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1 Introduction

In the last two decades, GPS navigation and map-based services have been gaining sophistication
and user base, with increasing digital map coverage and level of detail. This motivated research
in online route planning systems, with special focus on the fast computation of shortest paths.
These systems are usually highly specialized and separated from other online services. As many
services are built on top of databases and developed by database programmers, implementing
map-based services within databases is attractive. It would allow developers to leverage the
power and expressiveness of a database language (such as SQL) to create new types of online
services. The resulting systems would be easy to program, customize, and maintain.

A natural approach to route planning is to use one of various speedup techniques for Dijkstra’s
algorithm [15] recently developed by the algorithm engineering community (see [12] for a survey).
Given a source s and a destination t, the fastest techniques can find the exact shortest path in
a road network with tens of millions of vertices in a millisecond or less. This is achieved by
preprocessing the network for a few minutes (or hours) to generate auxiliary data that speeds
up queries. Any such technique can be implemented as an external distance oracle, a standalone
module that runs outside the database but can be called from SQL to compute the distance or
retrieve the shortest path between two points.

In a recent survey [36], Sankaranarayanan and Samet argue that such an external oracle is
not good enough, however. Instead, they propose to implement database distance oracles, which
can be stored and queried completely in SQL, with no external calls. This would have several
benefits. The database system automatically gives an external memory (and even distributed)
implementation of the algorithm, enabling applications that use more information than fits in
RAM. Having the preprocessed data directly in the database enables sophisticated queries (such as
nearest neighbors) to be handled much more efficiently than making repeated calls to an external
black-box distance oracle. Furthermore, additional constraints (such as “closest gas station open
now”) can be naturally expressed in SQL. Although many such problems can be solved efficiently
outside the database [9, 11, 12, 20, 28], external implementations are less portable, harder to
maintain, and very difficult to customize.

Unfortunately, translating any of the speedup techniques surveyed by Delling et al. [12] to
SQL is hard. They rely on sophisticated data structures (such as graphs and priority queues) that
cannot be implemented nearly as efficiently in databases [18]. The best previous database oracle
we are aware of is due to Sankaranarayanan and Samet [35]. On a graph with n vertices, it can
answer ε-approximate queries in O(log n) time after a preprocessing stage requiring O(nε−2) space
and Ω(n2) time. Their approach has two major shortcomings. First, the preprocessing requires
computing Ω(n) shortest path trees, which takes quadratic total time. Using the techniques they
suggest, this would take months on continental road networks, thus restricting the applicability
of their algorithm to relatively small networks (fewer than a hundred thousand vertices). Second,
it is approximate: the suggested driving route may deviate significantly from the optimum (by up
to 10% in their most common scenario), or a query for five nearby restaurants may not return the
closest one. If detected by users, even a few suboptimal outputs may undermine their confidence
in the entire system. Exact solutions are clearly preferred.

This paper closes the gap between external and database oracles by introducing HLDB,
the first approach that enables exact location services for road networks of continental size in
databases with no external calls. HLDB can answer spatial queries in real time, i.e., fast enough
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Figure 1: Labeling algorithm: the hubs of s are circles, and those of t crosses.

for interactive applications. HLDB is based on hub labels (HL) [1, 2, 3], a highly optimized
version of a labeling algorithm [19, 8] tailored to road networks. HL is conceptually simple.
During preprocessing, it creates distance labels associated with each vertex v in the network. A
distance label for v consists of a subset of vertices (hubs), together with the distances between
each of them and v. To find the distance from s to t, the query algorithm uses the fact that at
least one vertex on the shortest s–t path must appear (as a hub) in the labels for both s and t.
Figure 1 gives an example.

Our main conceptual contribution is to show that distance labels (as opposed to arbitrary
distance oracles) are a superior solution for implementing location services in databases. Distance
labels allow exact point-to-point queries to be stated entirely in terms of set operations, which
is not the case for arbitrary speedup techniques. HLDB queries can thus be implemented in
a straightforward and efficient way using only relational database operators (SQL statements).
Labels are also a natural fit to solve the well-known k closest points of interest (or k-nearest neigh-
bors) problem [7]. In addition, we introduce new algorithmic techniques to efficiently implement
even more sophisticated location services, such as k best via points (or k-path nearest neighbors),
ride sharing, and point of interest prediction. Unlike any previous approach, the asymptotic run-
ning time of HLDB for these queries does not depend on the number of acceptable candidates
(points of interest) in the system.

Besides its flexibility, a crucial advantage of HLDB over previous database distance oracles
is that it is exact—it always finds the shortest path, and not just approximations. Moreover,
HLDB queries are very efficient, since they are based on HL, the fastest known external distance
oracle algorithm for road networks.

In short, HLDB is the first truly practical algorithm to handle exact location services within
databases. It is efficient, with low preprocessing effort and real-time queries. It is portable
and easy to use: with queries implemented entirely within the database, it can exploit the full
expressive power of SQL. Finally, it is extensible: with the concepts of hubs and labels, it naturally
supports sophisticated queries (beyond simple distance oracles) within the database with no loss
in asymptotic performance.

