On Finding the Rectangular Duals of Planar Triangular Graphs

Xin He^{1}
Department of Computer Science
State University of New York at Buffalo
Buffalo, NY 14260
E-mail: xinhe@cs.buffalo.edu

Abstract

We present a new linear time algorithm for finding rectangular duals of planar triangular graphs. The algorithm is conceptually simpler than the previous known algorithm. The coordinates of the rectangular dual constructed by our algorithm are integers and have pure combinatorial meaning. This allows us to discuss the heuristics for minimizing the size of the rectangular duals.

Key words: Algorithm, Planar graph, Rectangular dual.
AMS(MOS) subject classifications: 05C05, 05C38, 68Q25, 68R10.

1. Introduction

Let R be a rectangle. A rectangular subdivision system of R is a partition of R into a set $\Phi=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ of non-intersecting smaller rectangles such that no four rectangles in Φ meet at the same point. A rectangular dual of a graph $G=(V, E)$ is a rectangular subdivision system Φ and a one-to-one correspondence $f: V \rightarrow \Phi$ such that two vertices u and v are adjacent in G if and only if their corresponding rectangles $f(u)$ and $f(v)$ share a common boundary. Figures 1.1 and 1.2 show a graph G and its rectangular dual. If G has a rectangular dual, clearly G must be a planar graph.

The rectangular dual of a graph G finds applications in the floor planning of electronic chips and in architectural design [5, 9]. Each vertex of G represents a circuit module and the edges represent module adjacencies. A rectangular dual provides a placement of the circuit modules that preserves the required adjacencies.

The problem of finding rectangular duals has been studied in $[2,3,6,8,12]$. A linear time algorithm for this problem was given in [3]. This algorithm is rather complicated and requires real arithmetic for the coordinates of the rectangular dual. We present a new linear time algorithm for solving this problem. The coordinates of the rectangular dual R constructed by our algorithm are

[^0]integers and have pure combinatorial meaning. This allows us to discuss heuristics for reducing the size of R.

The present paper is organized as follows. Sections 2 introduces some definitions and lemmas needed by our algorithm. Section 3 presents the algorithm. Section 4 proves its correctness. In section 5 , we discuss the heuristics for reducing the size of the rectangular dual. Section 6 concludes the paper.

2. Regular Edge Labeling of Planar Triangular Graphs

Let $G=(V, E)$ be a planar graph. Consider a fixed plane embedding of G. The embedding divides the plane into a number of regions. The unbounded region is called the exterior face. Other regions are called interior faces. The vertices and the edges on the exterior face are called exterior vertices and exterior edges, respectively. A cycle C of G divides the plane into its interior region and exterior region. If C contains at least one vertex in its interior region, C is called a separating cycle of G. For each vertex $v, N(v)$ denotes the set of neighbors of v and $\operatorname{Star}(v)$ denotes the set of edges incident to v. Whenever these notations are used, it is understood that the members in each set are listed in counterclockwise order around v in the embedding.

Consider a planar graph $H=(V, E)$. Let $v_{0}, v_{1}, v_{2}, v_{4}$ be four vertices on the exterior face of H in counterclockwise order. Let $P_{i}(i=0,1,2,3)$ be the four paths on the exterior face of H consisting of the vertices between v_{i} and v_{i+1} (where the addition is mod 4). We seek a rectangular dual R_{H} of H such that the four vertices $v_{0}, v_{1}, v_{2}, v_{3}$ correspond to the four corner rectangles of R_{H} and the vertices on P_{0} (P_{1}, P_{2}, P_{3}, respectively) correspond to the rectangles located along the north (west, south, east, respectively) boundary of R_{H}. Necessary and sufficient conditions for testing if H has a rectangular dual were discussed in $[2,3,6]$. These conditions, however, can be easily reduced to the following simpler form.

In order to simplify the problem, we modify H as follows: Add four new vertices $v_{N}, v_{W}, v_{S}, v_{E}$ and connect $v_{N}\left(v_{W}, v_{S}, v_{E}\right.$, respectively $)$ to every vertex on $P_{0}\left(P_{1}, P_{2}, P_{3}\right.$, respectively). Then add four new edges $\left(v_{N}, v_{W}\right),\left(v_{W}, v_{S}\right),\left(v_{S}, v_{E}\right),\left(v_{E}, v_{N}\right)$. Let G be the resulting graph. It is easy to see that H has a rectangular dual R_{H} with $v_{0}, v_{1}, v_{2}, v_{3}$ corresponding to the four corner rectangles of R_{H} if and only if G has a rectangular dual R with exactly four rectangles on the boundary of R. Without loss of generality, we will only discuss planar graphs with exactly four vertices on its exterior face.

If G has a rectangular dual R, then every face of G, except the exterior face, must be a triangle (since no four rectangles of R meet at the same point). Moreover, since at least four rectangles are
needed to fully enclose some non-empty area on the plane, any separating cycle of G must have length at least 4. The following theorem states that these two conditions are also sufficient for G to have a rectangular dual.

Theorem 1 [6]: A planar graph $G=(V, E)$ has a rectangular dual R with four rectangles on the boundary of R if and only if the following two conditions hold: (1) Every interior face of G is a triangle and the exterior face of G is a quadrangle; (2) G has no separating triangles.

A different form of Theorem 1 was given in [2, 3]. A graph satisfying the two conditions of Theorem 1 is called a proper triangular planar (PTP) graph. From now on, we only discuss such graphs.

Definition 1: A regular edge labeling (REL) of a PTP graph $G=(V, E)$ is a partition of the interior edges of G into two subsets $\left\{T_{1}, T_{2}\right\}$ of directed edges such that the following hold:
(1) For each interior vertex v, the edges in $\operatorname{Star}(v)$ appear in counterclockwise order around v as follows: a set of edges in T_{1} leaving v; a set of edges in T_{2} entering v; a set of edges in T_{1} entering v; a set of edges in T_{2} leaving v.
(2) All interior edges incident to v_{N} are in T_{1} and entering v_{N}. All interior edges incident to v_{W} are in T_{2} and leaving v_{W}. All interior edges incident to v_{S} are in T_{1} and leaving v_{S}. All interior edges incident to v_{E} are in T_{2} and entering v_{E}.

