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Abstract

We present a new linear time algorithm for �nding rectangular duals of planar triangular graphs.

The algorithm is conceptually simpler than the previous known algorithm. The coordinates of the

rectangular dual constructed by our algorithm are integers and have pure combinatorial meaning.

This allows us to discuss the heuristics for minimizing the size of the rectangular duals.
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1. Introduction

Let R be a rectangle. A rectangular subdivision system of R is a partition of R into a set

� = fR

1

; R

2

; : : : ; R

n

g of non-intersecting smaller rectangles such that no four rectangles in � meet

at the same point. A rectangular dual of a graph G = (V;E) is a rectangular subdivision system �

and a one-to-one correspondence f : V ! � such that two vertices u and v are adjacent in G if and

only if their corresponding rectangles f(u) and f(v) share a common boundary. Figures 1.1 and 1.2

show a graph G and its rectangular dual. If G has a rectangular dual, clearly G must be a planar

graph.

The rectangular dual of a graph G �nds applications in the 
oor planning of electronic chips and

in architectural design [5, 9]. Each vertex of G represents a circuit module and the edges represent

module adjacencies. A rectangular dual provides a placement of the circuit modules that preserves

the required adjacencies.

The problem of �nding rectangular duals has been studied in [2, 3, 6, 8, 12]. A linear time

algorithm for this problem was given in [3]. This algorithm is rather complicated and requires real

arithmetic for the coordinates of the rectangular dual. We present a new linear time algorithm for

solving this problem. The coordinates of the rectangular dual R constructed by our algorithm are
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integers and have pure combinatorial meaning. This allows us to discuss heuristics for reducing the

size of R.

The present paper is organized as follows. Sections 2 introduces some de�nitions and lemmas

needed by our algorithm. Section 3 presents the algorithm. Section 4 proves its correctness. In

section 5, we discuss the heuristics for reducing the size of the rectangular dual. Section 6 concludes

the paper.

2. Regular Edge Labeling of Planar Triangular Graphs

Let G = (V;E) be a planar graph. Consider a �xed plane embedding of G. The embedding

divides the plane into a number of regions. The unbounded region is called the exterior face. Other

regions are called interior faces. The vertices and the edges on the exterior face are called exterior

vertices and exterior edges, respectively. A cycle C of G divides the plane into its interior region and

exterior region. If C contains at least one vertex in its interior region, C is called a separating cycle

of G. For each vertex v, N(v) denotes the set of neighbors of v and Star(v) denotes the set of edges

incident to v. Whenever these notations are used, it is understood that the members in each set are

listed in counterclockwise order around v in the embedding.

Consider a planar graph H = (V;E). Let v

0

; v

1

; v

2

; v

4

be four vertices on the exterior face of H in

counterclockwise order. Let P

i

(i = 0; 1; 2; 3) be the four paths on the exterior face of H consisting

of the vertices between v

i

and v

i+1

(where the addition is mod 4). We seek a rectangular dual R

H

of H such that the four vertices v

0

; v

1

; v

2

; v

3

correspond to the four corner rectangles of R

H

and the

vertices on P

0

(P

1

; P

2

; P

3

, respectively) correspond to the rectangles located along the north (west,

south, east, respectively) boundary of R

H

. Necessary and su�cient conditions for testing if H has a

rectangular dual were discussed in [2, 3, 6]. These conditions, however, can be easily reduced to the

following simpler form.

In order to simplify the problem, we modify H as follows: Add four new vertices v

N

; v

W

; v

S

; v

E

and connect v

N

(v

W

; v

S

; v

E

, respectively) to every vertex on P

0

(P

1

; P

2

; P

3

, respectively). Then add

four new edges (v

N

; v

W

); (v

W

; v

S

); (v

S

; v

E

); (v

E

; v

N

). Let G be the resulting graph. It is easy to

see that H has a rectangular dual R

H

with v

0

; v

1

; v

2

; v

3

corresponding to the four corner rectangles

of R

H

if and only if G has a rectangular dual R with exactly four rectangles on the boundary of

R. Without loss of generality, we will only discuss planar graphs with exactly four vertices on its

exterior face.

If G has a rectangular dual R, then every face of G, except the exterior face, must be a triangle

(since no four rectangles of R meet at the same point). Moreover, since at least four rectangles are
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needed to fully enclose some non-empty area on the plane, any separating cycle of G must have

length at least 4. The following theorem states that these two conditions are also su�cient for G to

have a rectangular dual.

Theorem 1 [6]: A planar graph G = (V;E) has a rectangular dual R with four rectangles on

the boundary of R if and only if the following two conditions hold: (1) Every interior face of G is a

triangle and the exterior face of G is a quadrangle; (2) G has no separating triangles.

A di�erent form of Theorem 1 was given in [2, 3]. A graph satisfying the two conditions of

Theorem 1 is called a proper triangular planar (PTP) graph. From now on, we only discuss such

graphs.

