Algorithms for graph visualization

Layouts for planar graphs. Shift method.

WINTER SEMESTER 2012/2013

Tamara Mchedlidze – Martin Nöllenburg – Ignaz Rutter
Straight line drawing of a planar graph
History

- Straight line drawing of a planar graph
History

- Straight line drawing of a planar graph

Theorem [Wagner ‘36, Fary ‘48, Stein ‘51]

Every planar graph has a planar straight-line drawing.
History

- Straight line drawing of a planar graph

Theorem [Wagner ’36, Fary ’48, Stein ’51]

Every planar graph has a planar straight-line drawing.

- These algorithms produce drawings with area not bounded by any polynomial on n.
This lecture:

Theorem [De Fraysseix, Pach, Pollack ’90]

Every n-vertex planar graph has a planar straight-line drawing of a size $(2n - 4) \times (n - 2)$.

Next lecture:

Theorem [Schnyder ’90]

Every n-vertex planar graph has a planar straight-line drawing of a size $(n - 2) \times (n - 2)$.
Canonical Ordering

Definition: Canonical Ordering

Let $G = (V, E)$ be a triangulated planar embedded graph of $n \geq 3$ vertices. An ordering $\pi = (v_1, v_2, \ldots, v_n)$ is called a canonical ordering, if the following conditions hold for each k, $3 \leq k \leq n$.

- (C1) Vertices $\{v_1, \ldots v_k\}$ induce a 2-connected internally triangulated graph, call it G_k.
Canonical Ordering

Definition: Canonical Ordering

Let $G = (V, E)$ be a triangulated planar embedded graph of $n \geq 3$ vertices. An ordering $\pi = (v_1, v_2, \ldots, v_n)$ is called a canonical ordering, if the following conditions hold for each k, $3 \leq k \leq n$.

- (C1) Vertices $\{v_1, \ldots, v_k\}$ induce a 2-connected internally triangulated graph, call it G_k

- (C2) Edge (v_1, v_2) belongs to the outer face of G_k
Definition: Canonical Ordering

Let \(G = (V, E) \) be a triangulated planar embedded graph of \(n \geq 3 \) vertices. An ordering \(\pi = (v_1, v_2, \ldots, v_n) \) is called a canonical ordering, if the following conditions hold for each \(k, 3 \leq k \leq n \).

- (C1) Vertices \(\{v_1, \ldots, v_k\} \) induce a 2-connected internally triangulated graph, call it \(G_k \).
- (C2) Edge \((v_1, v_2) \) belongs to the outer face of \(G_k \).
- (C3) If \(k < n \) then vertex \(v_{k+1} \) lies in the outer face of \(G_k \), and all neighbors of \(v_{k+1} \) in \(G_k \) appear on the boundary of \(G_k \) consecutively.
Example of Canonical Ordering
Example of Canonical Ordering

G_{16}
Example of Canonical Ordering
Example of Canonical Ordering
Example of Canonical Ordering
Example of Canonical Ordering

G_{14}

14

15

16
Example of Canonical Ordering
Lemma

Every triangulated plane graph has a canonical ordering.

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.
Canonical Ordering Existence

Lemma

Every triangulated plane graph has a canonical ordering.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.
- Induction hypothesis: vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k + 1 \leq i \leq n$.
Lemma

Every triangulated plane graph has a canonical ordering.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.
- Induction hypothesis: vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k + 1 \leq i \leq n$.
- Consider G_k. We search for v_k.

![Diagram of a triangulated plane graph with a vertex v_k highlighted]
Lemma

Every triangulated plane graph has a canonical ordering.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.
- Induction hypothesis: vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k + 1 \leq i \leq n$.
- Consider G_k. We search for v_k.
Every triangulated plane graph has a canonical ordering.

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.

Induction hypothesis: vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k + 1 \leq i \leq n$.

Consider G_k. We search for v_k.

v_k should not be adjacent to a chord
Lemma

Every triangulated plane graph has a canonical ordering.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.
- Induction hypothesis: vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k + 1 \leq i \leq n$.
- Consider G_k. We search for v_k.

v_k should not be adjacent to a chord

Is it sufficient?
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

- v_k

$$G_{k-1}$$
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

$$G_{k-1}$$

![Graph Diagram]

\[v_k \]
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

![Diagram showing the graph G_{k-1} and removing v_k results in a graph that is not biconnected.](image)
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

- **Graph G_{k-1}:**
 - If v_k is not adjacent to a chord, removal of v_k leaves the graph biconnected.
 - **Diagram:**
 - v_k is not connected to a chord.
 - Removal of v_k results in a biconnected graph.