The remainder of this paper is organized as follows. Section 2 presents the background concepts
on which HLDB builds. Section 3 introduces the basic setup, including label representation, point-
to-point distance queries, and efficient approaches to store and retrieve the actual sequence of arcs
on the shortest path. Section 4 shows how to extend the basic label-based approach to enable
a rich set of spatial operations, including standard nearest neighbor queries (such as finding the
closest restaurant), as well as more sophisticated ones (such as finding the best gas station on the
way home that accepts credit cards). Finally, Section 5 presents detailed experimental evidence
that our approach is indeed practical. Implemented in SQL within a standard relational database,
HLDB queries run in milliseconds on continental road networks, and always find exact solutions.
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1.1 Related Work

We now present a brief overview of the literature on distance oracles (both database and external)
and related problems. Computing distances (finding shortest paths) on spatial networks is a classic
problem. Dijkstra’s algorithm [15] can solve it in essentially linear time [23], but is still too slow
for many applications on large networks. This has motivated the study of acceleration techniques,
which use information gathered during a preprocessing stage to speed up queries.

The traditional approach to database oracles is to use the associated geometric information
(such as coordinates). Such techniques have indeed been the main focus of the database com-
munity [30, 34, 35, 37]. The most successful previous database oracle, due to Sankaranarayanan
and Samet [35], is based on the observation that if two clusters of vertices are sufficiently far
apart, then distances between pairs of points in different clusters are similar. By formalizing this
observation, their oracle (pathDistance) can answer ε-approximate queries in O(log n) time using
O(nε−2) space. They also show how to use the oracle to implement more sophisticated queries,
such as k-nearest neighbors. Building the oracle requires computing Ω(n) shortest path trees in
the graph, in Ω(n2) total time. As a result, the oracle can only be evaluated on rather small in-
stances (with fewer than 100 000 vertices, the size of a medium city). Combined with the fact that
the oracle size is only practical for large ε, this approach is not feasible for real-life applications
on inputs of continental size. An advantage of this approach is that queries can be implemented
entirely in SQL.

If one is willing to use a graph to find point-to-point shortest paths (outside the database),
one can obtain much better results [1, 2, 10, 12]. The best methods have fast preprocessing, low
space overhead, and real-time queries. They can easily handle continental road networks with
tens of millions of vertices, and find provably optimal shortest paths.

Perhaps the most important speedup technique is sparsification, which uses the fact that
road networks have strong hierarchies. Algorithms such as highway hierarchies (HH) [32], con-
traction hierarchies (CH) [22], and reach-based routing (RE) [25] run a bidirectional version of
Dijkstra’s algorithm, but prune unimportant vertices as the searches move farther from the source
and the target. To ensure optimality, the preprocessing stage measures the importance of each
vertex according to a mathematical definition. Another speedup technique is transit node rout-
ing (TNR) [4]. During preprocessing, it computes a large table with the distances between the
most important vertices in the graph, enabling long-range queries to be answered with a few
table lookups. Local queries must still use a standard Dijkstra-based algorithm, such as CH. By
combining sparsification with goal-direction techniques (such as A∗ search [24] or arc flags [26]),
which guide the search towards the target using information gathered during preprocessing, fur-
ther speedups are possible [5, 25].

Many of these techniques perform well in practice and found their way into production systems,
but no theoretical justification for their good performance was known. Recently, Abraham et
al. [3] proved that variants of CH and RE have sublinear query bounds on graphs (such as
road networks) with small highway dimension, a new concept they introduced. They showed even
better bounds for a labeling algorithm [19]. Two follow-up papers [1, 2] introduced HL, a practical
implementation of the labeling algorithm that has the fastest known queries on continental road
networks: less than one microsecond on a modern server.

Other approaches offer different trade-offs between preprocessing time, space usage, and query
times. In fact, several algorithms (including TNR, CH, arc flags, HH, RE, and CRP [10], which is
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partition-based) are fast enough to implement external distance oracles, answering exact queries
in a few milliseconds (or less) on continental road networks. Besides having the fastest queries,
this paper shows that HL has a crucial advantage for database applications: its query is a simple
set operation (pick the minimum element in the intersection of two sets), and can be naturally
expressed in SQL. All other algorithms need more complicated logic and data structures (even
TNR, because of local queries), which makes it hard to use them as database oracles.

Extended query scenarios, like finding the k-closest points of interest (or neighbors) to a vertex
or to a whole path, have motivated extensive research in the database community [6, 7, 27, 30, 34],
but these techniques are either approximate or only applicable to small road networks (or both).
Many of these applications have external (non-SQL) solutions [20] based on the fast computation of
of one-to-all [9], one-to-many [11], and many-to-many [28] shortest paths. One of our contributions
is to show how to incorporate (and extend) these ideas within HLDB, enabling their use with
SQL.

2 Background

This section introduces definitions and notation used in the rest of the paper. The point-to-point
shortest path problem takes as input a directed graph G = (V,A), with a nonnegative length
function `(v, w) associated to each arc (v, w) ∈ A. Given a source s and a target t, we must find
the length dist(s, t) of the shortest path in G from s to t. A well-known solution is Dijkstra’s
algorithm [15], which processes vertices in increasing order of distance from s, and stops when
t is reached. With the appropriate priority queues, the algorithm runs in essentially linear time
not only in theory [16, 14] but also in practice: it is only two to three times slower than a simple
breadth-first search [23]. One can save time by running a bidirectional version of the algorithm.

We focus on road networks, where vertices represent intersections, arcs represent road seg-
ments, and lengths correspond to travel times. As a running example, we use a real-world [31]
representation of the road network of (Western) Europe with 18.0 million vertices and 42.2 mil-
lion arcs, made available for the 9th DIMACS Implementation Challenge [13]. On road networks,
bidirectional Dijkstra visits a significant fraction of the entire graph on long-range queries, which
takes seconds even with a fully optimized in-memory implementation [9], too much for interactive
applications.