De�nition 1: A regular edge labeling (REL) of a PTP graph G = (V;E) is a partition of the

interior edges of G into two subsets fT

1

; T

2

g of directed edges such that the following hold:

(1) For each interior vertex v, the edges in Star(v) appear in counterclockwise order around v as

follows: a set of edges in T

1

leaving v; a set of edges in T

2

entering v; a set of edges in T

1

entering

v; a set of edges in T

2

leaving v.

(2) All interior edges incident to v

N

are in T

1

and entering v

N

. All interior edges incident to v

W

are in T

2

and leaving v

W

. All interior edges incident to v

S

are in T

1

and leaving v

S

. All interior

edges incident to v

E

are in T

2

and entering v

E

.

From Theorem 1, we can easily prove the following:

Theorem 2: Every PTP graph G = (V;E) has a REL.

Proof: By Theorem 1, G has a rectangular dual R. For each v 2 V , let R(v) denote the rectangle

in R corresponding to v. For each interior vertex v, label each edge (v; u) 2 Star(v) as follows: If

R(u) is above R(v), e is in T

1

and directed leaving v. If R(u) is below R(v), e is in T

1

and directed

entering v. If R(u) is to the left of R(v), e is in T

2

and directed entering v. If R(u) is to the right of

R(v), e is in T

2

and directed leaving v. This labeling satis�es the two conditions of De�nition 1. 2

Although Theorem 2 is proved from Theorem 1, our algorithm goes another way around: We �nd

a REL of G �rst and construct a rectangular dual of G from the REL. We �rst prove some properties

of the REL.

Let G = (V;E) be a PTP graph and fT

1

; T

2

g be a REL of G. Let G

1

be the directed subgraph of

G induced by the edges in T

1

and the four exterior edges directed as v

S

! v

W

; v

W

! v

N

; v

S

! v

E

;

v

E

! v

N

. Let E

1

denote the edge set of G

1

. (E

1

is the union of T

1

and the four exterior edges.) Let

G

2

be the directed subgraph of G induced by the edges in T

2

and the four exterior edges directed

as v

W

! v

S

; v

S

! v

E

; v

W

! v

N

; v

N

! v

E

. Let E

2

denote the edge set of G

2

. (E

2

is the union of
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T

2

and the four exterior edges.) We will call G

1

the S-N net and G

2

the W-E net of G derived from

the REL fT

1

; T

2

g.

Figure 1.1 shows a PTP graph G. An S-N net G

1

and the corresponding W-E net G

2

are shown

in Figures 1.3 and 1.4. (Ignore the integers in the small boxes in Figures 1.3 and 1.4 for now.)

Figure 1

Lemma 3: (1) G

1

is acyclic with v

S

as the only source and v

N

as the only sink.

(2) G

2

is acyclic with v

W

as the only source and v

E

as the only sink.

Proof: By way of contradiction. Suppose either G

1

or G

2

contains a directed cycle. Let C =

fv

1

; : : :v

l

g be such a cycle such that the total number of vertices that are on C or in the interior

of C is minimized. Without loss of generality, suppose C is a cycle in G

1

and directed in clockwise

direction. (The proof of other cases are similar.)

Case 1: C contains no vertices in its interior. If l = 3, then there is no edge in T

2

leaving v

2

. This

contradicts the condition (1) of De�nition 1. Suppose l > 3. Then there is an edge e = (v

i

; v

j

) 2 E

contained in the interior of C. e cannot be in T

1

since otherwise we would have a smaller cycle in

G

1

which contradicts the choice of C. So e must be in T

2

. But regardless of the direction of e in T

2

,

the condition (1) of De�nition 1 is violated either at v

i

or at v

j

.

Case 2: C contains at least one vertex u

1

in its interior. Start at u

1

, we can reach another vertex

u

2

by using a T

2

edge. Similarly from u

2

we can reach another vertex u

3

by using a T

2

edge. Since

every vertex u has an incident edge in T

2

leaving u, this process can be repeated again and again.

Since C is the smallest cycle in both G

1

and G

2

, we cannot have a cycle in G

2

completely contained

in the interior of C. Thus we must reach a vertex v

j

2 C. Then the condition (1) of De�nition 1 is

violated at v

j

.

