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A b s t r a c t .  We present two linear-time algorithms for computing a regular 
edge labeling of 4-connected planar triangular graphs. This labeling is used 
to compute in linear time a rectangular dual of this class of planar graphs. 
The two algorithms are based on totally different frameworks, and both are 
conceptually simpler than the previous known algorithm and are of indepen- 
dent interests. The first algorithm is based on edge contraction. The second 
algorithm is based on the canonical ordering. This ordering can also be used 
to compute more compact visibility representations for this class of planar 
graphs. 

1 I n t r o d u c t i o n  

The problem of drawing a graph on the plane has received increasing attention 
due to a large number of applications [3]. Examples include VLSI layout, algorithm 
animation, visual languages and CASE tools. Vertices are usually represented by 
points and edges by curves. In the design of floor planning of electronic chips and in 
architectural design, it is also common to represent a graph G by a rectangular dual, 
defined as follows. A rectangular subdivision system of a rectangle R is a partition 
of R into a set F = {R1, R2 , . . . ,  R,~}. of non-overlapping rectangles such that no 
four rectangles in F meet at the samepoint.  A rectangular dual of a planar graph 
G = (V, E) is a rectangular subdivision system Y' and a one-to-one correspondence 
f : V --+ F such that two vertices u and v are adjacent in G if and only if th6ir 
corresponding rectangles f(u) and f(v) share a common boundary. In the application 
of this representation, the vertices of G represent circuit modules and the edges 
represent module adjacencies. A-rectangular dual provides a placement of the circuit 
modules that preserves the required ad]acencies. Figure 1 shows an example of a 
planar graph and its rectangular dual. 

This problem was studied in [1, 2, 8]. Bhasker and Sahni gave a linear time 
algorithm to construct rectangular duals [2]. The algorithm is fairly complicated 
and requires many intriguing procedures. The coordinates of the rectangular dual 
constructed by it are real numbers and bear no meaningful relationship with the 
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structure of the graph. This algorithm consists of two major steps: (1) constructing 
a so-called regular edge labeling (REL) of G; and (2) constructing the rectangular 
dual using this labeling. A simplification of step (2) is given in [5]. The coordinates of 
the rectangular dual constructed by the algorithm in [5] are integers and carry clear 
combinatorial meaning. However, the step (1) still relies on the complicated algo- 
rithm in [2]. (A parallel implementation of this algorithm, working in O(log n log* n) 
time with O(n) processors, is given in [6].) 

In this paper we present two linear time algorithms for finding a regular edge 
labeling. The two algorithms use totally different approaches and both are of inde- 
pendent interests. The first algorithm is based on the edge contraction technique, 
which was also used for drawing triangular planar graphs on a grid [10]. The sec- 
ond algorithm is based on the canonical ordering for 4-connected planar triangular 
graphs. This technique extends the canonical ordering, which was defined for trian- 
gular planar graphs [4] and triconnected planar graphs [7], to this class of graphs. 
Another interesting representation of planar graphs is the visibility representation, 
which maps vertices into horizontal segments and edges into vertical segments [9, 11]. 
It turns out that the canonical ordering also gives a reduction of a factor 2 in the 
width of the visibility representation of 4-connected planar graphs. 

The present paper is organized as follows. Section 2 presents the definition of the 
regular edge labeling and reviews the algorithm in [5] that computes a rectangular 
dual from a REL. In section 3, we present the edge contraction based algorithm for 
computing a REL. In section, 4 we present the second REL algorithm based on the 
canonical ordering: Section 5 discusses the algorithm for the visibility representation 
and some final remarks. 

2 T h e  r e c t a n g u l a r  d u a l  a l g o r i t h m  

Let G = (V,E) be a planar graph with n vertices and m edges. If (u,v) E E, u 
is a neighbor of v. deg(u) denotes the number of neighbors of u. We assume G is 
equipped with a fixed plane embedding. The embedding divides the plane into a 
number of faces. The unbounded face is the exterior face. Other faces are interior 
faces. The vertices and the e(lges on the boundary of the exterior face are called 
exterior vertices and exterior edges. An interior edge between two exterior vertices is 
called a chord. A path (or a cycle) of G consisting of k edges is called a k - p a t h  (or 
a k-cycle,  respectively). A triangle is a 3-cycle. A quadrangle is a 4-cycle. A cycle 
C of G divides the plane into its interior and exterior region. If C contains at least 
one vertex in its interior, C is called a separating cycle. 

A plane triangular graph is ~ plane graph all of whose interior faces are triangles. 
For the rectangular dual problem, as we will see later, we only need to consider 
plane triangular graphs. Let G be such a graph. Consider an interior vertex v of 
G. We use N(v) to denote the set of neighbors of v. If N(v) -- { u l , . . . , u k }  are 
in counterclockwise order around v in the embedding, then u l~ . . . ,  uk form a cycle, 
denoted by Cycle(v). The star at v, denoted by Star(v), is the set of the edges 
{ ( v , ~ )  I i < i < k}. 