From Theorem 1, we can easily prove the following:
Theorem 2: Every PTP graph $G=(V, E)$ has a REL.
Proof: By Theorem 1, G has a rectangular dual R. For each $v \in V$, let $R(v)$ denote the rectangle in R corresponding to v. For each interior vertex v, label each edge $(v, u) \in \operatorname{Star}(v)$ as follows: If $R(u)$ is above $R(v), e$ is in T_{1} and directed leaving v. If $R(u)$ is below $R(v), e$ is in T_{1} and directed entering v. If $R(u)$ is to the left of $R(v), e$ is in T_{2} and directed entering v. If $R(u)$ is to the right of $R(v), \epsilon$ is in T_{2} and directed leaving v. This labeling satisfies the two conditions of Definition 1.

Although Theorem 2 is proved from Theorem 1, our algorithm goes another way around: We find a REL of G first and construct a rectangular dual of G from the REL. We first prove some properties of the REL.

Let $G=(V, E)$ be a PTP graph and $\left\{T_{1}, T_{2}\right\}$ be a REL of G. Let G_{1} be the directed subgraph of G induced by the edges in T_{1} and the four exterior edges directed as $v_{S} \rightarrow v_{W} ; v_{W} \rightarrow v_{N} ; v_{S} \rightarrow v_{E}$; $v_{E} \rightarrow v_{N}$. Let E_{1} denote the edge set of G_{1}. (E_{1} is the union of T_{1} and the four exterior edges.) Let G_{2} be the directed subgraph of G induced by the edges in T_{2} and the four exterior edges directed as $v_{W} \rightarrow v_{S} ; v_{S} \rightarrow v_{E} ; v_{W} \rightarrow v_{N} ; v_{N} \rightarrow v_{E}$. Let E_{2} denote the edge set of G_{2}. (E_{2} is the union of
T_{2} and the four exterior edges.) We will call G_{1} the $S-N$ net and G_{2} the W - E net of G derived from the REL $\left\{T_{1}, T_{2}\right\}$.

Figure 1.1 shows a PTP graph G. An S-N net G_{1} and the corresponding W-E net G_{2} are shown in Figures 1.3 and 1.4. (Ignore the integers in the small boxes in Figures 1.3 and 1.4 for now.)

Figure 1
Lemma 3: (1) G_{1} is acyclic with v_{S} as the only source and v_{N} as the only sink.
(2) G_{2} is acyclic with v_{W} as the only source and v_{E} as the only sink.

Proof: By way of contradiction. Suppose either G_{1} or G_{2} contains a directed cycle. Let $C=$ $\left\{v_{1}, \ldots v_{l}\right\}$ be such a cycle such that the total number of vertices that are on C or in the interior of C is minimized. Without loss of generality, suppose C is a cycle in G_{1} and directed in clockwise direction. (The proof of other cases are similar.)

Case 1: C contains no vertices in its interior. If $l=3$, then there is no edge in T_{2} leaving v_{2}. This contradicts the condition (1) of Definition 1. Suppose $l>3$. Then there is an edge $\epsilon=\left(v_{i}, v_{j}\right) \in E$ contained in the interior of C. e cannot be in T_{1} since otherwise we would have a smaller cycle in G_{1} which contradicts the choice of C. So e must be in T_{2}. But regardless of the direction of ϵ in T_{2}, the condition (1) of Definition 1 is violated either at v_{i} or at v_{j}.

Case 2: C contains at least one vertex u_{1} in its interior. Start at u_{1}, we can reach another vertex u_{2} by using a T_{2} edge. Similarly from u_{2} we can reach another vertex u_{3} by using a T_{2} edge. Since every vertex u has an incident edge in T_{2} leaving u, this process can be repeated again and again. Since C is the smallest cycle in both G_{1} and G_{2}, we cannot have a cycle in G_{2} completely contained in the interior of C. Thus we must reach a vertex $v_{j} \in C$. Then the condition (1) of Definition 1 is violated at v_{j}.

Since we get contradictions in all cases, both G_{1} and G_{2} are acyclic. Since every vertex v, other than v_{S} and v_{N}, has indegree and outdegree at least 1 in G_{1}, v_{S} is the only source and v_{N} is the only sink of G_{1}. Similarly, v_{W} is the only source and v_{E} is the only sink of G_{2}.

Both G_{1} and G_{2} are the so-called s-t planar graphs. (An s-t planar graph is a directed acyclic planar graph with exactly one source s and exactly one sink t on its exterior face.) The properties of these graphs have been studied in $[7,10,13]$. Using these properties, the structure of G_{1} can be summarized as follows:
(a) For each vertex v other than v_{S} and v_{N}, the edges entering v appear consecutively around v in G_{1}. The edges leaving v appear consecutively around v in G_{1}. Let ϵ_{1} and e_{2} be the left-most and the right-most edges in G_{1} entering v. Let ϵ_{3} and ϵ_{4} be the left-most and the right-most edges in
G_{1} leaving v. The face of G_{1} with ϵ_{1} and ϵ_{3} on its boundary is denoted by left (v). The face of G_{1} with e_{2} and e_{4} on its boundary is denoted by $\operatorname{right}(v)$. We use f_{W} to denote left(v_{W}) and f_{E} to denote $\operatorname{right}\left(v_{E}\right)$. (In other words, the exterior face is divided into two faces f_{W} and f_{E}.) For the vertex v_{S} and v_{N}, define $\operatorname{left}\left(v_{S}\right)=\operatorname{left}\left(v_{N}\right)=f_{W}$ and $\operatorname{right}\left(v_{S}\right)=\operatorname{right}\left(v_{N}\right)=f_{E}$.
(b) For each interior face f of G_{1}, the boundary of f consists of two directed paths P_{1} and P_{2} starting at the same vertex and ending at the same vertex. (See Figures 1.3).