On road networks, two-phase algorithms can solve the point-to-point problem much more
efficiently. The preprocessing phase takes only the graph as input and produces a moderate
amount of auxiliary data. Efficient methods typically take minutes or hours on continental road
networks. The subsequent query phase answers queries in on-line fashion, taking a source s and
a target t as inputs and using the auxiliary data to find the shortest s–t path.

In particular, our approach is based on the hub labels (HL) method. HL is a labeling algo-
rithm [19]: for each vertex v in the graph, it builds a forward label Lf (v) and a reverse label
Lr(v). The forward label Lf (v) consists of a sequence of pairs (u, dist(v, u)), where u is a vertex
(a hub in this context). Similarly, Lr(v) consists of pairs (u, dist(u, v)). Note that the hubs in
the forward and reverse labels of v may differ. Collectively, the labels obey the cover property :
for any two vertices s and t, Lf (s) ∩ Lr(t) contains at least one vertex on the shortest s–t path.
Given this property, an s–t query is trivial: among all vertices u ∈ Lf (s) ∩ Lr(t) (each of which
defines a valid s–t path), pick the one minimizing dist(s, u) + dist(u, t) and return this sum. If
the entries in each label are sorted by hub ID, this can be done with a coordinated sweep over
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Algorithm 1: sql dist

Input: source s ∈ V , target t ∈ V

1 SELECT
2 MIN(forward.dist+backward.dist)
3 FROM forward,backward
4 WHERE
5 forward.node = s AND
6 backward.node = t AND
7 forward.hub = backward.hub

the two labels, as in mergesort.
Abraham et al. [3] showed that, on road networks, one can pick labels that ensure polyloga-

rithmic point-to-point query times. This result is mostly theoretical: it relies on a preprocessing
routine that, although polynomial-time, is impractical for continental road networks. More re-
cently, Abraham et al. [1, 2] proposed HL as a practical implementation of the labeling algorithm.
They show that one can construct labels if an ordering of the vertices is given. For road networks,
the most efficient approach is to recursively compute labels according to the ordering: at each
step, it picks the next vertex v in the order and shortcuts it. To shortcut v, we remove it from
the graph and add shortcut arcs between its neighbors as necessary to preserve distances between
them [22]. (Note that each shortcut is built from two other arcs/shortcuts.) After shortcutting
v, the algorithm recursively computes the labels in the remaining graph, then computes v’s label
from those of its neighbors. We denote by A+ the set of shortcut arcs added during this process.

The average label size depends on the ordering. Abraham et al. [2] study efficient methods
to find good orderings. The fastest method uses the ordering computed by CH preprocessing,
which considers vertices bottom-up (from least to most important). Ordering vertices top-down
is slower, but yields smaller labels, with fewer than 80 hubs on average on Europe. Both methods
can be combined for different trade-offs. In this paper, we assume the labels are given, and focus
on how to use them efficiently within the database.

3 Point-to-Point Shortest Paths

We are now ready to explain how HL queries can be naturally expressed in SQL. By storing all
labels in a database, we can run pure SQL code to obtain not only the distance between any two
points, but also a description of the corresponding shortest path.

3.1 Distance Queries

We store the labels in two tables, forward and backward. Each table contains all labels of the
corresponding direction, and has three columns: node, hub, and dist. For each vertex v, we store
entries (u, dist(v, u)) ∈ Lf (v) as triples (v, u, dist(v, u)) in forward. Similarly, backward stores a
triple (v, u, dist(u, v)) for each (u, dist(u, v)) ∈ Lb(v).

To determine the distance between a source s and a target t, we just have to find the shared
hub of the source’s entries in forward and the target’s entries in backward that minimizes the sum
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of the forward and backward distances. The corresponding SQL statement is given in Algorithm 1.
Since the number of rows in forward and backward is huge (about 1.35 billion each on Europe),

we need appropriate indices. Algorithm 1 needs fast access to the rows of source and target (lines
5 and 6), followed by fast access to specific hub entries (line 7) within these rows. We thus build
a composite clustered index on node (primary) and hub (secondary). All rows corresponding to
the same label are stored together to minimize random accesses to the database.

3.2 Path Retrieval

Algorithm 1 computes only the distance between any two vertices s and t in the network. We
now show how to retrieve the actual list of arcs (or vertices) on the shortest s–t path P , which
may be needed for some applications.

The simplest approach is to retrieve the path one arc (or vertex) at a time [4]. For example,
an s–t query could return not only dist(s, t), but also the first arc (s, v) on the s–t path. One can
then retrieve the full path by performing multiple queries. Shortcut-based methods [22, 25] often
use a faster two-stage approach. They first find the shortest s–t path P+ in G+. The path consists
of very few shortcuts (around 20 for Europe). Then they repeatedly use a precomputed map to
translate each shortcut into its two constituent shortcuts (or arcs). Eventually, only original arcs
are left. Unfortunately, this approach would still be too slow for HLDB, since retrieving a single
shortest path could require thousands of non-sequential accesses (up to one for each arc on the
path).

We could avoid non-sequential accesses by simply storing in the database the full description
(sequence of arcs) of the shortest paths between every node and each of its hubs. If an s–t query
meets at a hub v, we could just concatenate the (precomputed) s–v and v–t paths to obtain the
shortest path. The space requirements are prohibitive, however: on Europe, these paths have
close to one trillion arcs in total.

We opt for an intermediate approach: we actually store preassembled subpaths. During pre-
processing, we store the full sequence of arcs for each shortcut in the graph. Queries then work in
two stages: first find the shortest s–t path P+ in G+, then translate each shortcut in P+ into the
corresponding arcs. This approach requires only O(|P+|) random accesses, and was first proposed
by Sanders et al. [33] in the context of an external memory implementation of CH.