Since we get contradictions in all cases, both G

1

and G

2

are acyclic. Since every vertex v, other

than v

S

and v

N

, has indegree and outdegree at least 1 in G

1

, v

S

is the only source and v

N

is the

only sink of G

1

. Similarly, v

W

is the only source and v

E

is the only sink of G

2

. 2

Both G

1

and G

2

are the so-called s-t planar graphs. (An s-t planar graph is a directed acyclic

planar graph with exactly one source s and exactly one sink t on its exterior face.) The properties

of these graphs have been studied in [7, 10, 13]. Using these properties, the structure of G

1

can be

summarized as follows:

(a) For each vertex v other than v

S

and v

N

, the edges entering v appear consecutively around v

in G

1

. The edges leaving v appear consecutively around v in G

1

. Let e

1

and e

2

be the left-most and

the right-most edges in G

1

entering v. Let e

3

and e

4

be the left-most and the right-most edges in
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G

1

leaving v. The face of G

1

with e

1

and e

3

on its boundary is denoted by left(v). The face of G

1

with e

2

and e

4

on its boundary is denoted by right(v). We use f

W

to denote left(v

W

) and f

E

to

denote right(v

E

). (In other words, the exterior face is divided into two faces f

W

and f

E

.) For the

vertex v

S

and v

N

, de�ne left(v

S

) = left(v

N

) = f

W

and right(v

S

) = right(v

N

) = f

E

.

(b) For each interior face f of G

1

, the boundary of f consists of two directed paths P

1

and P

2

starting at the same vertex and ending at the same vertex. (See Figures 1.3).

Similarly, the structure of G

2

can be summarized as follows.

(c) For each vertex v other than v

W

and v

E

, the edges entering v appear consecutively around

v in G

2

. The edges leaving v appear consecutively around v in G

2

. Let e

1

and e

2

be the left-most

and the right-most edges in G

2

entering v. Let e

3

and e

4

be the left-most and the right-most edges

in G

2

leaving v. The face of G

2

with e

1

and e

3

on its boundary is denoted by above(v). The face of

G

2

with e

2

and e

4

on its boundary is denoted by below(v). We use f

N

to denote above(v

N

) and f

S

to denote below(v

S

). (In other words, the exterior face is divided into two faces f

N

and f

S

.) For the

vertex v

W

and v

E

, de�ne above(v

W

) = above(v

E

) = f

N

and below(v

W

) = below(v

E

) = f

S

.

(d) For each interior face g of G

2

, the boundary of g consists of two directed paths P

1

and P

2

starting at the same vertex and ending at the same vertex. (See Figures 1.4).

3. Algorithm

Let G = (V;E) be a PTP graph and fT

1

; T

2

g be a REL of G. Consider the S-N net G

1

derived

from fT

1

; T

2

g. For each edge e 2 E

1

, let left(e) (right(e), respectively) denote the face of G

1

on the

left (right, respectively) of e. De�ne the dual graph, denoted by G

�

1

, of G

1

as follows. The node set of

G

�

1

is the set of the interior faces of G

1

plus the two exterior faces f

W

and f

E

. For each edge e 2 E

1

,

there is a corresponding arc e

�

in G

�

1

directed from the face left(e) to the face right(e). Since G

1

is

an s-t graph, G

�

1

is also an s-t graph [11]. Namely G

�

1

is a directed acyclic planar graph with f

W

as

the only source and f

E

as the only sink.

Similarly, de�ne the dual graph G

�

2

of G

2

as follows. For each edge e 2 E

2

, let above(e) (below(e),

respectively) denote the face of G

2

on the left (right, respectively) of e. The nodes of G

�

2

are the

interior faces of G

2

plus the two exterior faces f

S

and f

N

. For each edge e 2 E

2

, there is a directed

arc e

�

in G

�

2

from the face below(e) to the face above(e). G

�

2

is a directed acyclic planar graph with

f

S

as the only source and f

N

as the only sink.

De�nition 2: A consistent numbering of order k

1

of G

�

1

is a surjective mapping F

1

from the

node set of G

�

1

to the set of integers f0; 1 : : : ; k

1

g such that: (1) F

1

(f

W

) = 0 and F

1

(f

E

) = k

1

; and

(2) if there is an arc from the node f to the node g in G

�

1

then F

1

(f) < F

1

(g).
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For an example, a topological ordering [1, 4] of G

�

1

is a consistent numbering. As another example,

if we de�ne F

1

(f) to be the length of the longest path in G

�

1

from f

W

to f (with F

1

(f

W

) = 0), F

1

is

also a consistent numbering. De�ne the length of G

�

1

to be the the length of the longest path from

f

W

to f

E

in G

�

1

. Note that if the length of G

�

1

is k, then any consistent numbering of G has order

at least k by De�nition 2. The consistent numbering of G

�

2

can be de�ned similarly. We now can

present our algorithm as follows.

Algorithm DUAL:

Input: A PTP graph G = (V;E).

(1) Find a REL fT

1

; T

2

g of G.

(2a) Construct the S-N net G

1

derived from fT

1

; T

2

g and its dual graph G

�

1

.

(2b) Compute a consistent numbering F

1

of G

�

1

. Let k

1

= F

1

(f

E

).

(2c) For each vertex v 2 V other than v

S

and v

N

, let f

1

= left(v) and f

2

= right(v) in G

1

. Let

x

1

(v) = F

1

(f

1

) and x

2

(v) = F

1

(f

2

). De�ne x

1

(v

N

) = x

1

(v

S

) = 1 and x

2

(v

N

) = x

2

(v

S

) = k

1

�1.

