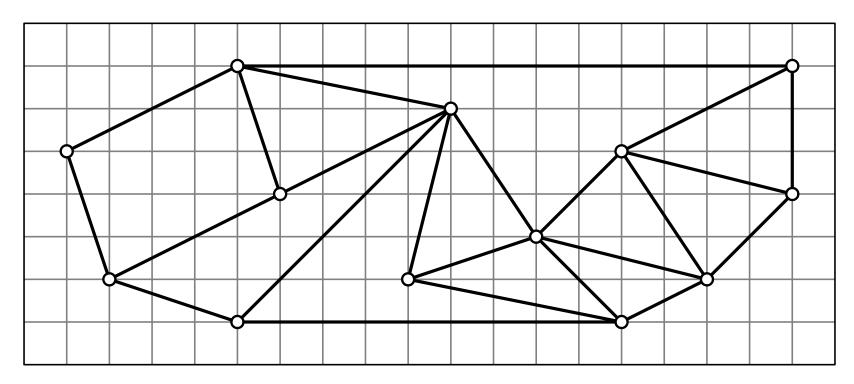


Algorithmen zur Visualisierung von Graphen Pfadbreite und Fläche planarer Gitterzeichnungen

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

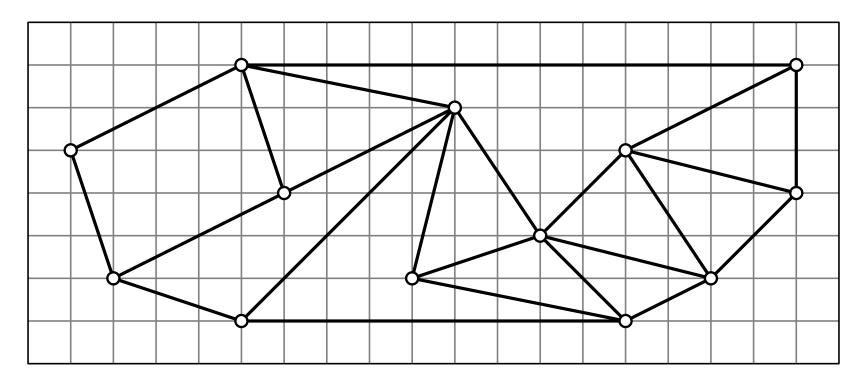
Tamara Mchedlidze · Martin Nöllenburg 04.02.2014

Fläche planarer Gitterzeichnungen



Ein Ästhetikkriterium bei planaren Gitterzeichnungen ist die benötigte Zeichenfläche. Gesucht sind möglichst gute obere und untere Schranken.

Fläche planarer Gitterzeichnungen



Ein Ästhetikkriterium bei planaren Gitterzeichnungen ist die benötigte Zeichenfläche. Gesucht sind möglichst gute obere und untere Schranken.

Was ist schon bekannt?

Obere Schranken

- Jeder planare Graph G besitzt eine planare Gitterzeichnung mit Fläche $(2n-4) \times (n-2)$. [de Fraysseix, Pach, Pollack '90]
- Jeder planare Graph G besitzt eine planare Gitterzeichnung mit Fläche $(n-2)\times (n-2)$. [Schnyder '90]
- Jeder planare Graph G besitzt eine planare Gitterzeichnung mit Fläche $2n/3 \times 4n/3$. [Brandenburg '08]

Obere Schranken

- Jeder planare Graph G besitzt eine planare Gitterzeichnung mit Fläche $(2n-4)\times (n-2)$. [de Fraysseix, Pach, Pollack '90]
- Jeder planare Graph G besitzt eine planare Gitterzeichnung mit Fläche $(n-2)\times (n-2)$. [Schnyder '90]
- Jeder planare Graph G besitzt eine planare Gitterzeichnung mit Fläche $2n/3 \times 4n/3$. [Brandenburg '08]

Heute: untere Schranken

Satz 1: Sei G ein planarer Graph mit **Pfadbreite** pw(G). Dann benötigt jede planare Gitterzeichnung mindestens Höhe $h \ge pw(G)$.