We assume the embedding information of G is given by the following data struc- 
ture. For each v E V, there is a doubly linked circular list Adj(v) containing all 
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vertices of N(v) in counterclockwise order. The two copies of an edge (u, v) (one in 
Adj(u) and one in Adj(v)) are cross-linked to each other. This representation can be 
constructed as a by-product by using a planarity testing algorithm in linear time. 
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Fig. 1. A PTP graph, its rectangular dual, and the st-graphs G1 and G2 

Consider a plane graph H = (V,E). Let uo, ul,u2,u3 be four vertices on the 
exterior face in counterclockwise order. Let Pi (i = 0, 1, 2,3) be the path on the 
exterior face consisting of the vertices between ui and ui+l (addition is rood 4). 
We seek a rectangular dual RH of H such that  u0, Ul, u2, u3 correspond to the four 
corner rectangles of RH and the vertices on/9o (Pa, P2, P3, respectively) correspond 
to the rectangles located on the north :(west, south, east, respectively) boundary  
of RH. In order to simplify the problem, we modify H as follows: Add four new 
vertices VN, vw, vs, VE. Connect VN (Vw, VS, VE, respectively) to every vertex on Po 
(P1, P~, P3, respectively) and add four new edges (vs, vw), (vw, VN), (VN, rE), (rE, VS) 
Let G be the resulting graph. I t 's  easy to see that  H has a rectangular dual RH if and 
only if G has a rectangular dual R c  with exactly four rectangles on the boundary  
of R c  (see Figure 1 (1) and (2)). The following theorem was proved in [1, 8]: 
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T h e o r e m  1. A planar graph G has a rectangular dual R with four rectangles on the 
boundary of R if and only i / ( 1 )  every interior/ace is a triangle and the exterior 
.face is a quadrangle/ (2) G has no separating triangles. 

A graph satisfying the conditions in Theorem 1 is called a proper triangular planar 
(PTP) graph. ~From now on, we will discuss only such graphs. Note the condition 
(2) of Theorem 1 implies that  G is 4-connected. Since G has no separating triangles, 
the degree of any interior vertex v of G is at least 4. (If deg(v) = 3, Cycle(v)  would 
be a separating triangle.) 

The rectangular dual algorithm in [5] heavily depends on the concept of regular 
edge labeling (REL) defined as follows [2, 5]: 

Def in i t ion  2. A regular edge labeling of a PTP graph G is a partition of the interior 
edges of G into two subsets T1, T2 of directed edges such that: 

1. For each interior vertex v, the edges incident to v appear in counterclockwise 
order around v as follows: a set of edges in T1 leaving v; a set of edges in T2 
entering v; a set of edges in T1 entering v; a set of edges in T2 leaving v. 

2. Let v g , V w , V s , V E  be the four exterior vertices in counterclockwise order. All 
interior edges incident to vg  are in T1 and entering v y .  All interior edges incident 
to v w  are in T2 and leaving vw .  All interior edges incident to vs  are in T1 and 
leaving vs .  All interior edges incident to VE are in T2 and entering VE. 

The regular edge labeling is closely related to planar st-graphs. A planar st- 
graph G is a directed planar graph with exactly one source (in-degree 0) vertex 
s and exactly one sink (out-degree 0) vertex t such that both s and t are on the 
exterior face and are adjacent. Let G be a planar st-graph. For each vertex v~ the 
incoming edges of v appear consecutively around v, and so do the outgoing edges of 
v. The boundary of every face F of G consists of two directed paths with a common 
origin, called low(F) ,  and a common destination, called high(F) .  

Let G be a P T P  graph and {T1,T2} be a REL of G. From {T1,T2}, we can 
construct two planar st-graphs as follows. Let G1 be the graph consisting of the 
edges of T1 plus the four exterior edges (directed as vs  -+ v w ,  v w  -+ VN, v3 --+ VE, 
VE --+ VN), and a new edge ( v s , v g ) .  Then G1 is a planar st-graph with source vs  
and sink vN. For each vertex v, the face of G1 that separates the incoming edges of 
v from the outgoing edges of v in the clockwise direction is denoted by l e f t ( v ) .  The 
other face of G1 that separates the incoming and the outgoing edges of v is denoted 
by right(v) .  

Let G2 be the graph consisting of the edges of T2 plus the four exterior edges 
(directed as v w  -+ vs ,  vs  --+ VE, v w  -+ vN, VN ~ VE), and a new edge (vW,VE).  
Then G2 is a planar st-graph with source v w  and sink VE. For each vertex v, the 
face of G2 that separates the incoming edges of v from the outgoing edges of v in 
the clockwise direction is denoted by above(v). The other face of G2 that separates 
the incoming and the outgoing edges of v is denoted by below(v). 