(3a) Construct the W-E net G

2

derived from fT

1

; T

2

g and its dual graph G

�

2

.

(3b) Compute a consistent numbering F

2

of G

�

2

. Let k

2

= F

2

(f

N

).

(3c) For each vertex v 2 V , let g

1

= below(v) and g

2

= above(v) in G

2

. Let y

1

(v) = F

2

(g

1

) and

y

2

(v) = F

2

(g

2

).

(4) For each vertex v 2 V , assign v a rectangleR(v) bounded by two vertical lines with x-coordinates

x

1

(v), x

2

(v) and two horizontal lines with y-coordinates y

1

(v), y

2

(v).

End.

In section 4, we will prove the algorithm DUAL correctly computes a k

1

� k

2

rectangular dual

of G. For an example, the rectangular dual shown in Figure 1.2 is constructed from the information

indicated in Figures 1.3 and 1.4. In this example, F

1

(f) is the length of the longest path from f

W

to f in G

�

1

. F

2

(g) is the length of the longest path from f

S

to g in G

�

2

. In Figure 1.3, the integers

in the small boxes are the F

1

-numbers of the faces of G

1

. In Figure 1.4, the numbers in the small

boxes are the F

2

-numbers of the faces of G

2

.

To implement the algorithm DUAL, we assume the embedding of G is given. (If not, it can

be computed by using the well known linear time planarity algorithms.) Step 1 can be carried
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out by using the O(n) algorithm in [3]. (The algorithm in [3] �nds the set T

1

which is called the

path digraph). For Step (2a), the graph G

1

and the dual graph G

�

1

can be constructed from the

embedding information of G. The implementation of Step (2b) depends on the choice of F

1

. The

most natural choice, the length of the longest path from f

S

to f in G

�

1

, can be calculated according

to the topological ordering of G

�

1

[1, 4]. For Step (2c), the left face and the right face of each vertex

can be determined from the embedding information. All these steps take O(n) time. Step (3) can

be implemented similarly. Step (4) clearly takes O(n) time. Thus the total running time of the

algorithm is O(n).

4. Correctness Proof

Before we prove the correctness of the algorithm DUAL, we need several de�nitions. Consider

an S-N net G

1

of G. An S-N path is a directed path P in G

1

from v

S

to v

N

. Let P

1

and P

2

be two

S-N paths of G

1

. (P

1

and P

2

are not necessarily edge disjoint.) We say P

2

is to the right of P

1

if

every edge e 2 P

2

is either on P

1

or to the right of P

1

.

De�nition 3: A path system of G

1

is a collection fP

0

; : : : ; P

l�1

g of S-N paths of G

1

such that:

(1) The union of the paths P

i

(0 � i � l� 1) is the edge set E

1

of G

1

.

(2) P

i

is to the right of P

i�1

for 1 � i � l� 1.

De�nition 4: Let F

1

be a consistent numbering of G

�

1

of order k

1

. For each 0 � i � k

1

, de�ne:

(1) FACE

i

= ff j f is a face of G

1

with F

1

(f) = ig.

(2) LB

i

= fe 2 E

1

j e is on the left boundary of a face f 2 FACE

i

g.

(3) RB

i

= fe 2 E

1

j e is on the right boundary of a face f 2 FACE

i

g.

(4) De�ne the standard path system fP

0

; : : : ; P

k

1

�1

g of G

1

as follows:

P

0

= RB

0

; and P

i

= P

i�1

� LB

i

[RB

i

for 1 � i � k

1

� 1.

Note that: FACE

0

= ff

W

g, LB

0

= ;, RB

0

= f(v

S

; v

W

); (v

W

; v

N

)g. FACE

k

1

= ff

E

g, LB

k

1

=

f(v

S

; v

E

); (v

E

; v

N

)g, RB

k

1

= ;.

We make the following observations. Consider any edge e 2 E

1

. Let g

1

= left(e), g

2

= right(e),

p = F

1

(g

1

), q = F

1

(g

2

). Since e is on the right boundary of g

1

and on the left boundary of g

2

,

e 2 RB

p

and e 2 LB

q

. Since e's corresponding arc e

�

is directed from g

1

to g

2

in G

�

1

, we have p < q.

So LB

i

\ RB

i

= ; for all 0 � i � k

1

. Since each e 2 E

1

is in exactly one RB

i

(0 � i � k

1

� 1), E

1

is the disjoint union of the sets RB

i

(0 � i � k

1

� 1). Similarly E

1

is the disjoint union of the sets

LB

i

(1 � i � k

1

).

Lemma 4: Let F

1

be a consistent numbering of G

�

1

of order k

1

. Then

(a) The standard path system fP

0

; P

1

; : : : ; P

k

1

�1

g in De�nition 4 is a path system of G

1

.