Pfadbreite

Def: Eine Knotenordnung v_1, v_2, \ldots, v_n der Knotenmenge V eines Graphen G = (V, E) hat **Suchbreite** $\leq k$, wenn für jedes $1 \leq i \leq n$ gilt, dass höchstens k Knoten in der linken Menge $\{v_1, \ldots, v_i\}$ Nachbarn in der rechten Menge $\{v_{i+1}, \ldots, v_n\}$ haben.

Pfadbreite

Def: Eine Knotenordnung v_1, v_2, \ldots, v_n der Knotenmenge V eines Graphen G = (V, E) hat **Suchbreite** $\leq k$, wenn für jedes $1 \leq i \leq n$ gilt, dass höchstens k Knoten in der linken Menge $\{v_1, \ldots, v_i\}$ Nachbarn in der rechten Menge $\{v_{i+1}, \ldots, v_n\}$ haben.

Def: Ein Graph G = (V, E) hat **Pfadbreite** $pw(G) \le k$, wenn er eine Knotenordnung mit Suchbreite $\le k$ besitzt.

Pfadbreite

Def: Eine Knotenordnung v_1, v_2, \ldots, v_n der Knotenmenge V eines Graphen G = (V, E) hat **Suchbreite** $\leq k$, wenn für jedes $1 \leq i \leq n$ gilt, dass höchstens k Knoten in der linken Menge $\{v_1, \ldots, v_i\}$ Nachbarn in der rechten Menge $\{v_{i+1}, \ldots, v_n\}$ haben.

Def: Ein Graph G = (V, E) hat **Pfadbreite** $\mathrm{pw}(G) \leq k$, wenn er eine Knotenordnung mit Suchbreite $\leq k$ besitzt.

Zu Testen ob ein Graph Pfadbreite k hat, ist NP-schwer und APX-schwer.

[Bodlaender et al. '95]

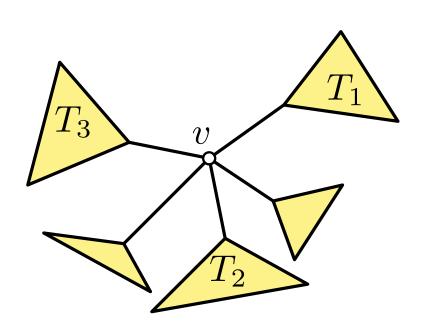
Spezialfall: Bäume

Beob: Für einen Baum T mit Wurzel r und Höhe h gilt $\mathrm{pw}(T) \leq h.$

Spezialfall: Bäume

Beob: Für einen Baum T mit Wurzel r und Höhe h gilt $\mathrm{pw}(T) \leq h.$

Lemma 1: Sei T ein Baum mit einem Knoten v, so dass der Wald T-v nach Entfernen von v mindestens drei Teilbäume T_1, T_2, T_3 besitzt mit $\mathrm{pw}(T_i) \geq k$ für i=1,2,3. Dann gilt $\mathrm{pw}(T) \geq k+1$.



Spezialfall: Bäume

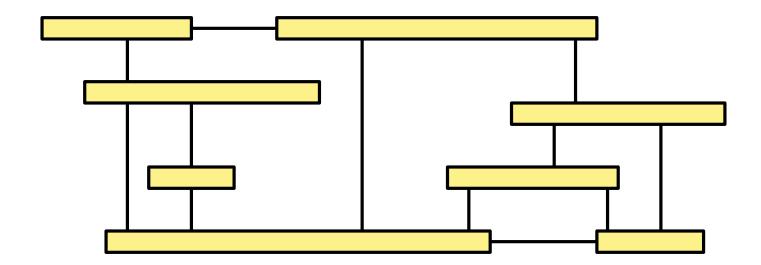
Beob: Für einen Baum T mit Wurzel r und Höhe h gilt $\mathrm{pw}(T) \leq h.$

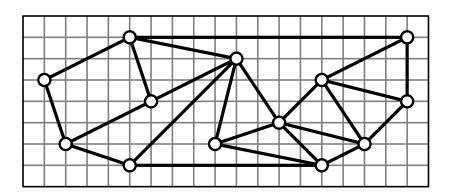
Lemma 1: Sei T ein Baum mit einem Knoten v, so dass der Wald T-v nach Entfernen von v mindestens drei Teilbäume T_1, T_2, T_3 besitzt mit $\mathrm{pw}(T_i) \geq k$ für i=1,2,3. Dann gilt $\mathrm{pw}(T) \geq k+1$.