- **Graph G'_{k-1}:**
 - If v_k is adjacent to a chord, removal of v_k results in a non-biconnected graph.
 - **Diagram:**
 - v_k is connected to a chord.
 - Removal of v_k does not leave the graph biconnected.
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.
Canonical Ordering Existence

Statement If \(v_k \) is not adjacent to a chord then removal of \(v_k \) leaves the graph biconnected.

\[
\begin{align*}
G_{k-1} & \quad v_k \\
\text{not biconnected} & \\
G_{k-1} & \quad v_k \\
\text{not triangulated} & \\
\end{align*}
\]
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

- G_{k-1} not biconnected
- G_{k-1} not triangulated
- A chord!
Why a vertex not adjacent to a chord exists?
Why a vertex not adjacent to a chord exists?
Computing Canonical Ordering

Algorithm CO

forall the \(v \in V \) do
\[\text{chords}(v) \leftarrow 0; \text{out}(v) \leftarrow \text{false}; \text{mark}(v) \leftarrow \text{false};\]
\(\text{out}(v_1), \text{out}(v_2), \text{out}(v_n) \leftarrow \text{true};\)
for \(k = n \) to 3 do
choose \(v \neq v_1, v_2 \) such that \(\text{mark}(v) = \text{false}, \text{out}(v) = \text{true}, \)
\(\text{chords}(v) = 0;\)
\(v_k \leftarrow v; \text{mark}(v) \leftarrow \text{true};\)
// Let \(w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2 \) denote the boundary of \(G_{k-1}; \)
and let \(w_p, \ldots, w_q \) be the unmarked neighbors \(v_k; \)
\(\text{out}(w_i) \leftarrow \text{true} \) for all \(p < i < q;\)
update number of chords for \(w_i \) and its neighbors;
Computing Canonical Ordering

Algorithm CO

\[
\text{for all the } v \in V \text{ do} \\
\qquad \text{chords}(v) \leftarrow 0; \text{ out}(v) \leftarrow \text{false}; \text{ mark}(v) \leftarrow \text{false}; \\
\text{out}(v_1), \text{ out}(v_2), \text{ out}(v_n) \leftarrow \text{true}; \\
\text{for } k = n \text{ to } 3 \text{ do} \\
\qquad \text{choose } v \neq v_1, v_2 \text{ such that mark}(v) = \text{false}, \text{ out}(v) = \text{true}, \text{ chords}(v) = 0; \\
\qquad v_k \leftarrow v; \text{ mark}(v) \leftarrow \text{true}; \\
\qquad \text{// Let } w_1 = v_1, w_2, \ldots , w_{t-1}, w_t = v_2 \text{ denote the boundary of } G_{k-1}; \\
\qquad \text{and let } w_p, \ldots , w_q \text{ be the unmarked neighbors } v_k; \\
\qquad \text{out}(w_i) \leftarrow \text{true for all } p < i < q; \\
\qquad \text{update number of chords for } w_i \text{ and its neighbors;}
\]

- chord\((v)\) - number of chords adjacent to \(v\)
- mark\((v)\) = true iff vertex \(v\) was numbered
- out\((v)\)=true iff \(v\) is the outer vertex of current plane graph
Computing Canonical Ordering

Algorithm CO

\[
\text{forall the } v \in V \text{ do}
\]
\[
\text{chords}(v) \leftarrow 0; \text{out}(v) \leftarrow \text{false}; \text{mark}(v) \leftarrow \text{false};
\]
\[
\text{out}(v_1), \text{out}(v_2), \text{out}(v_n) \leftarrow \text{true};
\]
\[
\text{for } k = n \text{ to } 3 \text{ do}
\]
\[
\text{choose } v \neq v_1, v_2 \text{ such that mark}(v) = \text{false}, \text{out}(v) = \text{true},
\]
\[
\text{chords}(v) = 0;
\]
\[
v_k \leftarrow v; \text{mark}(v) \leftarrow \text{true};
\]
\[
// \text{Let } w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2 \text{ denote the boundary of } G_{k-1};
\]
\[
\text{and let } w_p, \ldots, w_q \text{ be the unmarked neighbors } v_k;
\]
\[
\text{out}(w_i) \leftarrow \text{true for all } p < i < q;
\]
\[
\text{update number of chords for } w_i \text{ and its neighbors};
\]