To support path retrieval within HLDB, we store additional precomputed information in the
database. We assign a unique arc ID to every original arc, and a unique shortcut ID to every arc
of A ∪ A+. Note that each original arc has both an arc ID and a shortcut ID, and they are not
necessarily the same. Shortcuts (and their IDs) are internal to the algorithm, whereas arc IDs
can be set by the user.

To translate each shortcut into its arcs, we keep a table called shortcuts. It has three columns
(sid, aid, aseq), meaning that aid is the aseq-th arc on shortcut sid. A shortcut has one row in
shortcuts for each arc it contains (in order). We also need additional fields in each label entry.
We add extra columns to forward (besides node, hub, and dist): phub represents the parent hub
(the predecessor of hub on the path from node in G+), and sid is the ID of the shortcut (or arc)
from phub to hub. We augment backward in a similar way: phub represents the successor of hub
on the path to node in G+, and sid represents the shortcut (or arc) from hub to phub. In both
tables, we set phub and hub to an invalid ID (−1) for rows where hub = node.

An s–t query can then be implemented in three stages.
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First, we run a query similar to Algorithm 1. Instead of finding just the s–t distance, it
must also return the meeting hub of the s–t path, together with the phub and sid fields in the
corresponding rows of forward and backward.

The second stage builds a temporary table spath with the sequence of shortcuts on the s–t
path P+. Each row has two columns: sid represents a shortcut, and sseq is an integer indicating
the relative order of this shortcut within P+. If shortcut sa appears before sb in P+, the row
representing sa must have a lower sseq than the row representing sb.

We build spath one row at a time. Suppose x is the hub responsible for the s–t path. First,
we add to spath the shortcuts on the subpath of P+ between s and x by following parent pointers
in Lf (v), represented by phub and sid in forward. (This can be done in SQL with a WHILE
loop.) Since this will give shortcuts in reverse order, we assign decreasing sseq values to them:
−1,−2,−3, . . . We then do the same for the shortcuts in the subpath of P+ between x and t.
Since now parent pointers give us shortcuts in the right order, we just assign increasing sseq
values to the shortcuts we find: 1, 2, 3, . . . Note that shortcuts in the x–t subpath have higher
sseq than shortcuts in the s–x subpath.

The third stage of the algorithm expands each shortcut in P+ into the corresponding sequence
of arcs. It does so by joining spath and shortcuts on column sid, ordering the resulting rows
by sseq and aseq. The final table contains the IDs of all arcs on the shortest s–t path in order.

4 Extended Scenarios

So far, we have considered how to implement a distance oracle directly in SQL. This section
shows how to use labels to answer more sophisticated queries more efficiently than using only
a distance oracle. The problems we consider need all or some distances to a subset of vertices
P (the POIs). The simplest such location services (like finding the k closest POIs) depend only
on a query source and a set of previously known POIs. As Section 4.1 will show, we can solve
these problems efficiently by extracting the POI labels in advance and indexing them by their
hubs. Many other natural location services are not as simple, however, since they also depend
on a query target. An obvious example is finding the best post office on the way home, i.e., the
one yielding the smallest detour; other problems, such as ride sharing and POI prediction, have
similar properties. Section 4.2 introduces new algorithmic techniques to handle such scenarios
efficiently and shows how they translate to HLDB.

4.1 Single-Hub Indexing

Consider the scenario where many queries (from different sources) are to be made using the same
set of points of interest. An obvious example is the “store locator” feature of many web sites:
users need the closest Starbucks or the three closest Citibank ATMs. Formally, we must find the
k closest POIs to a source s. The straightforward solution is to compute the distance from s to
all POIs with an external distance oracle, and report the closest. With this approach, queries
take time linear in |P|. Previous work [30] suggests filtering the POIs (typically by Euclidean
distance), but this may lead to suboptimal results and complicates the query.

With labels in the database, one can do better. As Figure 2 shows, each shortest path from
s to a POI must pass through one of the hubs of s. So we can find the k closest POIs for each
hub of s and then pick (among those) the k closest overall. To implement this efficiently, we use
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Algorithm 2: sql k poi dist

Input: source s ∈ V , number k

1 SELECT TOP k
2 MIN(forward.dist+poilab.dist) AS dist,
3 poilab.node
4 FROM forward,poilab
5 WHERE
6 forward.node = s AND
7 forward.hub = poilab.hub
8 GROUP BY poilab.node
9 ORDER BY dist

a preprocessing step to extract from backward a table poilab with only the relevant rows—those
where node corresponds to a POI. This can be done using a JOIN with the table representing
the POIs. Next, we build a clustered index on hub and dist (including node for performance).
We can now run queries using poilab instead of backward, as shown in Algorithm 2. Note that
there are only minor differences relative to Algorithm 1 (besides the use of poilab). We return k
distances, each with the POI responsible for it. We also need the GROUP BY operator to make
sure we only consider the best hub for each potential POI. Without it, we could return multiple
paths to the same POI (using different hubs). Also note that the number of random accesses to
the database is bounded by |Lf (s)|, not |P|.

This simple query algorithm does not exploit the fact that we only need to look at k POIs per
hub—it will actually scan all POIs that share a hub with s. Because the most important vertex
in the graph is a hub for all other vertices, the running time still linear in |P|. We can remedy
this with a slightly more complicated query algorithm: we use a cursor to iterate over all hubs of
the source and determine the k closest vertices for each hub. Since poilab is indexed by hub and
dist and labels are small, this is faster than the straightforward approach when there are many
POIs. We can still restrict the set of acceptable POIs (by opening hours, for example) using a
WHERE clause when determining the closest k POIs of a hub.