The dual graph G~ of G1 is defined as follows. Every face Fk of G1 is a node 
v ~  in G~, and there exists an edge (vF~, VFk) in G~ if and only if F~ and Fk share 
a common edge in G1. We direct the edges of G~ as follows: if F~ and F~ are the 
left and the right face of an edge (v ,w)  of G1, direct the dual edge from Fz t o  Fr 
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if (v,w) ~ (VS ,VN)  and from F~ to Fz if (v,w) = (VS ,VN) .  G~ is a planar st-graph 
whose source and sink are the right face (denoted by w*) and the left face (denoted 
by e*) of (vs, Vy), respectively. For each node F of G~, let dl (F) denote the length 
of the longest path from w* to F. Let D1 = d1(e*). For each interior vertex v of 
G, define: Xleft(V) ~--- dl(lef t(v)) ,  and Xright(V ) ~- dl (right(v)). For the four exterior 
vertices, define: xlr ) = 0; Xright(Vw ) = 1; Xleft(VE) = D1 - 1; Xright(VE) = D1; 
Xleft(Vs) = Xleft(VN) --'~ 1; Xright(Vs) = Xright(VN) ~--- O1 - 1. 

The dual graph G~ of G2 is defined similarly. For each node F of G~, let d2(F) 
denote the length of the longest path from the source node of G~ to F. Let D2 be the 
length of the longest path from the source node to the sink node of G~. For each in- 
terior vertex v of G, define: ylow(V) = d2(below(v)), and Yhigh(V) = d2(above(v)). For 
the four exterior vertices, define: ylow(VW ) = ytow(VZ ) = 0;  Yhlgh(vW ) = yhlgh(VE ) = 

92; Ylow(VS) = 0; Yhlgh(VS) = 1; Ylow(Vg)  = D 2 - 1; Yhigh(VN) = D 2. 
The rectangular dual algorithm relies on the following theorem [5]. 

T h e o r e m  3. Let G be a PTP  graph and {T1, T2} be a REL of G. For each vertex v 
of G, assign v the rectangle f (v )  bounded by the four lines x = xleft(v), x -- xrlght(v), 
y = Ylew(V), y = Yhigh(V). Then the set { f(v)lv  E V} form a rectangular dual of G. 

Figure 1 shows an example of the theorem. Figure 1 (3) shows the st-graph G1. 
The small squares in the figure represent the nodes of G~ and the integers in the 
squares represent their dl values. Figure I (4) shows the graph G2. Figure 1 (2) shows 
the rectangular dual constructed as in Theorem 3. The algorithm for computing a 
rectangular dual is as follows [5]: 

A l g o r i t h m  1: Rectangular Dual (Input: a P T P  graph G = (V, E)). 

1. Construct a regular edge labeling (T1, T2} of G. 
2. Construct from {T1,T2} the planar st-graphs G1 and G2. 
3. Construct the dual graph G~ from G1 and G~ from G2. 
4. Compute dl(F)  for nodes in G~ and d2(F) for nodes in G~. 
5. Assign each vertex v of G a rectangle f (v )  as in Theorem 3. 

The steps 2 through 5 of Algorithm 1 can be easily implemented in linear time 
[5]. In next two sections we present two algorithms for constructing a REL of P T P  
graphs. 

3 A l g o r i t h m  b a s e d  o n  e d g e  c o n t r a c t i o n  

In this section, we present our first algorithm for computing a REL of a P T P  graph 
G. The basic technique is edge contraction and edge expansion. We begin with the 
definition of edge contraction. Let e --= (v, u) be an interior edge of G. Let C1 and 
C2 be the two faces with e as the common boundary. Let el and e2 be the other two 
edges and y the third vertex of C1. Let e3 and e4 be the two other edges and z the 
third vertex of C2. The operation of contracting e deletes e and merges u and v into 
a new vertex oe. The edges incident to u and v (except el, e2, e3, e4) are incident to 
the new vertex ok in the resulting graph, el and e2 are replaced by a new edge (y, oe). 
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e3 and e4 are replaced by a new edge (z, o~). (See Figure 2.) The resulting contracted 
graph is denoted by G/e. The edges el, e2, e3, e4 are called the surrounding edges e. 
The edges (y, or) and (z, or) are called the residue edges of e. 

a y 

y 

z 

Fig. 2. Edge contraction 

The graph G' = G/e has a plane embedding inherited from the embedding of G. 
Since G is a P T P  graph, e is not on any separating triangle. Thus G' has no multiple 
edges. I t 's  easy to see that  G '  with the inherited embedding is a plane tr iangular 
graph. If e is on a separating quadrangle of G, then G' has a separating triangle. If 
e is n o t  on any separating quadrangle of G, it is called a contractible edge. For any 
contractible edge e, G/e is a P T P  graph. 

The following equivalent definition of contractible edges is useful in our discus- 
sion. Consider a vertex v and a neighbor u of v. Let y and z be the two neighbors 
of v tha t  are consecutive with u in N(v). The edge (u, v) is contractible if and only 
if for any neighbor x (x ~ y, z) of v, the only common neighbors of u and x are v 
and possibly y or z. In this case, u is called a contractible neighbor of v. 

L e m m a 4 .  Let G be a P T P  graph and v be an interior vertex of G. I/  deg(v) = 4, 
then v has at least two contractible neighbors. If  deg(v) = 5, then v has at least one 
contractible neighbor. 