Similarly, the structure of G_{2} can be summarized as follows.
(c) For each vertex v other than v_{W} and v_{E}, the edges entering v appear consecutively around v in G_{2}. The edges leaving v appear consecutively around v in G_{2}. Let e_{1} and ϵ_{2} be the left-most and the right-most edges in G_{2} entering v. Let ϵ_{3} and ϵ_{4} be the left-most and the right-most edges in G_{2} leaving v. The face of G_{2} with ϵ_{1} and ϵ_{3} on its boundary is denoted by above (v). The face of G_{2} with ϵ_{2} and ϵ_{4} on its boundary is denoted by below (v). We use f_{N} to denote above $\left(v_{N}\right)$ and f_{S} to denote below $\left(v_{S}\right)$. (In other words, the exterior face is divided into two faces f_{N} and f_{S}.) For the vertex v_{W} and v_{E}, define $\operatorname{above}\left(v_{W}\right)=\operatorname{above}\left(v_{E}\right)=f_{N}$ and $\operatorname{below}\left(v_{W}\right)=\operatorname{below}\left(v_{E}\right)=f_{S}$.
(d) For each interior face g of G_{2}, the boundary of g consists of two directed paths P_{1} and P_{2} starting at the same vertex and ending at the same vertex. (See Figures 1.4).

3. Algorithm

Let $G=(V, E)$ be a PTP graph and $\left\{T_{1}, T_{2}\right\}$ be a REL of G. Consider the S-N net G_{1} derived from $\left\{T_{1}, T_{2}\right\}$. For each edge $e \in E_{1}$, let left (ϵ) (right (ϵ), respectively) denote the face of G_{1} on the left (right, respectively) of e. Define the dual graph, denoted by G_{1}^{*}, of G_{1} as follows. The node set of G_{1}^{*} is the set of the interior faces of G_{1} plus the two exterior faces f_{W} and f_{E}. For each edge $e \in E_{1}$, there is a corresponding $\operatorname{arc} e^{*}$ in G_{1}^{*} directed from the face $l e f t(\epsilon)$ to the face $\operatorname{right}(e)$. Since G_{1} is an s-t graph, G_{1}^{*} is also an s-t graph [11]. Namely G_{1}^{*} is a directed acyclic planar graph with f_{W} as the only source and f_{E} as the only sink.

Similarly, define the dual graph G_{2}^{*} of G_{2} as follows. For each edge $e \in E_{2}$, let above (e) (below(e), respectively) denote the face of G_{2} on the left (right, respectively) of e. The nodes of G_{2}^{*} are the interior faces of G_{2} plus the two exterior faces f_{S} and f_{N}. For each edge $e \in E_{2}$, there is a directed $\operatorname{arc} \epsilon^{*}$ in G_{2}^{*} from the face below(e) to the face above(e). G_{2}^{*} is a directed acyclic planar graph with f_{S} as the only source and f_{N} as the only sink.

Definition 2: A consistent numbering of order k_{1} of G_{1}^{*} is a surjective mapping F_{1} from the node set of G_{1}^{*} to the set of integers $\left\{0,1 \ldots, k_{1}\right\}$ such that: (1) $F_{1}\left(f_{W}\right)=0$ and $F_{1}\left(f_{E}\right)=k_{1}$; and (2) if there is an arc from the node f to the node g in G_{1}^{*} then $F_{1}(f)<F_{1}(g)$.

For an example, a topological ordering $[1,4]$ of G_{1}^{*} is a consistent numbering. As another example, if we define $F_{1}(f)$ to be the length of the longest path in G_{1}^{*} from f_{W} to f (with $F_{1}\left(f_{W}\right)=0$), F_{1} is also a consistent numbering. Define the length of G_{1}^{*} to be the the length of the longest path from f_{W} to f_{E} in G_{1}^{*}. Note that if the length of G_{1}^{*} is k, then any consistent numbering of G has order at least k by Definition 2. The consistent numbering of G_{2}^{*} can be defined similarly. We now can present our algorithm as follows.

Algorithm DUAL:

Input: A PTP graph $G=(V, E)$.
(1) Find a REL $\left\{T_{1}, T_{2}\right\}$ of G.
(2a) Construct the S-N net G_{1} derived from $\left\{T_{1}, T_{2}\right\}$ and its dual graph G_{1}^{*}.
(2b) Compute a consistent numbering F_{1} of G_{1}^{*}. Let $k_{1}=F_{1}\left(f_{E}\right)$.
(2c) For each vertex $v \in V$ other than v_{S} and v_{N}, let $f_{1}=l e f t(v)$ and $f_{2}=\operatorname{right}(v)$ in G_{1}. Let $x_{1}(v)=F_{1}\left(f_{1}\right)$ and $x_{2}(v)=F_{1}\left(f_{2}\right)$. Define $x_{1}\left(v_{N}\right)=x_{1}\left(v_{S}\right)=1$ and $x_{2}\left(v_{N}\right)=x_{2}\left(v_{S}\right)=k_{1}-1$.
(3a) Construct the W-E net G_{2} derived from $\left\{T_{1}, T_{2}\right\}$ and its dual graph G_{2}^{*}.
(3b) Compute a consistent numbering F_{2} of G_{2}^{*}. Let $k_{2}=F_{2}\left(f_{N}\right)$.
(3c) For each vertex $v \in V$, let $g_{1}=\operatorname{below}(v)$ and $g_{2}=\operatorname{above}(v)$ in G_{2}. Let $y_{1}(v)=F_{2}\left(g_{1}\right)$ and $y_{2}(v)=F_{2}\left(g_{2}\right)$.
(4) For each vertex $v \in V$, assign v a rectangle $R(v)$ bounded by two vertical lines with x-coordinates $x_{1}(v), x_{2}(v)$ and two horizontal lines with y-coordinates $y_{1}(v), y_{2}(v)$.