7



(b) For each vertex v 2 V , let f

1

= left(v) and f

2

= right(v) in G

1

. De�ne x

1

(v) = F

1

(f

1

) and

x

2

(v) = F

1

(f

2

). Then v is on the path P

i

if and only if x

1

(v) � i � x

2

(v)� 1.

Proof: (a) We prove, by induction, the following hold for each i (0 � i � k

1

� 1): (1) P

i

is an

S-N path of G

1

; and (2) LB

i+1

� P

i

.

Base step i = 0: (1) P

0

= f(v

S

; v

W

); (v

W

; v

N

)g is an S-N path of G

1

.

(2) Let e be an edge in LB

1

. Then e is on the left boundary of a face f 2 FACE

1

. Let e

�

be the

arc in G

�

1

corresponding to e. Since F

1

(f) = 1, e

�

must be directed from f

E

to f in G

�

1

. This implies

e 2 RB

0

= P

0

. Since this is true for all e 2 LB

1

, we have LB

1

� P

0

.

Induction step: Assume the claims (1) and (2) are true for i� 1, we show they are true for i.

(1) By induction hypothesis, P

i�1

is an S-N path. Suppose FACE

i

= fh

1

; : : : ; h

l

g for some l.

Let A

j

and B

j

be the left and the right boundary of h

j

respectively (1 � j � l). Since (2) is true for

P

i�1

, the paths A

j

(1 � j � l) are sub-paths of P

i�1

. Since A

j

and B

j

(1 � j � l) start at the same

vertex and end at the same vertex and P

i

is obtained from P

i�1

by replacing each A

j

with B

j

, P

i

is

an S-N path of G

1

.

(2) Consider any edge e 2 LB

i+1

. Let g

1

= left(e) and g

2

= right(e). Since e 2 LB

i+1

,

F

1

(g

2

) = i+ 1. Suppose F

1

(g

1

) = q for some q. Then e 2 RB

q

. Since e

�

is directed from g

1

to g

2

in

G

�

1

, q < i+ 1. By de�nition, e is added into P

q

and deleted when P

i+1

is constructed. So e is in P

r

for all q � r � i. In particular e 2 P

i

. Thus LB

i+1

� P

i

. This completes the induction.

Each e 2 E

1

is in some RB

i

(0 � i � k

1

� 1) and hence in P

i

. Therefore E

1

is the union of

P

i

's (i = 0; : : :k

1

� 1). From the de�nition of P

i

, it is easy to see P

i

is to the right of P

i�1

for all

1 � i � k

1

� 1. Thus fP

0

; : : : ; P

k

1

�1

g is a path system of G

1

.

(b) Since v is on the right boundary of f

1

, it is added into the path P

x

1

(v)

. Since v is on the left

boundary of f

2

, it is removed when the path P

x

2

(v)

is constructed. Hence v is on the paths P

i

for

exactly those indices i with x

1

(v) � i � x

2

(v)� 1. 2

All above discussion can be repeated on the W-E net G

2

and its dual graph G

�

2

. Let F

2

be a

consistent numbering of G

�

2

of order k

2

. We can construct the standard path system fQ

0

; : : : ; Q

k

2

�1

g

of G

2

from F

2

similar to De�nition 4. For each vertex v of G, let g

1

= below(v) and g

2

= above(v)

in G

2

. De�ne y

1

(v) = F

2

(g

1

) and y

2

(v) = F

2

(g

2

). Similar to Lemma 4, it can be shown that v is on

the path Q

j

if and only if y

1

(v) � j � y

2

(v)� 1.

Lemma 5: Let G

1

and G

2

be the S-N net and the W-E net derived from a REL fT

1

; T

2

g of G.

Let F

1

and F

2

be two consistent numberings of G

�

1

and G

�

2

, respectively. Let u and v be two vertices

of G.

8



(1) If (u; v) 2 T

2

and is directed from u to v in G

2

, then x

2

(u) = x

1

(v).

(2) If there is a directed path from u to v in G

2

with length at least 2, then x

2

(u) < x

1

(v).

(3) If (u; v) 2 T

1

and is directed from u to v in G

1

, then y

2

(u) = y

1

(v).

(4) If there is a directed path from u to v in G

1

with length at least 2, then y

2

(u) < y

1

(v).

Proof: We only prove (1) and (2). The proof of (3) and (4) is similar.

(1) Suppose (u; v) 2 T

2

and is directed from u to v. Let e

1

(e

2

, respectively) be the rightmost

outgoing (incoming, respectively) edge of u in G

1

. Let e

3

(e

4

, respectively) be the leftmost outgoing

(incoming, respectively) edge of v in G

1

. Let f be the face of G

1

with e

1

; e

2

; e

3

, and e

4

on its

boundary. Then f = right(u) = left(v) and x

2

(u) = x

1

(v) = F

1

(f).