Let e be a contractible edge of a P T P  graph G. Suppose a REL {T~,T~} of 
G r = G/e has been found. Then we can expand e and obtain a REL {T1, T2} of G 
from {T~, T~} as follows. Let el, e2, e3, e4 be the surrounding edges of e. For any edge 
e ~ of G that  is not. e and not a surrounding edge of e, the label of e ~ with respect to 
{T1, :s is the same as-its label with respect to {T~, T~}. We need to specify proper 
labels of e, el, e2, e3, e4 with resl~ect to {T1, T2 }. Depending on the labels of the edges 
in Star(oe) with respect to {T~,T~}, there are six cases (up to the rotat ion of the 
edges around oe) as shown in Figure 3. These figures shows the labels of relevant 
edges before and after the expansion. 

We assume (o~, y) is in T~ and directed as o~ -~ y. Other cases are similar by 
rotat ing the edges in Star(o~). Consider the label of (o~, z) with respect to {T~, T~}. 
If z ~ or E T~, the situation is shown in Fig 4.1. The case oe --+ z E T~ is shown 
in Fig 4.2. Suppose or -+ z E T~. Let (o~,x) be the first edge in Star(o~) following 
(o~, y) in clockwise order. Depending on the label of (o~, x) with respect to {T~, T~}, 
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Fig. 3. Edge expansion 

there are two cases as shown in Fig 4.3 and 4.4. Suppose z --+ oe E T~. Let (oe, x) be 
the first edge in Star(o~) following (o~, y) in counterclockwise order. Depending on 
the label of (o~,x) with respect to {T~,T~}, there are two cases as shown in Fig 4.5 
and 4.6. Note that the conditions of the six cases are completely determined by the 
labels of at most six edges in Sfar(o~): the two residue edges (o~, y), (oe, z) and the 
four edges that are consecutive with (oel y), (oe, z) in Star(oe). 

The basic idea of our algorithm is as follows. Since the minimum degree of G is at 
most 5, we pick a degree-4 or a degree-5 vertex v and select a contractible neighbor 
u of v. Then contract e = (v, u) and recursively find a REL for the graph G ~ = G/e. 
Finally expand e to obtain a REL for G. In order to find the contractible neighbors of 
v, however, we need to check, for each pair u and w of v's neighbors, if u and w share 
a common neighbor or not. Since the degree of u and w can be large, this checking 
can be too expensive. In order to achieve linear time, we will only consider special 
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good degree-4 and degree-5 vertices defined as follows. Let V~ = {v E Vldeg(v) = i} 
and VIa,j] = {v �9 Vii <_ deg(v) <_ j}.  Define n~ = IV~I and n[i,j] = IV[i,j]l. The vertices 
in V[4j9] are called light vertices. The vertices in V[20,o~) are called heavy vertices. A 
degree-5 vertex v is good if v has at most one heavy neighbor. A degree-4 vertex v is 
good if either v has at most one heavy neighbor, or v has two heavy neighbors which 
are not consecutive in N(v).  

L e m m a  5. Any PTP graph G = (V, E) with at least one heavy vertex has at least 7 
good vertices. 

Proof. Since the exterior face of G is a quadrangle and all interior faces of G are 
triangles, we have IEI = 3n - 7 by Euler 's  formula. Hence 4ha + 5n5 + 6n[6,19] + 
20n[20,r162 < ~4<~in i  = ~ e v  deg(v) -- 21E 1 = 6n - 14 ----- 6(n4 + n5 + n[6,19] + 
n[20,oo)) -- 14. This gives: 14n[20,~) + 2n6 < 2n4 + n5 + 2n6 - 14 <: 2n - 14. Hence: 

7n[20,~) + n6 _~ n - 7 (1) 

Let P4 (Ps, respectively) be the number of good degree-4 (degree-5, respectively) 
vertices. So there are n4 - p 4  bad degree-4 vertices and n5 - P 5  bad degree-5 vertices. 
Define S = ~.eyi2o,~) deg(v). Since each bad degree-5 vertex v has at least two heavy 
neighbors, it contributes at least 2 to S. Consider a bad degree-4 vertex v. If v has 
at least three heavy neighbors, then v contributes at least 3 to S. Suppose v has 
two heavy neighbors u and w which are consecutive in N(v).  The edges (v,u) and 
(v, w) contribute 2 to S. The edge (u, w) also contributes 2 to S. But since (u, w) 
is shared with one other face, just half of the contribution can be apportioned to 
v. So the contribution of v to S is at least 3. Thus 3(nt - P4) + 2(n5 - ps) <_ S, 
which gives 3n4 + 2n5 - (3p4 + 2p5) <_ }--~.v~yt2o,~ ) deg(v). This in turn implies: 

3n4 + 2n5 + E,evi4.~l deg(v) + E~evt6,1o] deg(v) - (3p4 + 2p5) <_ E ~ v  deg(v) = 
2]E[ = 6 n -  14 = 6(n4 + n5 + n6 + n[7,19] + n[20,~)) - 14. Simplifying this inequality, 
we get: n4 + n5 + n[~,19] - (3p4 + 2p5) ~ 6n[20,~) - 14. Hence: 

3p4 + 2p5 >_ n - (n6 + 7n[20,oo)) + 14 (2) 

From (1) and (2) we have::3(p4 +p~)  > 3p4 + 2p5 >_ n - (n - 7) + 14 = 21. This 
proves the lemma. 