When k is known in advance and no further constraints apply (all POIs are acceptable), we
can use a tailored version for even better performance. When building poilab, we only need to
keep the k rows with the smallest dist values for each distinct hub h. Additional rows cannot
possibly be part of the final solution for any source s: among paths that use h, the first k entries
dominate the others. If k is small relative to the number of POIs, we can use Algorithm 2 to
query the k closest POIs. As experiments will show, this approach is faster, mainly because we
do not use a cursor. Moreover, since the number of rows per hub is now limited by k, the total

p1

p2

p3

p4 p5
s

Figure 2: Finding the closest POI: the hubs of s are circles, those of the point of interests crosses.
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running time is still linear in k, and not |P|.
Additional improvements are possible for k = 1, when we need to find only the closest POI.

Because each hub appears at most once in poilab, we can make it a primary key, eliminating
the need for a clustered index and for the GROUP BY operator. In this case, one can think of
poilab as a superlabel : this is the label one would obtain if all points of interest were conflated
into a single vertex.

In essence, this hub indexing strategy is a translation into SQL of the bucked-based ap-
proach [28]: it creates a separate bucket for each hub in the (potentially large) target set, but
queries only need to access buckets that represent hubs in the (much smaller) forward label. This
approach was originally developed to solve the one-to-many problem: computing the shortest
path from s to each element of a predefined set of targets (points of interest). Geisberger [11] has
recently shown that this approach can be used (as an extension of CH) to solve the k-closest POI
problem efficiently.

4.2 Double-Hub Indexing

For location services that depend on a query source s, a query target t, and a set of predefined POIs
P, single-hub indexing is not good enough. For example, consider the best via point problem [6, 30,
11]: assume you want to go from s to t but need to stop at a post office on the way while minimizing
your overall travel time. Formally, you want the post office p that minimizes dist(s, p)+dist(p, t).
Again, the straightforward approach is to run two external distance oracle queries (from s and
to t) for each via point and report the one with the minimum sum. This yields a running time
linear in |P|, the number of candidate via points.

We can do better in practice with single-hub indexing. We build two tables vialabF and
vialabB containing the relevant POI rows of forward and backward, indexed by hub and dist.
To find the best via point for a given source s and target t, we compute the distances from s to
all POIs and the distances from all POIs to t. We return the POI that minimizes the sum of both
distances. Unfortunately, the running time of this approach is still linear in |P|, since we must
consider all acceptable via points.

We now propose a new approach, called double-hub indexing, which is asymptotically faster
when |P| is large. Every path we are interested in is the concatenation of two shortest paths: from
s to a POI p, then from the same POI p to t. We need to find the POI p such that the total length
is minimized, but without testing all candidates POIs explicitly. Let h be the meeting hub for
path s–p and h′ the meeting hub for p–t. Note that h is a forward hub for s and h′ is a backward
hub for t; most importantly, both h and h′ are hubs of p (reverse and forward, respectively). For
a given s–t via query, therefore, it suffices to look at all pairs (h, h′) such that h is a forward hub
for s and h′ a reverse hub for t. To do so efficiently, we precompute (before queries) the POI

p1

p2

p3

s
t

Figure 3: Best via point: forward hubs are circles, backward hubs are crosses; distances from
incoming to outgoing hubs for each POI are precomputed.
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p∗ for which dist(h, p∗) + dist(p∗, h′) is minimized (among all POIs that have both h and h′ as
reverse and forward hubs, respectively). Figure 3 gives an example.

We can implement this idea in HLDB as follows. For the set of all POIs (via points), we build
a table called vialab with four columns: node, hubF, hubB, and dist. For each POI (node) p,
we store |Lb(p)| · |Lf (p)| rows. For each combination (hb, hf ) of backward and forward hubs of
p, we store hf in hubF, hb in hubB, and dist(hb, p) + dist(p, hf ) in dist. We index vialab with
a clustered index by hubF, hubB, and dist (including node for performance). Given s and t,
the query algorithm now invokes two cursors looping over all combinations of hubs hf ∈ Lf (s)
and hb ∈ Lb(t). For each pair of hubs, we access vialab and find the best via point p for this
pair. We store p, together with dist(s, p) + dist(p, t) (obtained from vialab.dist, forward.dist,
and backward.dist) in a temporary table temp. In the end, we return the row from temp with
minimum distance. With this double-hub indexing approach, query times depend on the square
of the sizes of the labels, which can be considerably smaller than |P|.

This approach can easily be extended to the k best via nodes (and not just one). In the inner
loop, we return (and store in temp) the k best via points for the particular pair of hubs. Then,
we return the best k rows from temp with the additional constraint that we group the result by
the via point. The running time still depends on k and the square of the size of the labels, but
not on the number of POIs.

4.2.1 Ride Sharing

The ride sharing problem [21] can also be solved with our double-hub indexing approach. The goal
is to match queries (people looking for a ride from an origin s to a destination t) to offers (drivers
offering rides with origin s′ and destination t′). Given a new query (s, t), the goal is to find the
offer (s′, t′) that minimizes the (absolute) detour for the driver, given by dist(s′, s) + dist(s, t) +
dist(t, t′) − dist(s′, t′). We are interested in an on-line solution: new queries are immediately
matched with current offers whenever possible.