Lemma

Algorithm CO computes a canonical ordering of a graph in \(O(n)\) time.
De Fraysseix Pach Pollack (Shift) Algorithm
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm constraints: G_{k-1} is drawn such that
- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm constraints: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm constraints: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm constraints: \(G_{k-1} \) is drawn such that

- \(v_1 \) is on \((0, 0)\), \(v_2 \) is on \((2k - 6, 0)\)
- Boundary of \(G_{k-1} \) (minus edge \((v_1, v_2)\)) is drawn \(x \)-monotone
- Each edge of the boundary of \(G_{k-1} \) (minus edge \((v_1, v_2)\)) is drawn with slopes \(\pm 1 \)
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm constraints: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

Overlaps! What could be the solution?
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm constraints: G_{k-1} is drawn such that
- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
Algorithm constraints: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm constraints: G_{k-1} is drawn such that
- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm constraints: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm constraints: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm constraints: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

$L(10)$
De Fraysseix Pach Pollack (Shift) Algorithm

\[L(11) \]
De Fraysseix Pach Pollack (Shift) Algorithm

\[(0, 0) \rightarrow (2n - 4, 0) \rightarrow (n - 2, n - 2) \]

\[(0, 0) \rightarrow (2n - 4, 0) \rightarrow (n - 2, n - 2) \]
De Fraysseix Pach Pollack (Shift) Algorithm

V_k

G_{k-1}
De Fraysseix Pach Pollack (Shift) Algorithm

Covered vertices

G_{k-1}

U_k
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverence relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverence relation defines a tree in \(G \)
- But a forest in \(G_i, 1 \leq i \leq n-1 \)
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverence relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverence relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverage relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverage relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$

Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.
Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.
Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.

Lemma

Let \(0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}\). If we shift \(L(w_i)\) by \(\delta_i\) to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on \(i\), i.e. we consider \(G_3, \ldots, G_n\).
- Assume that this is true for \(G_{k-1}\).
Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
- Let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k.

De Fraysseix Pach Pollack (Shift) Algorithm

Institut für Theoretische Informatik

Lehrstuhl Algorithmik I
De Fraysseix Pach Pollack (Shift) Algorithm

Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
- Let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k.
- Let $\delta(w_1) \leq \cdots \leq \delta(w_p) \leq \delta(v_k) \leq \delta(w_q) \leq \cdots \leq \delta(w_t)$.

De Fraysseix Pach Pollack (Shift) Algorithm

Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
- Let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k.
- Let $\delta(w_1) \leq \cdots \leq \delta(w_p) \leq \delta(v_k) \leq \delta(w_q) \leq \cdots \leq \delta(w_t)$.
- We set $\delta'(w_i) = \delta(w_i)$ for $1 \leq i \leq p$,
- $\delta'(w_i) = \delta(w_i) + 1$ for $p + 1 \leq i \leq q - 1$
- $\delta'(w_i) = \delta(w_i) + 2$ for $q \leq i \leq t$.
Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
- Let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k.
- Let $\delta(w_1) \leq \cdots \leq \delta(w_p) \leq \delta(v_k) \leq \delta(w_q) \leq \cdots \leq \delta(w_t)$.
- We set $\delta'(w_i) = \delta(w_i)$ for $1 \leq i \leq p$,
 $\delta'(w_i) = \delta(w_i) + 1$ for $p + 1 \leq i \leq q - 1$
 $\delta'(w_i) = \delta(w_i) + 2$ for $q \leq i \leq t$.
- By induction hypothesis we can move w_1, \ldots, w_t by $\delta(w_1)' \ldots \delta(w_t)'$, respectively.
Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
- Let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k.
- Let $\delta(w_1) \leq \cdots \leq \delta(w_p) \leq \delta(v_k) \leq \delta(w_q) \leq \cdots \leq \delta(w_t)$.
- We set $\delta'(w_i) = \delta(w_i)$ for $1 \leq i \leq p$.
- $\delta'(w_i) = \delta(w_i) + 1$ for $p + 1 \leq i \leq q - 1$
- $\delta'(w_i) = \delta(w_i) + 2$ for $q \leq i \leq t$.
- By induction hypothesis we can move w_1, \ldots, w_t by $\delta(w_1)' \ldots \delta(w_t)'$, respectively.
- We can complete the drawing by placing v_k.
Algorithm Shift