We are now ready to present our first REL construction algorithm. 

A l g o r i t h m  2: REL (Input: A P T P  graph G = (V, E)).  

1. Compute the degrees of the.vertices of G. 
2. Collect all good degree-4 ancl degree-5 interior vertices i.nto a list L. 
3. i ~ n .  
4. While G has more than one interior vertex do: 

4.1 Remove a vertex v from L. Mark v as wi. Decrease i by 1. Record the 
neighborhood structure of v. 

4.2 Find a contractible neighbor u of v. Contract  the edge (v,u). (The new 
vertex is still denoted by u.) Modify the adjacency lists and the degrees 
of the vertices affected by the contraction. If any of the affected vertices 
becomes a good vertex, put it into L. 
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End While (the last marked vertex is w6). 
5. G has only one interior vertex now. Construct the trivial REL for G. 
6. F o r i = 6 t o n d o :  

Put  wi back into G. Expand the corresponding contracted edge. 

T h e o r e m  6. Algorithm 2 computes a REL of a PTP graph in O(n) time. 

Proof. The correctness of the algorithm follows from the above discussion. We only 
need to analyze its complexity. Step 1 clearly takes O(n + m) = O(n) .time. Since 
good vertices have degree at most 5, each of them can be determined and put into L 
in O(1) time. By Lemma 5, L will never be empty during the execution of the while 
loop. 

Since the degree of a good vertex v is at most 5, the neighborhood structure of 
v can be recorded in O(1) time. Other operations of Step 4.1 can be easily done in 
O(1) time also. The only non-trivial part is Step 4.2. We need to find a contractible 
neighbor of v in O(1) time. Suppose deg(v) -- 5 and ui (0 < i _ 4) are v's neighbors. 
If v has no heavy neighbor or has one heavy neighbor (say u0), we can check, for each 
pair u~ and uj (1 <: i , j  ~ 4), if they share a common neighbor. Since the degrees 
of u~ and uj are bounded by 19, this takes O(1) time. If none of ui (1 < i < 4) 
is contractible, then u0 is contractible by Lemma 4. Now suppose deg(v) = 4 with 
neighbors u0, ul,  u2, u3. If v has at most one heavy neighbor, the situation is the same 
as the degree-5 case. If v has two heavy neighbors, then they are not consecutive 
in N(v). Suppose they are u0 and u2. We can check if ul and us share a common 
neighbor in O(1) time. If ul and u3 have no common neighbors, then both of them 
are contractible. Otherwise u0 and u2 are contractible. 

After selecting a contractible neighbor u for v, the operation of contracting (v, u) 
affects the vertices in N(v). The adjacency lists and the degrees of these vertices are 
modified. Since deg(v) <_ 5,.this can be done in O(1) time by using the cross-linked 
adjacency lists data  structure. New good vertices can be detected and inserted into 
L in O(1) time. 

Finally, the edge expansion operation only involves 5 edges adjacent to the corre- 
sponding contracted edge. This can be done in O(1) time by using the neighborhood 
structure recorded at Step 4.1. 

4 A l g o r i t h m  b a s e d  o n  c a n o n i c a l  o r d e r i n g  

In this section we consider 4-connected planar triangular graphs (all of whose face, 
including the exterior face~ are triangles). We introduce the canonical ordering for 
such graphs, which is the basis for our so cond algorithm for finding a REL of a P T P  
graph G. Note that  adding an edge connecting two non-adjacent exterior vertices of 
a PTP-graph G leads to a 4-connected planar triangular graph. The applications of 
the canonical ordering to other classes of planar graphs have been studied in [4, 7]. 

4.1 T h e  canon ica l  o r d e r i n g  of  4 - c o n n e c t e d  p l a n a r  t r i a n g u l a r  g r a p h s  

Let G be a 4-connected planar triangular graph With three exterior vertices u, v, w. 
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T h e o r e m 7 .  There exists a labeling of the vertices v~ = u,v~_ = v, v3 , . . . ,  v~ = w of 
G meeting the following requirements for every 4 < k < n: 

1. The subgraph Gk-1 of G induced by vl , v2, . . . , vk-1 is biconneeted and the bound- 
ary of its exterior face is a cycle Ck-1 containing the edge (u, v). 

2. vk is in the exterior face of Gk-1 ,  and its neighbors in G~_~ form a (at least 
2-element) subinterval of the path Ck_~ - {(u, v)}. I f  k << n - 2, v~ has at least 
2 neighbors in G - G~_~. 

Proof. The vertices v , , , v ~ _ l , . . .  ,v3 are defined by reverse induction. Number  the 
three exterior vertices u, v, w by vl, v2 and v,~. Let G~- I  be the subgraph of G after 
deleting v~. By 4-connectivity of G, G,~-I is triconnected, and its exterior face C~-1 
is a cycle and, hence, admits the constraints of the theorem. Let v~- i  r vl be the 
vertex of C,,-1 adjacent to both v2 and v~ in G. By the 4-connectivity, G -  {vn, v,,_l } 
is biconnected and its exterior face C~-1 is a cycle and, hence, admits the constraints.  