To solve this with HLDB, we store all offers in a table offers with four columns: id (a
unique offer identifier), source (the source vertex), target (the target vertex), and dist (the
distance between source and target). Note that we can compute the distance when we feed a
new offer into offers. As in the via point application, we then build a table offlab similar to
vialab, with four columns: id, hubF, hubB, and dist. For each offer (s′, t′), we store for each
combination hf ∈ Lf (s′), hb ∈ Lb(t′) the offer’s identifier in id, hf in hubF, hb in hubB, and
dist(s′, hf )+ dist(hb, t

′)− dist(s′, t′) in dist. The query algorithm for a pair (s, t) works as in the
via node problem, with two cursors looping over each combination hb ∈ Lb(s), hf ∈ Lf (t).

Again, query times depend only on the number of hubs in s and t. This is better than in the
approach proposed by Geisberger et al. [21], whose query times depend heavily on the number of
available offers.

4.2.2 POI Prediction

Another application of double-hub indexing is POI prediction. Often a user knows her way and
does not enter a destination into her navigation system. While driving, however, she may decide
to stop for gas (or another service). Intuitively, if she asks the system for a nearby gas station, the
best answer may not be the closest one, since it could actually be behind the user. This motivates
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the need for POI prediction, i.e., reporting a reasonable POI that is “ahead” of the user, even if
her final destination is unknown.

Formally, we consider the following problem. Suppose the user is at vertex v, and has traveled
for some time on a shortest u–v path (which has been tracked by the system), and asks for k
POIs that are close and “on the way”. We propose finding POIs that are close to v (closeness
criterion) and such that the path from u to the POI via v is not much longer than the shortest
path from u to the POI (detour criterion). To achieve this, we assign a score S(p) = dist(u, v) +
(1 + ε)dist(v, p) − dist(u, p) to each POI, and report the k POIs with the smallest S(p) values.
One can interpret S(p) as the sum of two terms. The dist(u, v) + dist(v, p) − dist(u, p) term is
the length of the detour one makes by going from u to p through v. The ε · dist(v, p) term is
proportional to the distance from v to p. The value of ε is chosen to achieve the desired balance
between detour length and closeness and may vary with the type of POI. For example, closeness
is more important for finding the nearest restroom than the nearest post office, so in the former
case ε is bigger.

A straightforward implementation computes S(·) for all POIs and has running time linear in
|P|. If ε is predefined (experiments indicate that 0.05 is a reasonable value), double-hub indexing
gives a more efficient solution. First, note that we can remove dist(u, v) from S(p), since it is
the same for all POIs. So we need to evaluate (1 + ε)dist(v, p) − dist(u, p) for each POI p. To
do so efficiently, we use a preprocessing stage to build a table predlab with four columns: node,
hub, hubprime, and dif. For each POI (node) p, we store |Lf (p)| · |Lf (p)| rows in predlab; more
precisely, for each combination (h, h′) of backward hubs of p, we store h in hub, h′ in hubprime,
and (1 + ε)dist(h, p) − dist(h′, p) in dif. An (u, v) query then works as in the best via point
algorithm. For each pair of hubs h ∈ Lf (u) and h′ ∈ Lf (v), we use predlab to find the best POI
for (h, h′), then pick (among those) the one minimizing S(·). Note that we can use any other
ranking function that depends only on the lengths of the paths between u, v, and p.

The fastest previous methods for POI prediction [29, 17] first compute a probability distribu-
tion of all possible user destinations, then rank POIs accordingly. By ranking POIs directly, our
approach can be much faster.

5 Experiments

We now present a detailed evaluation of our approach. To the best of our knowledge, no previous
practical algorithm has actually been evaluated within a database; for fairness, Section 5.1 com-
pares existing methods with a standalone version of HL. Section 5.2 then considers full-fledged
HLDB, with queries implemented entirely within the database.

All experiments were run on a machine with two Intel Xeon X5680 CPUs and 96 GB of
DDR3-1333 RAM, running Windows Server 2008 R2. Our main benchmark instance, representing
Western Europe, has 18.0 million vertices and 42.2 million arcs. We also tested a moderate-sized
instance representing Florida, with 1.07 million vertices and 2.71 million arcs. Both graphs
were made available for the 9th DIMACS Implementation Challenge [13]. Other road networks,
including proprietary ones, led to similar results.

Our implementation of label generation is the same as in Abraham et al. [2]. It is implemented
in C++ using Visual Studio 2010, with OpenMP used for parallelization.
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input preprocessing query
size time space time error

method src. |V | [s] [b/v] [ns] [%]
SILC [34] 4k n.a. > 10 > 1 000 000 > 0
PCP [37] 60k n.a. 100 35 000 20
pathDis [35] 90k n.a. 75 68 000 10
pathDis [35] 90k n.a. 30000 > 100 000 1
CH [22] 18M 143 23 78 706 —
HL-0 [2] 18M 181 1344 700 —
HL-17 [2] 18M 1188 1075 545 —
HL-∞ [2] 18M 20580 998 508 —

Table 1: Performance of C++ implementations of various distances oracles.

5.1 C++ Implementation

Table 1 summarizes the performance of standalone C++ implementations (outside the database
context) of contraction hierarchies (CH) [22] and a few HL variants [2], which use various combi-
nations of top-down and bottom-up ordering to achieve different trade-offs between preprocessing
time and label size. HL-0 uses pure bottom-up ordering, HL-17 orders the 131 072 most impor-
tant vertices top-down and the rest bottom-up, while HL-∞ approximates a top-down ordering
for all vertices. For comparison, we also give the numbers reported by Samet et al. for various
distance oracles [34, 37, 35] (which only work on small problems). Their implementations are also
in C++, and the machine they use is less than twice as slow as ours. For each algorithm, we show
the number of vertices on the graph on which it was tested, the preprocessing time (in seconds),
the total space usage (in bytes per vertex), the average sequential time for random queries, and
(for approximate oracles) the maximum allowed percent error.