End.
In section 4, we will prove the algorithm DUAL correctly computes a $k_{1} \times k_{2}$ rectangular dual of G. For an example, the rectangular dual shown in Figure 1.2 is constructed from the information indicated in Figures 1.3 and 1.4. In this example, $F_{1}(f)$ is the length of the longest path from f_{W} to f in $G_{1}^{*} . F_{2}(g)$ is the length of the longest path from f_{S} to g in G_{2}^{*}. In Figure 1.3, the integers in the small boxes are the F_{1}-numbers of the faces of G_{1}. In Figure 1.4, the numbers in the small boxes are the F_{2}-numbers of the faces of G_{2}.

To implement the algorithm DUAL, we assume the embedding of G is given. (If not, it can be computed by using the well known linear time planarity algorithms.) Step 1 can be carried
out by using the $O(n)$ algorithm in [3]. (The algorithm in [3] finds the set T_{1} which is called the path digraph). For Step (2a), the graph G_{1} and the dual graph G_{1}^{*} can be constructed from the embedding information of G. The implementation of Step (2b) depends on the choice of F_{1}. The most natural choice, the length of the longest path from f_{S} to f in G_{1}^{*}, can be calculated according to the topological ordering of $G_{1}^{*}[1,4]$. For Step (2c), the left face and the right face of each vertex can be determined from the embedding information. All these steps take $O(n)$ time. Step (3) can be implemented similarly. Step (4) clearly takes $O(n)$ time. Thus the total running time of the algorithm is $O(n)$.

4. Correctness Proof

Before we prove the correctness of the algorithm DUAL, we need several definitions. Consider an S-N net G_{1} of G. An S - N path is a directed path P in G_{1} from v_{S} to v_{N}. Let P_{1} and P_{2} be two S-N paths of G_{1}. (P_{1} and P_{2} are not necessarily edge disjoint.) We say P_{2} is to the right of P_{1} if every edge $e \in P_{2}$ is either on P_{1} or to the right of P_{1}.

Definition 3: A path system of G_{1} is a collection $\left\{P_{0}, \ldots, P_{l-1}\right\}$ of S-N paths of G_{1} such that:
(1) The union of the paths $P_{i}(0 \leq i \leq l-1)$ is the edge set E_{1} of G_{1}.
(2) P_{i} is to the right of P_{i-1} for $1 \leq i \leq l-1$.

Definition 4: Let F_{1} be a consistent numbering of G_{1}^{*} of order k_{1}. For each $0 \leq i \leq k_{1}$, define:
(1) $F A C E_{i}=\left\{f \mid f\right.$ is a face of G_{1} with $\left.F_{1}(f)=i\right\}$.
(2) $L B_{i}=\left\{e \in E_{1} \mid e\right.$ is on the left boundary of a face $\left.f \in F A C E_{i}\right\}$.
(3) $R B_{i}=\left\{e \in E_{1} \mid e\right.$ is on the right boundary of a face $\left.f \in F A C E_{i}\right\}$.
(4) Define the standard path system $\left\{P_{0}, \ldots, P_{k_{1}-1}\right\}$ of G_{1} as follows:
$P_{0}=R B_{0}$; and $P_{i}=P_{i-1}-L B_{i} \cup R B_{i}$ for $1 \leq i \leq k_{1}-1$.
Note that: $F A C E_{0}=\left\{f_{W}\right\}, L B_{0}=\emptyset, R B_{0}=\left\{\left(v_{S}, v_{W}\right),\left(v_{W}, v_{N}\right)\right\} . F A C E_{k_{1}}=\left\{f_{E}\right\}, L B_{k_{1}}=$ $\left\{\left(v_{S}, v_{E}\right),\left(v_{E}, v_{N}\right)\right\}, R B_{k_{1}}=\emptyset$.

We make the following observations. Consider any edge $e \in E_{1}$. Let $g_{1}=l \epsilon f t(\epsilon), g_{2}=\operatorname{right}(\epsilon)$, $p=F_{1}\left(g_{1}\right), q=F_{1}\left(g_{2}\right)$. Since ϵ is on the right boundary of g_{1} and on the left boundary of g_{2}, $e \in R B_{p}$ and $e \in L B_{q}$. Since ϵ^{\prime} s corresponding arc ϵ^{*} is directed from g_{1} to g_{2} in G_{1}^{*}, we have $p<q$. So $L B_{i} \cap R B_{i}=\emptyset$ for all $0 \leq i \leq k_{1}$. Since each $e \in E_{1}$ is in exactly one $R B_{i}\left(0 \leq i \leq k_{1}-1\right), E_{1}$ is the disjoint union of the sets $R B_{i}\left(0 \leq i \leq k_{1}-1\right)$. Similarly E_{1} is the disjoint union of the sets $L B_{i}\left(1 \leq i \leq k_{1}\right)$.

Lemma 4: Let F_{1} be a consistent numbering of G_{1}^{*} of order k_{1}. Then
(a) The standard path system $\left\{P_{0}, P_{1}, \ldots, P_{k_{1}-1}\right\}$ in Definition 4 is a path system of G_{1}.
(b) For each vertex $v \in V$, let $f_{1}=l e f t(v)$ and $f_{2}=\operatorname{right}(v)$ in G_{1}. Define $x_{1}(v)=F_{1}\left(f_{1}\right)$ and $x_{2}(v)=F_{1}\left(f_{2}\right)$. Then v is on the path P_{i} if and only if $x_{1}(v) \leq i \leq x_{2}(v)-1$.

Proof: (a) We prove, by induction, the following hold for each $i\left(0 \leq i \leq k_{1}-1\right)$: (1) P_{i} is an S-N path of G_{1}; and (2) $L B_{i+1} \subseteq P_{i}$.

Base step $i=0$: (1) $P_{0}=\left\{\left(v_{S}, v_{W}\right),\left(v_{W}, v_{N}\right)\right\}$ is an S-N path of G_{1}.
(2) Let e be an edge in $L B_{1}$. Then e is on the left boundary of a face $f \in F A C E_{1}$. Let e^{*} be the arc in G_{1}^{*} corresponding to ϵ. Since $F_{1}(f)=1, \epsilon^{*}$ must be directed from f_{E} to f in G_{1}^{*}. This implies $e \in R B_{0}=P_{0}$. Since this is true for all $e \in L B_{1}$, we have $L B_{1} \subseteq P_{0}$.