Let k < n - 1 be fixed and assume that  v~ has been determined for every i > k 
such that  the subgraph Gi induced by  V - {v~+l , . . . ,  v,~) satisfies the constraints of 
the theorem. Let Ck denote the boundary of the exterior face of Gk. Assume first 
tha t  Ck has no interior chords. Suppose vl, c k l , . . . ,  ck~, v2 are the vertices of Ck in 
this order between vl and V~. Then it follows by the 4-connectivity of G that  p > 2. If 
M1 vertices ck~ , . . . ,  ck, have only one edge to the vertices in G - G k ,  then since G is a 
planar triangular graph, they are adjacent to the same vertex vj  for some k < j < n. 
In this case we also have ( v l , v j ) ,  (v2,vj)  E G. But then {(vl ,vj) ,  (vj ,v2) ,  (v2,vl)} 
would be a separating triangle. Hence at least one vertex, say ck,,  has at least 2 
neighbors in G - Gk. ck, is the next vertex vk in our ordering. 

Next assume Ck has interior chords. Let (c~,cb) (b > a + 1) be a chord such 
that  b - a is minimal. Let also (Cd,C~) be a chord with e > d > b such that  e - d is 
minimal. (If there is no such a chord, let (c~,cb) = (Cd,C~) and number the vertices 
in clockwise order around Ck such that  a --- 1 < b = d and e = 1.) Assume, wi thout  
loss of generality, that  vl ,v2 ~ {c~+1,.. .  ,cb-1}. If all vertices c~+1,. . .  ,cb-1 have 
only one edge to the vertices in G - Gk, then since G is a triangular graph, they 
are adjacent to the same vertex vj,  and we also have (v~,vj), (vb,vj)  E G. But then 
{(v~, vj) ,  (vj,  vb), (vb, v~)} would be a separating triangle. Hence there is at least one 
vertex c~, a < a < b, having at'-least two neighbors in G -  Gk and having no incident 
chords, c~ is the next vertex vk in our ordering. 

T h e o r e m  8. The canonical ordering can be computed in linear time. 

Proof. We label each vertex v by In terva l (v ) ,  which can have the following values: 
(a): not yet visited, (b)~ visited,once, or (p): visited more than once and the visited 
edges form p intervals in Adj(v).  We also maintain a variable Chords(v)  for each 
vertex v on the exterior face, denoting the number of incident chords of v. 

We start  with v~ and v,~-i and initialize the labels of their neighbors. We compute  
the ordering in reverse order and update the labels after choosing a vertex vk as 
follows: we visit each neighbor v of vk along the edge connecting them. Let c l , . . . ,  c 2 
( j  > i) be the neighbors (in this order) of vk in Gk-1.  If  j = i + 1, then there 
was a chord (c~, cj) in Gk-1,  hence we decrease Chords(ci)  and Chords(c j )  by one, 
since (ci ,cj)  becomes part  of Ck-1. If j > i + 1, then for each cz (i < I < j ) ,  we 
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compute  Chords(cz). If cz has a chord to v, then we also increase Chords(v) with 
one. This is done by marking the vertices that  are part  of the exterior face. For 
each cl (i < l < j) ,  we update  Interval(cl): if cz has label Interval(cl) = (a), label 
(b) replaces label (a). If Interval(cl) has label (b) and vk in Adj(cz) is adjacent 
to a previous visited vertex in Adj(cl), then Interval(cz) becomes (1), otherwise it 
becomes (2). Otherwise assume Interval(cl) = (p), with p > 1. If the two incident 
vertices v t and v" of vertex v~ in Adj(cl) are already visited, then Interval(ez) 
becomes (p - 1). If none of v' and v" is visited, then Interval(cl) becomes (p + 1), 
else Interval(cl) is not changed. It is clear tha t  Interval(cl) = (p) means that  the 
vertices already visited and incident to cl are composed of p intervals in Adj(c~). 

By Theorem 7 it follows that,  if k > 3, then there is a vertex v with Interval(v) 
-- 1 and Chords(v) = O, and this can be chosen as the next vertex vk in our ordering. 
We mark v as being visited. Since there are only a linear number of edges, we can 
find the canonical ordering in linear time. 

14 

2 

T I/-iT 
/ ,, 

Fig. 4. The canonical ordering from the graph of Figure 1. 

4.2 F r o m  a c a n o n i c a l  o r d e r i n g  t o  a R E L  

To compute a REL of a P T P  graph G, we first add an edge connecting two non- 
adjacent exterior vertices of G. This gives a 4-connected planar triangular graph G'. 
We compute a canonical numbering of G' and then delete the added edge. The four 
exterior vertices of G are now numbered as vl, v2, v~-1, v~, respectively. Next we 
show that  a REL of G can be easily derived from the canonical ordering. 