While HL-0 and HL-17 preprocessing takes only a few minutes for Europe. Samet et al.
preprocessing is very slow and practical only for small graphs. They do not report preprocessing
times, but among other things their preprocessing uses Dijkstra’s algorithm to build n shortest
path trees. On Europe, a state-of-the-art implementation would take months to build the trees [9].
A recent algorithm [9] can build the trees much faster on a high-end GPU, but it is unclear if it
can be augmented to efficiently perform the additional work of the preprocessing algorithm. Even
if it could, preprocessing on Europe would take days.

We observe that both CH and HL are clearly superior solutions when used as external distance
oracles. They can handle much bigger graphs, preprocessing space can be much lower, and queries
are faster and provably exact. HL is two orders of magnitude faster than the oracles by Samet et
al. even on graphs more than two orders of magnitude bigger. CH is slower than HL, but it can
still answer queries in less than 100 µs, which is fast enough for real-time applications. Moreover,
CH requires much less RAM than HL; because it uses a graph for queries, however, it cannot be
implemented efficiently within the database.

The values in Table 1 are for distance-only queries. To support path unpacking, HL needs
11 more seconds of preprocessing, and an extra 1.2 GB for maintaining full descriptions of all
shortcuts. With parent pointers, the total space usage increases from 18.0GB to 29.4GB. With
the additional data, HL can retrieve the full path in about 5µs. CH queries have similar additive
increases using preassembled shortcuts (which requires an extra 1.2GB of data).
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5.2 Database Queries

We now evaluate our approach within a database system. We implemented HLDB queries in
SQL using Microsoft SQL Server 2008R2 (limited to 8 GB of RAM). The database files are stored
on a RAID-0 of two Intel 320 SSD drives with 160 GB each. To evaluate queries, we ran a C++
program on the same machine, calling the SQL server via ODBC. We measured the time from
requesting a query to the SQL server to getting an answer from it.

We inserted the labels of HL-17 for Europe (with 75.0 hubs on average) into the database
ordered by node and then hub, producing tables (forward and backward) with roughly 1.35 billion
rows taking 36.8 GB each (including parent information and indices). The table with precomputed
sequences of arcs (shortcuts) has 205 million rows and takes 5.1GB. The total space usage is
therefore 78.8GB. This is more than the almost 30GB used by the C++ implementation of HL,
which represents labels more compactly.

For Florida, we ran HL-14 (top 16 384 vertices ordered top-down) preprocessing, which takes
28 seconds. The resulting labels have 38.8 hubs on average, and take about 41.5 million rows
(1.14GB) per direction in the database. The shortcuts table has 12.7 million rows and 319 MB.

We always clear the DB cache before each experiment, and by default store the database on
SSD. To compare internal HLDB queries with external calls to an HL-based distance oracle,
we implemented the latter in C#, which can be called from MS SQL. Compared to the C++
implementation, the C# version is slower by roughly a factor of 2.5 (random distance queries on
Europe take 1335 ns on average), partially because our C# implementation is less optimized.

5.2.1 Random Queries

In our first experiment, we ran one million point-to-point queries, with the source s and the
target t picked uniformly at random among all vertices in the graph. We ran three variants of
our SQL query: computing only the s–t distance, retrieving the compact path P+ (the path with
shortcuts), and retrieving the full path. Each variant does strictly more work than the previous
one. We also evaluated our external C# distance oracle, kept entirely in RAM and outside the
database. Figure 4 shows the average time of the first q queries in Europe, with q varying from
10 to 1 000 000.

Average times decrease as more SQL queries are processed, since more information is gradually
brought to RAM. In particular, the distance-only variant needs 3.27ms per query for the first
10 queries, but one million queries take 1.97ms on average. The variant that finds the full path
benefits the most (since it makes more random accesses), with times decreasing from 23.7 ms to
8.7ms. Results are even better on smaller instances. As shown in Figure 5, queries on Florida
are about twice as fast as on Europe.

Note that all variants of HLDB are fast even with cold cache. Retrieving each of the first 10
paths takes less than 25 ms on average on Europe, which is good enough for interactive appli-
cations. Comparing the performance of the SQL query to the external oracle (which resides in
memory), we observe that the difference in performance is relatively small. For the C# imple-
mentation of HL, most of the 0.6ms of the query time is due to overhead for making an external
call from MS SQL Server.
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Figure 4: Average HLDB times on Europe for random point-to-point queries (SSD).
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Figure 5: Average HLDB times on Florida for random point-to-point queries (SSD).
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Figure 6: Average times on Europe for 10 000 local queries (SSD).

5.2.2 Local Queries

Picking source and target at random produces mostly long-range queries, but typical users are
interested in local queries, which should be faster. We simulate such queries by preselecting s–t
pairs as follows. Given a ball size b, we first pick a vertex x at random, run Dijkstra’s algorithm
from x until b vertices are scanned, then pick sources and targets uniformly at random among
the scanned vertices. Figure 6 shows the average query times on Europe for all three variants of
HLDB as a function of b. For each ball, we run 10 000 queries from a cold start; each point in the
plot is the average of 10 balls of the same size.

As expected, all types of queries are faster in more restricted regions. Reporting the entire
path is particularly cheap in very local areas, since most shortcuts needed end up in cache. Query
locality also has some effect on distance and compact path queries, but it is not as pronounced.