(2) Let u = u

0

; u

1

; : : : ; u

p

= v (p � 2) be a directed path in G

2

from u to v. By (1), x

2

(u

l�1

) =

x

1

(u

l

) for all 1 � l � p. Since x

1

(u

l

) < x

2

(u

l

) for all 0 � l � p and p � 2, we have x

2

(u) = x

2

(u

0

) <

x

1

(u

p

) = x

1

(v). 2

From above two lemmas, we can prove the following:

Theorem 6: The algorithm DUAL correctly constructs a rectangular dual of G in O(n) time.

Proof: We have shown the algorithm can be implemented in linear time. We next prove the

correctness of the algorithm. Let fP

0

; : : : ; P

k

1

�1

g be the standard path system of G

1

derived from

F

1

and let fQ

0

; : : : ; Q

k

2

�1

g be the standard path system of G

2

derived from F

2

. In the rectangular

dual R constructed by the algorithm DUAL, each S-N path P

i

(0 � i � k

1

� 1) corresponds to

a vertical strip bounded by the two vertical lines with x-coordinates i and i + 1. Each W-E path

Q

j

(0 � j � k

2

� 1) corresponds to a horizontal strip bounded by the two horizontal lines with

y-coordinates j and j + 1. Let R(v) be the rectangle with coordinates x

1

(v); x

2

(v); y

1

(v); y

2

(v). To

show the set fR(v) j v 2 V g forms a rectangular dual of G, we need to prove the following claims.

(1) We show that each unit square R

ij

(0 � i � k

1

� 1 and 0 � j � k

2

� 1) with x-coordinates i,

i+1 and y-coordinates j, j+1 is occupied by a rectangle R(v) for a unique v 2 V . Consider the S-N

path P

i

and the W-E path Q

j

. Except the four special cases (a) i = 0; j = 0 (b) i = k

1

� 1; j = 0 (c)

i = 0; j = k

2

� 1 (d) i = k

1

� 1; j = k

2

� 1, P

i

and Q

j

intersect at a unique vertex v 2 V . By Lemma

4 (b), v is the unique vertex satisfying all of the following inequalities: x

1

(v) � i, i + 1 � x

2

(v),

y

1

(v) � j, j + 1 � y

2

(v). Hence R(v) is the unique rectangle occupying R

ij

. For the four special

cases, this claim is not true. (For example, both v

S

and v

W

belong to the intersection of P

0

and

Q

0

.) The four special cases correspond to the four corner unit squares of R. However, the special

de�nition x

1

(v

S

) = x

1

(v

N

) = 1 and x

2

(v

S

) = x

2

(v

N

) = k

1

� 1 at the Step (2b) of the algorithm

DUAL ensures that each of the four unit corner squares of R is occupied by one of R(v

W

); R(v

E

).

9



(2) We show if e = (u; v) is an edge in G, then the corresponding rectangles R(u) and R(v) share

a common boundary. If e is an exterior edge, this is ensured by the de�nition of R(v

N

), R(v

W

),

R(v

S

), R(v

E

). So assume e is an interior edge. Suppose e 2 T

1

and is directed from u to v. (Other

cases are similar). Let P

i

be an S-N path containing e. By Lemma 4 (b), x

1

(u) � i � x

2

(u)� 1 and

x

1

(v) � i � x

2

(v)� 1. By Lemma 5 (3), y

2

(u) = y

1

(v) = j for some j. Thus R(u) and R(v) have

the line segment connecting two points (i; j) and (i+ 1; j) as their common boundary.

(3) We show if two rectangles R(u) and R(v) share a common boundary, then (u; v) is an edge in

G. Assume the common boundary of R(u) and R(v) contains a horizontal line segment I connecting

two points (i; j) and (i + 1; j). (Other cases are similar.) Since x

1

(u) � i, i + 1 � x

2

(u) and

x

1

(v) � i, i+ 1 � x

2

(v), both u and v are on the S-N path P

i

. We need to show (u; v) is an edge on

P

i

. If not, there exists a directed path from u to v in G

1

of length at least 2. By Lemma 5 (4), we

have y

2

(u) < y

1

(v). This contradicts the assumption that R(u) and R(v) share I as their common

boundary.