Let \(v_1, \ldots, v_n \) be a canonical ordering of \(G \)

\[
\text{for } i = 1 \text{ to } n \text{ do }
\]
\[
L(v_i) \leftarrow \{v_i\};
\]
\[
P(v_1) \leftarrow (0, 0); \ P(v_2) \leftarrow (2, 0); \ P(v_3) \leftarrow (1, 1);
\]

\[
\text{for } i = 4 \text{ to } n \text{ do }
\]
\[
\text{Let } w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2 \text{ denote the boundary of } G_{i-1};
\]
\[
\text{and let } w_p, \ldots, w_q \text{ be the neighbors } v_i;
\]
\[
\text{for } \forall v \in \bigcup_{j=p+1}^{q-1} L(w_j) \text{ do }
\]
\[
x(v) \leftarrow x(v) + 1;
\]
\[
\text{for } \forall v \in \bigcup_{j=q}^{t} L(w_j) \text{ do }
\]
\[
x(v) \leftarrow x(v) + 2;
\]
\[
P(v_i) \leftarrow \text{intersection of } +1 \text{ and } -1 \text{ edges from } P(w_p) \text{ and } P(w_q);
\]
\[
L(v_i) = \bigcup_{j=p+1}^{q-1} L(w_j) \cup \{v_i\};
\]
Linear Time Implementation of Shift Algorithm
Linear Time Implementation of Shift Algorithm
Linear Time Implementation of Shift Algorithm

\[x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p)) \] (1)

\[y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p)) \] (2)

\[x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p)) \] (3)
Linear Time Implementation of Shift Algorithm

- If we know the \(y \)-coordinates of \(w_p \) and \(w_q \) and the difference \(x(w_p) - x(w_q) \), we can compute the relative distance of \(v_k \) and \(w_p \).
- In the binary tree which we construct we keep the relative \(x \)-distance of each node from its parent.
Linear Time Implementation of Shift Algorithm

- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the relative distance of v_k and w_p.
- In the binary tree which we construct we keep the relative x-distance of each node from its parent.
If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the relative distance of v_k and w_p.

In the binary tree which we construct we keep the relative x-distance of each node from its parent.

- $\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \cdots + \Delta_x(w_q)$
- Calculate $\Delta_x(v_k)$ by eq. (3)
- Calculate $y(v_k)$ by eq. (2)
If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the relative distance of v_k and w_p.

In the binary tree which we construct we keep the relative x-distance of each node from its parent.

$$\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \cdots + \Delta_x(w_q)$$

Calculate $\Delta_x(v_k)$ by eq. (3)

Calculate $y(v_k)$ by eq. (2)
If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the relative distance of v_k and w_p.

In the binary tree which we construct we keep the relative x-distance of each node from its parent.

$\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \cdots + \Delta_x(w_q)$

Calculate $\Delta_x(v_k)$ by eq. (3)

Calculate $y(v_k)$ by eq. (2)
If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the relative distance of v_k and w_p.

In the binary tree which we construct we keep the relative x-distance of each node from its parent.

$\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \cdots + \Delta_x(w_q)$

Calculate $\Delta_x(v_k)$ by eq. (3)

Calculate $y(v_k)$ by eq. (2)
Linear Time Implementation of Shift Algorithm

- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the relative distance of v_k and w_p.
- In the binary tree which we construct we keep the relative x-distance of each node from its parent.
- $\Delta x(w_p, w_q) = \Delta x(w_{p+1}) + \cdots + \Delta x(w_q)$
- Calculate $\Delta x(v_k)$ by eq. (3)
- Calculate $y(v_k)$ by eq. (2)
Linear Time Implementation of Shift Algorithm

- If we know the \(y\)-coordinates of \(w_p\) and \(w_q\) and the difference \(x(w_p) - x(w_q)\), we can compute the relative distance of \(v_k\) and \(w_p\).
- In the binary tree which we construct we keep the relative \(x\)-distance of each node from its parent.
- \(\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \cdots + \Delta_x(w_q)\)
- Calculate \(\Delta_x(v_k)\) by eq. (3)
- Calculate \(y(v_k)\) by eq. (2)