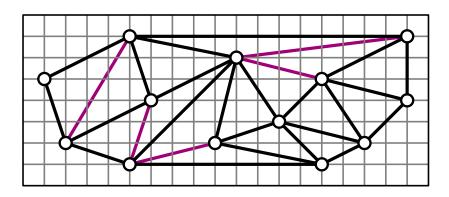
Was bedeutet das für die Pfadbreite eines vollständigen ternären Baumes T der Höhe k?

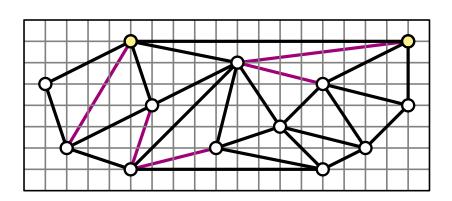
Sichtbarkeitsrepräsentation

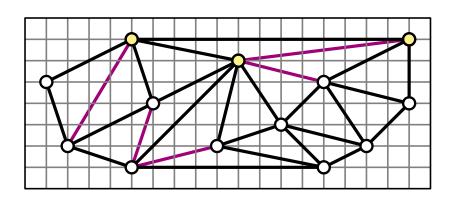
Def: In einer **Sichtbarkeitsrepräsentation** eines Graphen G = (V, E) ist jeder Knoten $v \in V$ als achsenparallele Box und jede Kante $e \in E$ als horizontale oder vertikale Strecke zwischen den Boxen der Endknoten gezeichnet. Keine Kante schneidet andere Boxen oder Kanten.

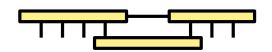


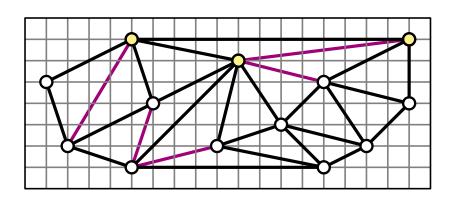


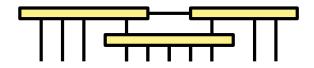


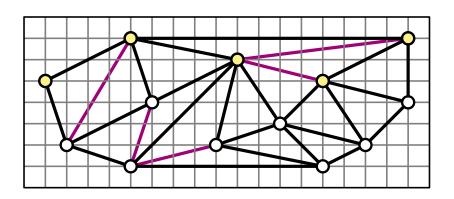


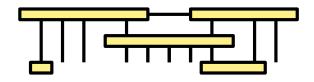


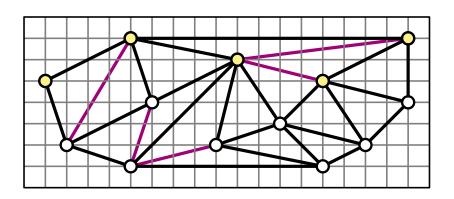


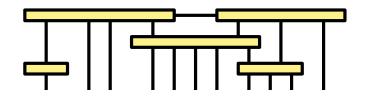


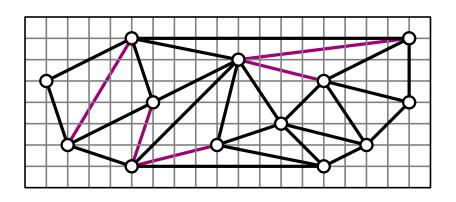


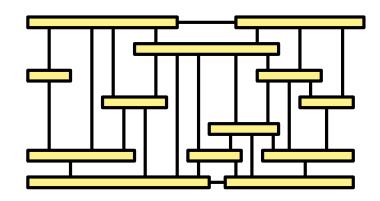












- **Lemma 2:** Besitzt ein Graph G = (V, E) eine planare Gitterzeichnung mit Höhe h, dann besitzt er auch eine Sichtbarkeitsrepräsentation mit Höhe h.
- **Lemma 3:** Besitzt ein Graph G=(V,E) eine Sichtbarkeitsrepräsentation mit Höhe h, dann gilt $\mathrm{pw}(G) \leq h$.