Induction step: Assume the claims (1) and (2) are true for $i-1$, we show they are true for i.
(1) By induction hypothesis, P_{i-1} is an S -N path. Suppose $F A C E_{i}=\left\{h_{1}, \ldots, h_{l}\right\}$ for some l. Let A_{j} and B_{j} be the left and the right boundary of h_{j} respectively $(1 \leq j \leq l)$. Since (2) is true for P_{i-1}, the paths $A_{j}(1 \leq j \leq l)$ are sub-paths of P_{i-1}. Since A_{j} and $B_{j}(1 \leq j \leq l)$ start at the same vertex and end at the same vertex and P_{i} is obtained from P_{i-1} by replacing each A_{j} with B_{j}, P_{i} is an S-N path of G_{1}.
(2) Consider any edge $e \in L B_{i+1}$. Let $g_{1}=\operatorname{left}(e)$ and $g_{2}=\operatorname{right}(e)$. Since $e \in L B_{i+1}$, $F_{1}\left(g_{2}\right)=i+1$. Suppose $F_{1}\left(g_{1}\right)=q$ for some q. Then $e \in R B_{q}$. Since e^{*} is directed from g_{1} to g_{2} in $G_{1}^{*}, q<i+1$. By definition, e is added into P_{q} and deleted when P_{i+1} is constructed. So ϵ is in P_{T} for all $q \leq r \leq i$. In particular $e \in P_{i}$. Thus $L B_{i+1} \subseteq P_{i}$. This completes the induction.

Each $e \in E_{1}$ is in some $R B_{i}\left(0 \leq i \leq k_{1}-1\right)$ and hence in P_{i}. Therefore E_{1} is the union of P_{i} 's $\left(i=0, \ldots k_{1}-1\right)$. From the definition of P_{i}, it is easy to see P_{i} is to the right of P_{i-1} for all $1 \leq i \leq k_{1}-1$. Thus $\left\{P_{0}, \ldots, P_{k_{1}-1}\right\}$ is a path system of G_{1}.
(b) Since v is on the right boundary of f_{1}, it is added into the path $P_{x_{1}(v)}$. Since v is on the left boundary of f_{2}, it is removed when the path $P_{x_{2}(v)}$ is constructed. Hence v is on the paths P_{i} for exactly those indices i with $x_{1}(v) \leq i \leq x_{2}(v)-1$.

All above discussion can be repeated on the W-E net G_{2} and its dual graph G_{2}^{*}. Let F_{2} be a consistent numbering of G_{2}^{*} of order k_{2}. We can construct the standard path system $\left\{Q_{0}, \ldots, Q_{k_{2}-1}\right\}$ of G_{2} from F_{2} similar to Definition 4. For each vertex v of G, let $g_{1}=\operatorname{below}(v)$ and $g_{2}=\operatorname{above}(v)$ in G_{2}. Define $y_{1}(v)=F_{2}\left(g_{1}\right)$ and $y_{2}(v)=F_{2}\left(g_{2}\right)$. Similar to Lemma 4 , it can be shown that v is on the path Q_{j} if and only if $y_{1}(v) \leq j \leq y_{2}(v)-1$.

Lemma 5: Let G_{1} and G_{2} be the S-N net and the W-E net derived from a REL $\left\{T_{1}, T_{2}\right\}$ of G. Let F_{1} and F_{2} be two consistent numberings of G_{1}^{*} and G_{2}^{*}, respectively. Let u and v be two vertices of G.
(1) If $(u, v) \in T_{2}$ and is directed from u to v in G_{2}, then $x_{2}(u)=x_{1}(v)$.
(2) If there is a directed path from u to v in G_{2} with length at least 2 , then $x_{2}(u)<x_{1}(v)$.
(3) If $(u, v) \in T_{1}$ and is directed from u to v in G_{1}, then $y_{2}(u)=y_{1}(v)$.
(4) If there is a directed path from u to v in G_{1} with length at least 2 , then $y_{2}(u)<y_{1}(v)$.

Proof: We only prove (1) and (2). The proof of (3) and (4) is similar.
(1) Suppose $(u, v) \in T_{2}$ and is directed from u to v. Let ϵ_{1} (e_{2}, respectively) be the rightmost outgoing (incoming, respectively) edge of u in G_{1}. Let ϵ_{3} (ϵ_{4}, respectively) be the leftmost outgoing (incoming, respectively) edge of v in G_{1}. Let f be the face of G_{1} with $\epsilon_{1}, e_{2}, e_{3}$, and e_{4} on its boundary. Then $f=\operatorname{right}(u)=l e f t(v)$ and $x_{2}(u)=x_{1}(v)=F_{1}(f)$.
(2) Let $u=u_{0}, u_{1}, \ldots, u_{p}=v(p \geq 2)$ be a directed path in G_{2} from u to v. By (1), $x_{2}\left(u_{l-1}\right)=$ $x_{1}\left(u_{l}\right)$ for all $1 \leq l \leq p$. Since $x_{1}\left(u_{l}\right)<x_{2}\left(u_{l}\right)$ for all $0 \leq l \leq p$ and $p \geq 2$, we have $x_{2}(u)=x_{2}\left(u_{0}\right)<$ $x_{1}\left(u_{p}\right)=x_{1}(v)$.