Thus e = (u; v) is an edge of G if and only if R(u) and R(v) share a common boundary. Hence

fR(v) j v 2 V g form a rectangular dual of G. 2

5. Heuristics for Reducing the Size of the Rectangular Dual

The rectangular dual produced by the algorithm DUAL has size k

1

� k

2

, where k

i

(i = 1; 2) is

the order of the consistent numbering of F

i

of G

�

i

. As mentioned earlier, if k

1

is the length of the

longest path from f

W

to f

E

in G

�

1

and k

2

is the length of the longest path from f

S

to f

N

in G

�

2

, then

any consistent numbering of G

�

1

has order at least k

1

and any consistent numbering of G

�

2

has order

at least k

2

. Thus the size of the smallest rectangular dual that can be produced from a given REL

fT

1

; T

2

g is exactly k

1

� k

2

. So in order to reduce the size of the rectangular dual of G, we must try

to �nd a good REL. In this section, we present two such heuristics: (1) Delete certain edges from G

1

to obtain another S-N net so that the corresponding rectangular dual R

0

has smaller width (at the

cost of possible increase in the height of R

0

). (2) Add certain edges into G

1

to obtain another S-N

net so that the corresponding rectangular dual R

00

has the same width and possibly smaller height.

5.1 Reducing the width of the rectangular dual

Let G

�

1

be the dual of G

1

and k

1

be the length of G

�

1

. In order to reduce the width of the

rectangular dual R, we must reduce k

1

.

Let e = (u; v) be an interior edge of G

1

directed from u to v. We say e is redundant if u has

at least two outgoing edges and v has at least two incoming edges in G

1

. It is easy to show that

10



the directed graph G

1

� feg, obtained from G

1

by deleting a redundant edge e, is still an S-N net

of G. Let G

�

denote the dual graph of G

1

� feg. G

�

can be obtained from G

�

1

by removing e's

corresponding arc e

�

and merging the two faces of G

1

with e on their boundary into a single face.

Our strategy for reducing the width of R is to keep deleting the redundant edges from G

1

until no

redundant edges remain. We say the resulting S-N net is unreducible.

The removal of some redundant edges does reduce the length of G

�

1

, while the removal of other

redundant edges does not. So the order in which the redundant edges are removed is important. Let e

be an redundant edge of G

1

and let e

�

= (f

1

; f

2

) be its corresponding arc in G

�

1

. Suppose p

1

= F

1

(f

1

)

and p

2

= F

1

(f

2

). We say e is critical if e

�

is the only arc in G

�

1

from a face with F

1

-number p

1

to a

face with F

1

-number p

2

. It is easy to show that the removal of a critical redundant edge e reduces

the length of G

�

1

by 1. Thus when deleting redundant edges from G

1

, we always delete critical edges

�rst. The following is a heuristic algorithm for this strategy. It is to be inserted into the algorithm

DUAL following the step (1).

Algorithm Reduce Width:

Input: An S-N net G

1

of a PTP graph G = (V;E).

Repeat:

If there is a critical redundant edge e 2 G

1

, then G

1

 G

1

� feg.

Else �nd an arbitrary redundant edge e 2 G

1

and G

1

 G

1

� feg.

Until G

1

is unreducible.

This algorithm can be easily implemented in O(n

2

) time. Figure 2 shows an example. When

performing this algorithm on the S-N net shown in Figure 1.3, two critical redundant edges (l; i) and

(n; h) are deleted. At this point, the edges (j; i) and (p; j) are redundant, but none is critical. So we

arbitrarily delete the edge (j; i). After this is done, the edge (p; j) becomes critical and is deleted.

The resulting unreducible S-N net and the corresponding rectangular dual R

0

is shown in Figure 2.

The width of R

0

is reduced from 10 to 7. The height of R

0

is increased from 11 to 12.

Figure 2

5.2 Reducing the height of the rectangular dual

Given an S-N net G

1

, it is possible to add certain edges into G

1

without increasing the length of

the dual graph G

�

1

. By doing so, we hope to reduce the length of the corresponding dual graph G

�

2

,

and thus reduce the height of the rectangular dual R.

Two edges incident to a vertex v are adjacent if they are consecutive around v in the embedding.

An interior edge e = (u; v) 2 G

2

is called an l-candidate edge if it satis�es the following two conditions:

11



(a) There are at least two edges in G

2

incident to u and at least two edges in G

2

incident to v.

(b.l) e is adjacent to the rightmost outgoing edge of u in G

1

and is adjacent to the leftmost

incoming edge of v in G

1

.

Similarly, e is called a r-candidate edge if it satis�es (a) and the following condition:

(b.r) e is adjacent to the rightmost incoming edge of u in G

1

and is adjacent to the leftmost

outgoing edge of v in G

1

.

If we add an l-candidate edge e = (u; v) into G

1

and direct it from u to v (see Figure 3.1. where

the shaded lines denote the edges in G

2

and the solid lines denote the edges in G

1

); or if we add a

r-candidate edge e = (u; v) into G

1

and direct it from v to u (Figure 3.2), it can be shown that the

resulting graph G

0

1

is an S-N net of G.