First, for each edge (v~,vj) of G, direct it from v~ to vj, if i < j .  Define the 
base-edge of a vertex vk to be the edge (vl,vk) for which l < k is minimal. The 
vertex vk has incoming edges from c i , . . . ,  cj belonging to Ck-1 (the exterior face of 
Gk-1),  assuming in this order from left to right. We call c~ the lef~point of vk and 
cj the rightpoint of vk. Let vk l , . . .  ,vkt be the higher-numbered neighbors of vk, in 
this order from left to right. We call (vk, vk, ) the lef~edge and (vk, vk, ) the rightedge 
of vk. 
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L e m m a 9 .  A base-edge cannot be a lefledge or a rightedge. 

L e m m a l 0 .  An edge is either a leftedge, a rightedge or a base-edge. 

We construct a REL for G as follows: all leftedges belong to T~, all rightedges 
belong to T2. The base-edge (c~,v~) ofvk is added to T1, if a = j ,  to T~, if ~ = i, 
and otherwise arbitrary to either T~ or T~. (The four exterior edges belong to neither 
T~ nor T~.) 

L e m m a l l .  {T~,T~} forms a regular edge labeling for G. 

Proof. Let vkl . . . . .  Vkd be the outgoing edges of the vertex vk (3 < k < n - 2). It 
follows from Theorem 7 that  d > 2. Then (Vk,Vkl) is the leftedge of vk and is in 
T1. (vk,vke) is the rightedge of vk and is in T2. The edges (Vk,Vk2),.. . ,  (Vk,Vke_l) 
are the base-edges of vk2,. .- ,vke_l,  respectively. Let the vertex vk~ (1 < f~ < d) 
be the highest-numbered neighbor of vk. Then all vertices from vk~ to vkz have a 
monotone increasing number, as well as the vertices from vke to vkz. Otherwise there 
was a vertex vk z such that  vk,_~ and vkz+~ are numbered higher than vkz. But this 
implies that  vk is the only lower-numbered neighbor of vk,, which is a contraction 
with the canonical ordering of G. Hence for every vkz (1 < l < d, l r fl), either 
kz-1 < kz < kz+l or kz-1 > kz > kz+l. Thus, by the construction of T1 and T2, the 
edges (Vk,Vk,) are added to T1, if 1 < l < fl, and to T~, if 13 < l < d. The edge 
(vk, vk~) is arbitrarily added to either T1 or T2. This completes the proof that  the 
edges appear in counterclockwise order around vk as follows: a set of edges in T2 
entering vk; a set of edges in T1 entering vk; a set of edges in T2 leaving vk; a set of 
edges in T1 leaving vk. 

Let Vl~,. . . ,  rid,be the higher numbered neighbors of vl from left to right. Then 
Vl~ = vn and vld = v2, and by the argument described above, (vl, vl~) , . . . ,  (vl, vle_~) 
belong to T2. Similarly, all outgoing edges of v~ belong to T~. All incoming edges of 
v~_~ belong to T2, and all incoming edges of v~ belong to T~. This completes the 
proof. 

Since the construction of :{T1,T2} from the canonical numbering can be eas- 
ily done in O(n) time, Theorem 8 and Lemma 11 constitute our linear time REL 
algorithm. See Figure 4 for the construction of a REL from a canonical ordering. 

5 A l g o r i t h m  f o r  v i s i b i l i t y  r e p r e s e n t a t i o n  

The visibility representation of ~ planar graph G maps the vertices of G to horizontal 
line segments and edges of G to vertical line segments [9, 11]. In this section, we 
show that  the canonical ordering can be used to construct a more compact visibility 
representation for a 4-connected planar triangular graph G. 

First let the edges of G be directed as vi -~ vj, if i < j .  G is a planar st-graph 
and every vertex (except vl, v2, v,~-i and v~) has at least 2 incoming and 2 outgoing 
edges. Let d(v) denote the length of the longest path from the source vl of G to 
v. We construct the dual graph G* of G and direct the edges of G* as follows: if 
-ill and F~ are the left and the right face of some edge (v, w) of G, direct the dual 
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edge from _~ to F~ if (v, w) r (vl, v~) and from F~ to Fl if (v, w) = (vl, v~). G* 
is a planar st-graph. For each node F of G*, let d*(F) denote the length of the 
longest path from the source node of G* to F. The algorithm for constructing the 
visibility representation of Rosenstiehl & Tarjan [9] and Tamassia & Tollis [11] is 
almost identical to the rectangular dual algorithm. 

A l g o r i t h m  3: Visibility Representation 
Input: A 4-connected planar triangular graph G. 

1. Compute a canonical ordering of G. 
2. Construct the planar st-graphs G and its dual G*. 
3. Compute d(v) for the vertices of G and d*(F) for the nodes of G*. 
4. For each vertex v of G do: 

Draw horizontal line between (d*(left(v)), d(v)) and (d*(right(v)) - 1, d(v)). 
5. For each edg e (u, v) of G do: 

Draw vertical line between (d* (left(u,  v)), d(u)) and (d* (left(u,  v)), d(v)). 

Fig. 5. The canonical ordering leads to a _compact visibility representation. 

T h e o r e m  12. VISIBILITY(G) constructs a visibility representation of G on a grid 
of size at most (n - 1) x (n - 1). 

