarrow x] \) do
    \( u \leftarrow v; \)
    while \( u \notin L \) do \( u \leftarrow PARENT[u]; \)
    \( P \leftarrow (u \ast \rightarrow v \leftarrow w); \)
    if \( w \rightarrow x \) is oriented from \( w \) to \( x \) (resp. from \( x \) to \( w \)) then
      orient \( P \) from \( w \) to \( u \) (resp. from \( u \) to \( w \));
      paste the inner nodes of \( P \) to \( L \)
      before (resp. after) \( u \);
    foreach tree edge \( w' \rightarrow x' \) of \( P \) do
      \( \text{process_ears}(w' \rightarrow x'); \)
    \( D[\{w, x\}] \leftarrow \emptyset; \)
```
Theorem

The described algorithm produces an st-ordering of a given biconnected graph $G = (V, E)$ in $O(E)$ time.
The described algorithm produces an \(st \)-ordering of a given biconnected graph \(G = (V, E) \) in \(O(E) \) time.

Lemma (Necessary for planarity of orthogonal drawing of planar graphs)

Let \(G \) be a plane graph and edge \((s, t)\) on the boundary of \(G \). Let \(s = v_1, v_2, \ldots, v_n = t \) be an \(st \)-ordering of \(G \). If \(G_i \) is the graph induced by the vertices \(v_1, \ldots, v_i \) then vertex \(v_{i+1} \) lies on the outer face of \(G_i \).

(Next exercise sheet)