From above two lemmas, we can prove the following:
Theorem 6: The algorithm DUAL correctly constructs a rectangular dual of G in $O(n)$ time.
Proof: We have shown the algorithm can be implemented in linear time. We next prove the correctness of the algorithm. Let $\left\{P_{0}, \ldots, P_{k_{1}-1}\right\}$ be the standard path system of G_{1} derived from F_{1} and let $\left\{Q_{0}, \ldots, Q_{k_{2}-1}\right\}$ be the standard path system of G_{2} derived from F_{2}. In the rectangular dual R constructed by the algorithm DUAL, each S-N path $P_{i}\left(0 \leq i \leq k_{1}-1\right)$ corresponds to a vertical strip bounded by the two vertical lines with x-coordinates i and $i+1$. Each W-E path $Q_{j}\left(0 \leq j \leq k_{2}-1\right)$ corresponds to a horizontal strip bounded by the two horizontal lines with y-coordinates j and $j+1$. Let $R(v)$ be the rectangle with coordinates $x_{1}(v), x_{2}(v), y_{1}(v), y_{2}(v)$. To show the set $\{R(v) \mid v \in V\}$ forms a rectangular dual of G, we need to prove the following claims.
(1) We show that each unit square $R_{i j}\left(0 \leq i \leq k_{1}-1\right.$ and $\left.0 \leq j \leq k_{2}-1\right)$ with x-coordinates i, $i+1$ and y-coordinates $j, j+1$ is occupied by a rectangle $R(v)$ for a unique $v \in V$. Consider the $\mathrm{S}-\mathrm{N}$ path P_{i} and the W-E path Q_{j}. Except the four special cases (a) $i=0, j=0$ (b) $i=k_{1}-1, j=0$ (c) $i=0, j=k_{2}-1$ (d) $i=k_{1}-1, j=k_{2}-1, P_{i}$ and Q_{j} intersect at a unique vertex $v \in V$. By Lemma 4 (b), v is the unique vertex satisfying all of the following inequalities: $x_{1}(v) \leq i, i+1 \leq x_{2}(v)$, $y_{1}(v) \leq j, j+1 \leq y_{2}(v)$. Hence $R(v)$ is the unique rectangle occupying $R_{i j}$. For the four special cases, this claim is not true. (For example, both v_{S} and v_{W} belong to the intersection of P_{0} and Q_{0}.) The four special cases correspond to the four corner unit squares of R. However, the special definition $x_{1}\left(v_{S}\right)=x_{1}\left(v_{N}\right)=1$ and $x_{2}\left(v_{S}\right)=x_{2}\left(v_{N}\right)=k_{1}-1$ at the Step (2b) of the algorithm DUAL ensures that each of the four unit corner squares of R is occupied by one of $R\left(v_{W}\right), R\left(v_{E}\right)$.
(2) We show if $e=(u, v)$ is an edge in G, then the corresponding rectangles $R(u)$ and $R(v)$ share a common boundary. If e is an exterior edge, this is ensured by the definition of $R\left(v_{N}\right), R\left(v_{W}\right)$, $R\left(v_{S}\right), R\left(v_{E}\right)$. So assume e is an interior edge. Suppose $e \in T_{1}$ and is directed from u to v. (Other cases are similar). Let P_{i} be an S-N path containing e. By Lemma 4 (b), $x_{1}(u) \leq i \leq x_{2}(u)-1$ and $x_{1}(v) \leq i \leq x_{2}(v)-1$. By Lemma $5(3), y_{2}(u)=y_{1}(v)=j$ for some j. Thus $R(u)$ and $R(v)$ have the line segment connecting two points (i, j) and $(i+1, j)$ as their common boundary.
(3) We show if two rectangles $R(u)$ and $R(v)$ share a common boundary, then (u, v) is an edge in G. Assume the common boundary of $R(u)$ and $R(v)$ contains a horizontal line segment I connecting two points (i, j) and $(i+1, j)$. (Other cases are similar.) Since $x_{1}(u) \leq i, i+1 \leq x_{2}(u)$ and $x_{1}(v) \leq i, i+1 \leq x_{2}(v)$, both u and v are on the S-N path P_{i}. We need to show (u, v) is an edge on P_{i}. If not, there exists a directed path from u to v in G_{1} of length at least 2. By Lemma 5 (4), we have $y_{2}(u)<y_{1}(v)$. This contradicts the assumption that $R(u)$ and $R(v)$ share I as their common boundary.

Thus $e=(u, v)$ is an edge of G if and only if $R(u)$ and $R(v)$ share a common boundary. Hence $\{R(v) \mid v \in V\}$ form a rectangular dual of G.

5. Heuristics for Reducing the Size of the Rectangular Dual

The rectangular dual produced by the algorithm DUAL has size $k_{1} \times k_{2}$, where $k_{i}(i=1,2)$ is the order of the consistent numbering of F_{i} of G_{i}^{*}. As mentioned earlier, if k_{1} is the length of the longest path from f_{W} to f_{E} in G_{1}^{*} and k_{2} is the length of the longest path from f_{S} to f_{N} in G_{2}^{*}, then any consistent numbering of G_{1}^{*} has order at least k_{1} and any consistent numbering of G_{2}^{*} has order at least k_{2}. Thus the size of the smallest rectangular dual that can be produced from a given REL $\left\{T_{1}, T_{2}\right\}$ is exactly $k_{1} \times k_{2}$. So in order to reduce the size of the rectangular dual of G, we must try to find a good REL. In this section, we present two such heuristics: (1) Delete certain edges from G_{1} to obtain another S-N net so that the corresponding rectangular dual R^{\prime} has smaller width (at the cost of possible increase in the height of R^{\prime}). (2) Add certain edges into G_{1} to obtain another S-N net so that the corresponding rectangular dual $R^{\prime \prime}$ has the same width and possibly smaller height.

5.1 Reducing the width of the rectangular dual

Let G_{1}^{*} be the dual of G_{1} and k_{1} be the length of G_{1}^{*}. In order to reduce the width of the rectangular dual R, we must reduce k_{1}.

Let $e=(u, v)$ be an interior edge of G_{1} directed from u to v. We say e is redundant if u has at least two outgoing edges and v has at least two incoming edges in G_{1}. It is easy to show that
the directed graph $G_{1}-\{e\}$, obtained from G_{1} by deleting a redundant edge e, is still an S-N net of G. Let G^{*} denote the dual graph of $G_{1}-\{e\}$. G^{*} can be obtained from G_{1}^{*} by removing e 's corresponding arc e^{*} and merging the two faces of G_{1} with e on their boundary into a single face. Our strategy for reducing the width of R is to keep deleting the redundant edges from G_{1} until no redundant edges remain. We say the resulting $\mathrm{S}-\mathrm{N}$ net is unreducible.