- **Lemma 2:** Besitzt ein Graph G = (V, E) eine planare Gitterzeichnung mit Höhe h, dann besitzt er auch eine Sichtbarkeitsrepräsentation mit Höhe h.
- **Lemma 3:** Besitzt ein Graph G = (V, E) eine Sichtbarkeitsrepräsentation mit Höhe h, dann gilt $pw(G) \le h$.

Es folgt die untere Schranke [Dujmovic et al. '01/'08], [Felsner, Liotta, Wismath '03]

Satz 1: Sei G ein planarer Graph mit **Pfadbreite** pw(G). Dann benötigt jede planare Gitterzeichnung mindestens Höhe $h \ge pw(G)$.

Satz 2: Ein Baum T hat Pfadbreite $pw(T) \le k$ gdw. es einen Pfad P in T gibt, so dass alle Bäume im Wald T-P Pfadbreite höchstens k-1 haben.

Satz 2: Ein Baum T hat Pfadbreite $pw(T) \le k$ gdw. es einen Pfad P in T gibt, so dass alle Bäume im Wald T-P Pfadbreite höchstens k-1 haben.

Solch ein Pfad P heißt auch ein **Hauptpfad** von T.

Satz 2: Ein Baum T hat Pfadbreite $pw(T) \le k$ gdw. es einen Pfad P in T gibt, so dass alle Bäume im Wald T-P Pfadbreite höchstens k-1 haben.

Solch ein Pfad P heißt auch ein **Hauptpfad** von T.

Satz 3: Sei T ein Baum mit Wurzel r. Dann hat T eine planare Gitterzeichnung mit Höhe $2 \operatorname{pw}(T)$, so dass r in der obersten Zeile liegt. Ist r Teil eines Hauptpfades von T, so ist die Höhe $\max\{2\operatorname{pw}(T)-1,2\}$.

Satz 2: Ein Baum T hat Pfadbreite $pw(T) \le k$ gdw. es einen Pfad P in T gibt, so dass alle Bäume im Wald T-P Pfadbreite höchstens k-1 haben.

Solch ein Pfad P heißt auch ein **Hauptpfad** von T.

Satz 3: Sei T ein Baum mit Wurzel r. Dann hat T eine planare Gitterzeichnung mit Höhe $2 \operatorname{pw}(T)$, so dass r in der obersten Zeile liegt. Ist r Teil eines Hauptpfades von T, so ist die Höhe $\max\{2\operatorname{pw}(T)-1,2\}$.

Aber: Es gibt Graphen mit kleiner Pfadbreite, die lineare Höhe in jeder Zeichnung benötigen.

Satz 2: Ein Baum T hat Pfadbreite $pw(T) \le k$ gdw. es einen Pfad P in T gibt, so dass alle Bäume im Wald T-P Pfadbreite höchstens k-1 haben.

Solch ein Pfad P heißt auch ein **Hauptpfad** von T.

Satz 3: Sei T ein Baum mit Wurzel r. Dann hat T eine planare Gitterzeichnung mit Höhe $2\operatorname{pw}(T)$, so dass r in der obersten Zeile liegt. Ist r Teil eines Hauptpfades von T, so ist die Höhe $\max\{2\operatorname{pw}(T)-1,2\}$.

Aber: Es gibt Graphen mit kleiner Pfadbreite, die lineare Höhe in jeder Zeichnung benötigen.

Weitere Resultate

- Jeder maximale außenplanare Graph G kann mit Höhe $4\operatorname{pw}(G)$ gezeichnet werden. [Biedl '13]
- ullet Jeder außenplanare Graph G kann mit Höhe $64\,\mathrm{pw}(G)$ gezeichnet werden. [Babu et al. '13]
- Es gibt serien-parallele Graphen mit Pfadbreite $O(\log n)$ und Höhe $\Omega(2^{\sqrt{\log n}})$ in jeder planaren Gitterzeichnung. [Frati '10]
- Für gegebene Zahl h und Graph G kann in Zeit $O(2^{32h^3}n)$ getestet werden, ob eine Zeichnung mit Höhe h existiert.

 Dieses Problem ist also FPT.

 [Dujmovic et al. '01/'08]
- Für kleinere Graphen G gibt es ein ILP bzw. SAT Modell, das die Pfadbreite $\mathrm{pw}(G)$ berechnet. [Biedl et al. '08]