Proof. The correctness of VISIBILITY(G} is shown in [9, 11]. We show that the grid 
size is at most (n - 1) x (n - 1). This follows directly for the height, since the length 
of the longest path from vl to v,~ is at most n - 1. 

Let s* be the source node of G* and t* be the sink node of G*. Every vertex v 
of G corresponds to a face F,  of G*. If v ~ vl, v2, v,~-l, v,~, then v has > 2 incoming 
and _> 2 outgoing edges, hence the two directed paths from low(F~) to high(F~) 
both have length >_ 2. Let G*' be the graph obtained from G* by removing the sink 
node t* and its incident edges. (In Figure 5, t* is the node represented by the square 
labeled by 11.) This merges the faces F~I, F,2 and F ~  of G* into one face F ' .  Note 
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that  for every face F r F~,_ 2 of G*', the two directed paths of F between low(F) 
and hzgh(F) m G have length, > 2. 

s - -  I 

Let s* be the source of G* and let t*' be the sink of G*'. Notice that s* = 
s* --- low(F') and t*' = Ieft((v2,v,~)) = high(F'). (In Figure 5, t*' is the node 
represented by the square labeled by 10.) Clearly, there are at least two edges e with 
F~._ 1 = left(e), and the only edge e with right(e) = F, ._  1 has endpoint t* . Let 
Pzo,~g be any longest path from s*' to t*'. Then the length of any longest path from 
s* to t* in G* is 1 plus the length of Pzo~g. 

We claim that Prong has at most one consecutive sequence of edges in common 
with any face F of G*'. Toward a contradiction assume the claim is not true. Suppose 
that  Pzo~g visits some nodes of F,  assume that wl is the last one, then t > 1 nodes 
ul . . . .  ,uz r F,  then some nodes o f F  again, let Wd be the first one. Let w2, . . .  ,Wd-1 
be the nodes, in this order, of F, which are not visited by P~o,~g (see Figure 6.) 
Suppose F = right((wl,  w2)). (If F = le f t ( (wl ,  w2)), the proof is similar.) Let F1 = 
l@ft((wl,w2)). Notice that wl = low(F1). The directed path of F1, starting with 
edge (wl,w2), has length >_ 2. Hence w2 has an outgoing edge to a node of F1, and 
an outgoing edge to w3. Thus w2 = low(F2), with F2 = left((w2,w3)).  Repeating 
this argument it follows that Wd-1 = low(Fa_l), with Fd-1 = left((Wd--l,Wd)). 
However it is easy to see that Wd = high(Fd_l). This means that one of the two 
directed paths of Fd-1 has length 1. This contradiction proves the claim. 

high(F) 

Fig. 6. Example of the proof of Theorem 5.1. 

When traversing an edge e of Pzo,~g, we visit either left(e) or right(e) (or both) 
for the first time. We assign each edge e to the face F,  with e E F,  which we visit 
for the first time now. G*' has n - 2 faces. To every face F of G*', by the claim, at 
most one edge e E PloQ is assigned. Hence the longest path from s* to t* in G* has 
length < n - 1. 

VISIBILITY(G) can be applied to a general 4-connected planar graph by first 
triangulating it. (The triangulation of a 4-connected planar graph is clearly still 
4-connected.) Since the worst-ease bounds for visibility representation by applying 
an arbitrary st-numbering is (2n - 5) x (n - 1) [9, 11], our algorithm reduces the 
width of the visibility representation by a factor 2 in the case of 4-connected planar 
graphs. Maybe this approach can be used to obtain better grid bounds in general, by 
splitting the graph into 4-connected components�9 Consider for this problem a planar 
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triangular graph G. Let C be a separating triangle, such that there are no separating 
triangles inside C. The subgraph inside C yields a 4-connected component, say B1. 
B1 can be drawn within the required bounds. Drawing B1 inside G - B 1  may increase 
the drawing of G - B1 by at most IBI[ - 1 in height and width. If the face F on the 
vertices u, v, w is not a rectangle in the visibility representation of G -  B1, then this 
is no problem. The difficult case is when F is a rectangle. Solving this remaining 
problem gives an important improvement in the visibility representations, which 
plays a major role in a lot of practical commercial environments. 

The canonical ordering, presented in this paper, implies an acyclic orientation of 
the graph, in which every vertex (except vl, v2, vn-1, v~) has _> 2 incoming and _> 2 
outgoing edges. This extends the results for the st-ordering for biconnected planar 
graphs [9] (in which every vertex v, v 7~ Vl, vn, has > 1 incoming and _ 1 outgoing 
edge in the acyclic orientation), and the canonical ordering for planar triangular 
graphs [7] (in which every vertex v, v 7 ~ vl, v2, v~, has > 2 incoming and > 1 outgoing 
edge in the acyclic orientation). Another observation is that the canonical ordering, 
presented in section 4, gives a simple algorithm to test whether a planar triangular 
graph is 4-connected. 

An interesting research field is to problem of computing a canonical ordering 
of a 4-connected planar graph such that v~+l is a neighbor of v~. This would yield 
a simple algorithm for constructing hamiltonian circuits in 4-connected triangular 
planar graphs. We leave this question open for the interested reader. 
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