Karlsruher Institut für Technologie Fakultät für Informatik ITI Wagner

Exercise Sheet 4

Assignment:November 28, 2012Delivery:None, Discussion on December 4, 2012

1 Linear time construction of a Schnyder realizer.

Let G be a maximal planar graph with n vertices. Can a Schnyder labeling and a Schnyder realizer be constructed in time O(n).

Hint: Find a Connection between a canonical ordering and the ordering in which the edge contraction for the construction of a Schnyder labeling is executed.

2 Property of a Schnyder realizer.

Let G be a maximal planar graph with vertices a, b, c on the outer face. Let T_a, T_b, T_c be the red, the blue and the green trees of a Schnyder realizer, with sinks at vertices a, b, c, respectively. Let v be an internal vertex of G and denote by $P_a(v)$, $P_b(v)$, $P_c(v)$ the paths connecting v with a, b, c in T_a, T_b, T_c , respectively. Show that paths $P_a(v), P_b(v)$ and $P_c(v)$ do not have common vertices, except for v.

3 Induced path in a Schnyder realizer.

A path of a graph G is called *induced* if the vertices of this path are connected only by the edges of the path, i.e. path on vertices $v_1, \ldots v_k$ is *induced* if for any $1 \le i, j \le n$ such that |i - j| > 1, edge (v_i, v_j) does not belong to G. Let G be a maximal planar graph and let T_a, T_b, T_c be a Schnyder realizer of G. Assume that the edges of T_a, T_b, T_c are colored red, blue and green, respectively. Show that a directed monochromatic path in T_a, T_b, T_c is an *induced path* of G.

4 st-Ordering and st-Graphs

Let G = (V, E) be a biconnected planar graph and let $f : V \to \mathbb{N}$ be the function giving an *st*-ordering of the vertices of G. In the following an undirected edge between vertices u and v is denoted by $\{u, v\}$, and an edge directed from u to v is denoted by (u, v). Let $\vec{G} = (V, \vec{E})$ be a directed graph, where $\vec{E} = \{(u, v) | \{u, v\} \in E \& f(u) < f(v)\}$. I.e. \vec{G} is just an orientation of G, where each edge $\{u, v\}$ is assigned a direction from u to v if f(u) < f(v) or a direction from v to u, otherwise. Prove that \vec{G} is an *st*-digraph.

Hint: To achieve that prove that:

- (a) \overrightarrow{G} contains a single source vertex and a single sink vertex. A *source* (*sink*) of a directed graph is a vertex without incoming (outgoing) edges.
- (b) \overrightarrow{G} is acyclic, i.e. it does not contain any directed cycle.

5 Property of *st*-Ordering

Let G = (V, E) be a biconnected planar graph with a given embedding and let v_1, \ldots, v_n be an *st*-ordering of G such that v_1, v_n belong to the outer face of G. Let G_i denote the plane subgraph of G induced by the vertices v_1, \ldots, v_i . Prove that v_{i+1} belongs to the outer face of G_i .

6 Ear decomposition.

Let G = (V, E) such that for each edge $\{s, t\} \in E$, G has an open ear decomposition that starts with $\{s, t\}$. Show that G is 2-connected.