The removal of some redundant edges does reduce the length of G_{1}^{*}, while the removal of other redundant edges does not. So the order in which the redundant edges are removed is important. Let ϵ be an redundant edge of G_{1} and let $e^{*}=\left(f_{1}, f_{2}\right)$ be its corresponding arc in G_{1}^{*}. Suppose $p_{1}=F_{1}\left(f_{1}\right)$ and $p_{2}=F_{1}\left(f_{2}\right)$. We say e is critical if e^{*} is the only arc in G_{1}^{*} from a face with F_{1}-number p_{1} to a face with F_{1}-number p_{2}. It is easy to show that the removal of a critical redundant edge e reduces the length of G_{1}^{*} by 1 . Thus when deleting redundant edges from G_{1}, we always delete critical edges first. The following is a heuristic algorithm for this strategy. It is to be inserted into the algorithm DUAL following the step (1).

Algorithm Reduce Width:

Input: An S-N net G_{1} of a PTP graph $G=(V, E)$.
Repeat:
If there is a critical redundant edge $e \in G_{1}$, then $G_{1} \leftarrow G_{1}-\{e\}$.
Else find an arbitrary redundant edge $\epsilon \in G_{1}$ and $G_{1} \leftarrow G_{1}-\{\epsilon\}$.
Until G_{1} is unreducible.
This algorithm can be easily implemented in $O\left(n^{2}\right)$ time. Figure 2 shows an example. When performing this algorithm on the $\mathrm{S}-\mathrm{N}$ net shown in Figure 1.3, two critical redundant edges (l, i) and (n, h) are deleted. At this point, the edges (j, i) and (p, j) are redundant, but none is critical. So we arbitrarily delete the edge (j, i). After this is done, the edge (p, j) becomes critical and is deleted. The resulting unreducible S-N net and the corresponding rectangular dual R^{\prime} is shown in Figure 2. The width of R^{\prime} is reduced from 10 to 7 . The height of R^{\prime} is increased from 11 to 12 .

Figure 2

5.2 Reducing the height of the rectangular dual

Given an S-N net G_{1}, it is possible to add certain edges into G_{1} without increasing the length of the dual graph G_{1}^{*}. By doing so, we hope to reduce the length of the corresponding dual graph G_{2}^{*}, and thus reduce the height of the rectangular dual R.

Two edges incident to a vertex v are adjacent if they are consecutive around v in the embedding. An interior edge $\epsilon=(u, v) \in G_{2}$ is called an l-candidate edge if it satisfies the following two conditions:
(a) There are at least two edges in G_{2} incident to u and at least two edges in G_{2} incident to v.
(b.l) e is adjacent to the rightmost outgoing edge of u in G_{1} and is adjacent to the leftmost incoming edge of v in G_{1}.

Similarly, e is called a r-candidate edge if it satisfies (a) and the following condition:
(b.r) e is adjacent to the rightmost incoming edge of u in G_{1} and is adjacent to the leftmost outgoing edge of v in G_{1}.

If we add an l-candidate edge $e=(u, v)$ into G_{1} and direct it from u to v (see Figure 3.1. where the shaded lines denote the edges in G_{2} and the solid lines denote the edges in G_{1}); or if we add a r-candidate edge $\epsilon=(u, v)$ into G_{1} and direct it from v to u (Figure 3.2), it can be shown that the resulting graph G_{1}^{\prime} is an S -N net of G.

Figure 3

We next investigate the condition under which a candidate edge can be added into G_{1} without increasing the length of G_{1}^{*}. We only discuss the r-candidate edges. The condition for the l-candidate edges is similar. Let $e=(u, v)$ be a r-candidate edge and f be the face of G_{1} containing e in its interior. Let P be the left boundary and Q the right boundary of f. The vertex u divides P into two paths: P_{1} ends at u and P_{2} starts at u. Similarly, v divides Q into two paths: Q_{1} ends at v and Q_{2} starts at v (Figure 3.3). Let P_{1}^{*} and P_{2}^{*} be the sets of the arcs in G_{1}^{*} corresponding to the edges in P_{1} and P_{2}, respectively. Let Q_{1}^{*} and Q_{2}^{*} be the sets of the arcs in G_{1}^{*} corresponding to the edges in Q_{1} and Q_{2}, respectively. An arc $e^{*}=\left(g_{1}, g_{2}\right)$ in G_{1}^{*} is called a jump arc if $F_{1}\left(g_{1}\right)<F_{1}\left(g_{2}\right)-1$. e^{*} is called an essential arc if $F_{1}\left(g_{1}\right)=F_{1}\left(g_{2}\right)-1$.

Let G_{1}^{\prime} be the graph obtained by adding a r-candidate edge e into G_{1}. The dual graph $G_{1}^{\prime *}$ of G_{1}^{\prime} can be obtained from G_{1}^{*} as follows: The face f is divided into two faces f_{1} and f_{2} with ϵ as their common boundary. A new arc $\left(f_{1}, f_{2}\right)$ from f_{1} to f_{2} is introduced. Each arc $\left(g_{1}, f\right) \in P_{1}^{*}$ is replaced by a new $\operatorname{arc}\left(g_{1}, f_{1}\right)$. Each $\operatorname{arc}\left(g_{2}, f\right) \in P_{2}^{*}$ is replaced by a new $\operatorname{arc}\left(g_{2}, f_{2}\right)$. Each $\operatorname{arc}\left(f, h_{1}\right) \in Q_{1}^{*}$ is replaced by a new $\operatorname{arc}\left(f_{1}, h_{1}\right)$. Each $\operatorname{arc}\left(f, h_{2}\right) \in Q_{2}^{*}$ is replaced by a new $\operatorname{arc}\left(f_{2}, h_{2}\right)$ (Figure 3.3.)