5.2.3 Single-Hub Indexing

We now consider more complex scenarios, starting with point of interest (POI) queries. Given
k, a source s, and a set of POIs P, we must find the k closest POIs from s, as well as the
corresponding distances. Recall that Section 4.1 considered three algorithms to solve this problem:
the straightforward approach using an external oracle, the general approach using a cursor to
iterate over all the hubs of s, and a tailored version where k must be preselected.

Figure 7 shows how these algorithms perform on Europe for k = 1 and k = 16 as a function
of |P|. We pick a set of POIs uniformly at random from the entire graph, then run 10 000 queries
(from cold cache) from random sources. Each point is an average taken over 10 sets of POIs.
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Figure 7: Time to find the closest POI as a function of the number of POIs (10 000 queries, SSD).

Since the times of the oracle-based approach are essentially independent of k, we only report
them once.

We observe that the oracle-based approach depends heavily on |P|. Initially, running times
are dominated by the overhead of the external calls; eventually, doubling |P| doubles the running
time as well. For large |P|, the algorithm is too slow for interactive applications. In contrast,
our SQL-based algorithms show little dependence on |P|. The impact of k is also limited: the
cursor-based version (C) is less than twice as slow for k = 16 than for k = 1. The tailored
query (T) is up to three times faster, but not as flexible as the cursor-based version, which allows
additional constraints. All SQL-based algorithms take less than 8 ms for all scenarios considered,
fast enough for online applications.

Note that both curves for the tailored SQL query follow the same pattern: running times
increase with the number of POIs, decrease abruptly, then start increasing again. These results
indicate that the system uses heuristics to decide which strategy to use for intersecting Lf (s) and
the (usually larger) table representing the POIs. Initially, it traverses the label and poilab in full
(with running time linear in |P|). When there are enough POIs, it performs multiple searches in
the POI table, looking only for hubs that appear in Lf (s) (running time logarithmic in |P|).

Sankaranarayanan and Samet report query times for k-closest POIs as well (Figure 18(a) in
[35]). On a road network with 91 113 vertices (much smaller than ours), they pick 911 random
vertices as POIs. Queries are fast for k = 1 but take more than 1ms for k > 10, even though
they are implemented in C++ (with no database involved) and are approximate. We obtain
comparable results with an exact algorithm implemented in SQL (which is much slower than
native C++) and on an input that is 200 times as large.
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SSD).

5.2.4 Double-Hub Indexing

We study the performance of HLDB on location services requiring double-hub indexing. For
simplicity, we focus on k best via point queries; ride sharing and POI prediction have similar
behavior. We evaluate two algorithms, one based on two cursors (DC) and another that evaluates
the distances from s to all POIs and from all POIs to t (all-POIs). As before, we pick a varying
number |P| of random POIs from the graph and evaluate the performance of both algorithms for
k = 1 and k = 16. We run 1 000 queries from cold cache from random sources. Figure 8 gives the
results.

As expected, the all-POIs approach becomes too slow as |P| increases. (Since its running time
is the same for both values of k, we only report k = 1 in the figure.) In contrast, the running
time of the double cursor approach increases only slightly with |P| (by a factor of three when |P|
increases from 1 to 262 144), mainly due to the fact that a larger fraction of the pairs of hubs
determined by s and t end up having entries in vialab. With running times below 420ms even for
a large number of POIs in the system, the approach is still fast enough for practical applications.

5.2.5 Impact of the SSD

We now evaluate HLDB when, instead of using SSDs, we store files on two Seagate Constellation
7200 SATA 3 Gb/s hard disk drives (HDD) with 500 GB each in RAID-0 configuration. Figure 9
shows the results for random point-to-point queries for both Europe and Florida. Unsurprisingly,
expensive random accesses make HLDB queries an order of magnitude slower. Distance-only
queries are still fast enough (30 to 40 ms after a few queries), but retrieving the full path is costly.
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Figure 9: Random HLDB queries on Europe and Florida (HDD).

To accelerate such queries, one could warm up the cache by loading all data from shortcuts
(5.1GB) into memory. Queries would then access the HDD only to load labels, and times would
be similar to the distance-only case.

6 Conclusion

We presented HLDB, the first system that implements exact location-based services on continental
road networks using only relational database operators. Queries run in milliseconds, fast enough
for interactive applications. We extended the approach to more advanced queries (such as k closest
points of interest, via points, ride sharing, and POI prediction). By retaining the flexibility of
SQL, our approach can be naturally extended to handle arbitrarily complicated queries, such as
finding all POIs within a certain range or computing meeting points.

Further optimizations are still possible. Figure 4 shows that making external distance queries
can be faster than an internal HLDB implementation in SQL. Retrieving labels from the database
can be quite costly, especially if data is stored on HDD, and labels require a moderately large
amount of storage space. This suggests a hybrid algorithm that can reduce storage needs and
potentially improve performance, while retaining much of the flexibility of the internal query
implementation. We can run CH preprocessing and maintain the resulting auxiliary data (sub-
stantially less than what HL needs) in memory, but outside the database. CH can then be used
as a distance oracle. For extended queries, such as those discussed in Section 4, we can create
labels on demand for the desired vertex v (see Abraham et al. [2] for details). Although these
labels are slightly bigger, queries may be even faster than the standard HLDB implementation,

18



since computing the labels in RAM eliminates external memory accesses. Note that label genera-
tion can be made transparent to the application programmer, who still codes in SQL. To handle
extended queries as discussed in Section 4, one can still generate the corresponding tables in SQL
and store them in the database for repeated use.

Now that a fast exact database distance oracle is available, an interesting avenue for future
research is which kinds of new and existing spatial applications can benefit from it.
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