Figure 3

We next investigate the condition under which a candidate edge can be added into G

1

without

increasing the length of G

�

1

. We only discuss the r-candidate edges. The condition for the l-candidate

edges is similar. Let e = (u; v) be a r-candidate edge and f be the face of G

1

containing e in its

interior. Let P be the left boundary and Q the right boundary of f . The vertex u divides P into

two paths: P

1

ends at u and P

2

starts at u. Similarly, v divides Q into two paths: Q

1

ends at v and

Q

2

starts at v (Figure 3.3). Let P

�

1

and P

�

2

be the sets of the arcs in G

�

1

corresponding to the edges

in P

1

and P

2

, respectively. Let Q

�

1

and Q

�

2

be the sets of the arcs in G

�

1

corresponding to the edges

in Q

1

and Q

2

, respectively. An arc e

�

= (g

1

; g

2

) in G

�

1

is called a jump arc if F

1

(g

1

) < F

1

(g

2

)� 1. e

�

is called an essential arc if F

1

(g

1

) = F

1

(g

2

)� 1.

Let G

0

1

be the graph obtained by adding a r-candidate edge e into G

1

. The dual graph G

0�

1

of G

0

1

can be obtained from G

�

1

as follows: The face f is divided into two faces f

1

and f

2

with e as their

common boundary. A new arc (f

1

; f

2

) from f

1

to f

2

is introduced. Each arc (g

1

; f) 2 P

�

1

is replaced

by a new arc (g

1

; f

1

). Each arc (g

2

; f) 2 P

�

2

is replaced by a new arc (g

2

; f

2

). Each arc (f; h

1

) 2 Q

�

1

is replaced by a new arc (f

1

; h

1

). Each arc (f; h

2

) 2 Q

�

2

is replaced by a new arc (f

2

; h

2

) (Figure 3.3.)

Let p be the F

1

-number of the face f in G

�

1

. Let p

1

and p

2

be the F

1

-numbers of the faces f

1

and

f

2

in G

0�

1

, respectively. If all arcs in P

�

1

are jump arcs in G

�

1

, then p

1

< p and p

2

= p. The F

1

-number

of any other face g 6= f in G

�

1

remains unchanged in G

0�

1

. Thus the length of G

0�

1

is the same as the

length of G

�

1

. If there is an essential arc in P

�

1

, then p

1

= p and p

2

= p + 1. However, if all arcs in

Q

�

2

are jump arcs in G

�

1

, then the F

1

-number of any other face g 6= f in G

�

1

remains unchanged in

G

0�

1

and the length of G

0�

1

is the same as the length of G

�

1

. If there is an essential arc in P

�

1

and an

essential arc in Q

�

2

, then the length of G

0�

1

equals the length of G

�

1

plus 1.
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This observation motivates the following de�nition: A r-candidate edge is includable if either all

arcs in P

�

1

are jump arcs or all arcs in Q

�

2

are jump arcs in G

�

1

. Similarly, an l-candidate edge is

includable if either all arcs in P

�

2

are jump arcs, or all arcs in Q

�

1

are jump arcs in G

�

1

. As discussed

above, if we add an includable r- or l-candidate edge into G

1

, the resulting directed graph G

0

1

is an

S-N net of G, and the length of the corresponding dual graph G

0�

1

remains the same. Our strategy

for reducing the height of the rectangular dual R is to keep adding includable candidate edges into

G

1

until none can be found. We say the resulting S-N net is saturated. The following is a heuristic

algorithm for this strategy. It is to be inserted into the algorithm DUAL following the step (1).

Algorithm Reduce Height:

Input: An S-N net G

1

of a PTP graph G = (V;E).

Repeat:

If there is an includable l- or r-candidate edge e, then E

1

 E

1

[ feg.

Until G

1

is saturated.

It is easy to implement this algorithm in O(n

2

) time. Figure 4 shows an example. When

performing this algorithm on the S-N net shown in Figure 1.3, the includable candidate edges (s; p),

(p; l), (h; f), (f; b), and (q; r) are added into G

1

. (Note that the r-candidate edge (f; b) becomes

includable only after the edge (h; f) has been added into G

1

.) The resulting saturated S-N net and

the corresponding rectangular dual R

00

are shown in Figure 4. The width of R

00

remains 10. The

height of R

00

is reduced from 11 to 10.

Figure 4

6. Conclusions

A new linear time algorithm for �nding a rectangular dual R of a proper triangular planar graphG

is presented. The algorithm is conceptually simple and the rectangular dual constructed has integer

coordinates. The algorithm is based upon new understanding of the structure of PTP graphs, which

is of independent interests. We also presented heuristics for reducing the width and the height of

R. Several related optimization problems are interesting and deserve further studies. Let w(R) and

h(R) denote the width and the height of R. How to �nd a rectangular dual R of G so that w(R) is

minimized? w(R) + h(R) is minimized? or w(R)h(R) is minimized?
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Figure 1. A PTP garph G and a rectangular dual of G.
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Figure 2. An unreducible S-N net and the corresponding rectangular dual.
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Figure 3. Adding a candidate edge into an S-N net.
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Figure 4. A saturated S-N net and the corresponding rectangular dual.
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