Let p be the F_{1}-number of the face f in G_{1}^{*}. Let p_{1} and p_{2} be the F_{1}-numbers of the faces f_{1} and f_{2} in $G_{1}^{\prime *}$, respectively. If all arcs in P_{1}^{*} are jump arcs in G_{1}^{*}, then $p_{1}<p$ and $p_{2}=p$. The F_{1}-number of any other face $g \neq f$ in G_{1}^{*} remains unchanged in $G_{1}^{\prime *}$. Thus the length of $G_{1}^{\prime *}$ is the same as the length of G_{1}^{*}. If there is an essential arc in P_{1}^{*}, then $p_{1}=p$ and $p_{2}=p+1$. However, if all arcs in Q_{2}^{*} are jump arcs in G_{1}^{*}, then the F_{1}-number of any other face $g \neq f$ in G_{1}^{*} remains unchanged in $G_{1}^{\prime *}$ and the length of $G_{1}^{\prime *}$ is the same as the length of G_{1}^{*}. If there is an essential arc in P_{1}^{*} and an essential arc in Q_{2}^{*}, then the length of $G_{1}^{\prime *}$ equals the length of G_{1}^{*} plus 1.

This observation motivates the following definition: A r-candidate edge is includable if either all arcs in P_{1}^{*} are jump arcs or all arcs in Q_{2}^{*} are jump arcs in G_{1}^{*}. Similarly, an l-candidate edge is includable if either all arcs in P_{2}^{*} are jump arcs, or all arcs in Q_{1}^{*} are jump arcs in G_{1}^{*}. As discussed above, if we add an includable r- or l-candidate edge into G_{1}, the resulting directed graph G_{1}^{\prime} is an S-N net of G, and the length of the corresponding dual graph $G_{1}^{\prime *}$ remains the same. Our strategy for reducing the height of the rectangular dual R is to keep adding includable candidate edges into G_{1} until none can be found. We say the resulting S-N net is saturated. The following is a heuristic algorithm for this strategy. It is to be inserted into the algorithm DUAL following the step (1).

Algorithm Reduce Height:

Input: An S-N net G_{1} of a PTP graph $G=(V, E)$.

Repeat:

If there is an includable l- or r-candidate edge e, then $E_{1} \leftarrow E_{1} \cup\{e\}$.
Until G_{1} is saturated.
It is easy to implement this algorithm in $O\left(n^{2}\right)$ time. Figure 4 shows an example. When performing this algorithm on the S-N net shown in Figure 1.3, the includable candidate edges (s, p), $(p, l),(h, f),(f, b)$, and (q, r) are added into G_{1}. (Note that the r-candidate edge (f, b) becomes includable only after the edge (h, f) has been added into G_{1}.) The resulting saturated S-N net and the corresponding rectangular dual $R^{\prime \prime}$ are shown in Figure 4. The width of $R^{\prime \prime}$ remains 10 . The height of $R^{\prime \prime}$ is reduced from 11 to 10 .

Figure 4

6. Conclusions

A new linear time algorithm for finding a rectangular dual R of a proper triangular planar graph G is presented. The algorithm is conceptually simple and the rectangular dual constructed has integer coordinates. The algorithm is based upon new understanding of the structure of PTP graphs, which is of independent interests. We also presented heuristics for reducing the width and the height of R. Several related optimization problems are interesting and deserve further studies. Let $w(R)$ and $h(R)$ denote the width and the height of R. How to find a rectangular dual R of G so that $w(R)$ is minimized? $w(R)+h(R)$ is minimized? or $w(R) h(R)$ is minimized?

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading MA, 1974.
[2] J. Bhasker and S. Sahni, A Linear Time Algorithm to check for the Existence of a Rectangular Dual of a Planar Triangulated Graph, Networks 17, 1987, pp. 307-317.
[3] J. Bhasker and S. Sahni, A Linear Algorithm to Find a Rectangular Dual of a Planar Triangulated Graph, Algorithmica 3, 1988, pp. 247-278.
[4] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press, Potomac MD, 1988.
[5] W. R. Heller, G. Sorkin, and K. Mailing, The Planar Package Planner for System Designers, Proc. of the 19th Design Automation Conference, Las Vegas, 1982, pp. 253-260.
[6] K. Koźmiński and E. Kinnen, Rectangular Duals of Planar Graphs, Networks 15, 1985, pp. 145-157.
[7] D. Kelly and I. Rival, Planar Lattices, Canadian J. Math. 27, 1975, pp. 636-665.
[8] Y-T Lai and S. M. Leinwand, A Theory of Rectangular Dual Graphs, Algorithmica 5, 1990, pp. 467-483.
[9] K. Mailing, S. H. Mueller, and W. R. Heller, On Finding Most Optimal Rectangular Package Plans, Proc. of the 19th Design Automation Conference, Las Vegas, 1982, pp. 663-670.
[10] F. P. Preparata and R. Tamassia, Fully Dynamic Techniques for Point Location and Transitive Closure in Planar Structures, Proceedings of the 29th IEEE Symposium on Foundations of Computer Science, 1988, pp. 558-567.
[11] P. Rosenstiehl and R. E. Tarjan, Rectilinear Planar Layouts and Bipolar Orientations of Planar Graphs, Disc. Comp. Goem. 1, 1985, pp. 343-353.
[12] C. Thomassen, Interval Representations of Planar Graphs, J. of Combinatorial Theory, Series B 40, 1986, pp. 9-20.
[13] R. Tamassia and J. S. Vitter, Optimal Parallel Algorithms for Transitive Closure and Point Location in Planar Structures, Proceedings of The 1989 ACM Symposium on Parallel Algorithms and Architectures, 1989, pp. 399-407.

Figure 1. A PTP garph G and a rectangular dual of G.

Figure 2. An unreducible $\mathrm{S}-\mathrm{N}$ net and the corresponding rectangular dual.

Figure 3. Adding a candidate edge into an S-N net.

Figure 4. A saturated S-N net and the corresponding rectangular dual.

[^0]: ${ }^{1}$ Research partially supported by NSF grant CCR-9011214.

