Vorlesung Graphenzeichnen Order in the Underground *or*How to automate drawing metro maps?

Martin Nöllenburg

Institute of Theoretical Informatics Karlsruhe Institute of Technology

07.12.2011

Martin Nöllenburg 1 40 Drawing Metro Maps

Outline

- Modeling the Metro Map Problem
 - What is a Metro Map?
 - Hard and Soft Constraints
- NP-Hardness: Bad News—Nice Proof
 - Rectilinear vs. Octilinear Drawing
 - Reduction from PLANAR 3-SAT
- MIP Formulation & Experiments
 - Mixed-Integer Programming Formulation
 - Labeling
 - Experiments

Outline

- Modeling the Metro Map Problem
 - What is a Metro Map?
 - Hard and Soft Constraints
- NP-Hardness: Bad News—Nice Proof
 - Rectilinear vs. Octilinear Drawing
 - Reduction from Planar 3-SAT
- MIP Formulation & Experiments
 - Mixed-Integer Programming Formulation
 - Labeling
 - Experiments

What is a Metro Map?

- schematic diagram for public transport
- visualizes lines and stations
- goal: ease navigation for passengers
 - "How do I get from A to B?"
 - "Where to get off and change trains?"
- distorts geometry and scale
- improves readability

current maps designed manually

Martin Nöllenburg 5 40 Drawing Metro Maps

- current maps designed manually
- assist graphic designers to improve/extend maps

- current maps designed manually
- assist graphic designers to improve/extend maps
- metro map metaphor
 - metabolic pathways

[Hahn, Weinberg '02]

- current maps designed manually
- assist graphic designers to improve/extend maps
- metro map metaphor
 - metabolic pathways
 [Hahn, Weinberg '02]
 - web page maps [Nesbitt '04]

- current maps designed manually
- assist graphic designers to improve/extend maps
- metro map metaphor
 - metabolic pathways
 [Hahn, Weinberg '02]
 - web page maps [Nesbitt '04]
 - product lines [O'Reilly '03]

- current maps designed manually
- assist graphic designers to improve/extend maps
- metro map metaphor
 - metabolic pathways
 [Hahn, Weinberg '02]
 - web page maps [Nesbitt '04]
 - product lines [O'Reilly '03]
- VLSI: X-architecture

- current maps designed manually
- assist graphic designers to improve/extend maps
- metro map metaphor
 - metabolic pathways
 [Hahn, Weinberg '02]
 - web page maps [Nesbitt '04]
 - product lines [O'Reilly '03]
- VLSI: X-architecture
- redrawing sketches

[Brandes et al. '03]

More Formally

The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

Goal: draw G and \mathcal{L} nicely.

More Formally

The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

Goal: draw G and \mathcal{L} nicely.

- What is a nice drawing?
- Look at real-world metro maps drawn by graphic designers and model their design principles as
 - hard constraints must be fulfilled,
 - soft constraints should hold as tightly as possible.

(H1) preserve embedding of G

- (H1) preserve embedding of G
- (H2) draw all edges as octilinear line segments, i.e. horizontal, vertical or diagonal (45 degrees)

- (H1) preserve embedding of G
- (H2) draw all edges as octilinear line segments,i.e. horizontal, vertical or diagonal (45 degrees)
- (H3) draw each edge e with length $\geq \ell_e$

Martin Nöllenburg 7 40 Drawing Metro Maps

- (H1) preserve embedding of G
- (H2) draw all edges as octilinear line segments,i.e. horizontal, vertical or diagonal (45 degrees)
- (H3) draw each edge e with length $\geq \ell_e$
- (H4) keep edges d_{min} away from non-incident edges (\rightarrow planar)

Soft Constraints

(S1) draw metro lines with few bends

Soft Constraints

- (S1) draw metro lines with few bends
- (S2) keep total edge length small

Soft Constraints

- (S1) draw metro lines with few bends
- (S2) keep total edge length small
- (S3) draw each octilinear edge similar to its geographical orientation: keep relative position of adjacent vertices

Martin Nöllenburg 8 40 Drawing Metro Maps

Outline

- Modeling the Metro Map Problem
 - What is a Metro Map?
 - Hard and Soft Constraints
- NP-Hardness: Bad News—Nice Proof
 - Rectilinear vs. Octilinear Drawing
 - Reduction from PLANAR 3-SAT
- MIP Formulation & Experiments
 - Mixed-Integer Programming Formulation
 - Labeling
 - Experiments

Martin Nöllenburg 9 40 Drawing Metro Maps

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

Theorem (Tamassia SIAMJComp'87)

RECTILINEARGRAPHDRAWING can be solved efficiently.

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

Theorem (Tamassia SIAMJComp'87)

RECTILINEARGRAPHDRAWING can be solved efficiently.

Proof.

By reduction to a flow problem.

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

Theorem (Tamassia SIAMJComp'87)

RECTILINEARGRAPHDRAWING can be solved efficiently.

Proof.

By reduction to a flow problem.

Our Problem

METROMAPLAYOUT Decision Problem

Given a planar embedded graph *G* with max degree 8. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is octilinear?

Theorem

METROMAPLAYOUT is NP-hard.

Proof.

By Reduction from Planar 3-Sat to MetroMapLayout.

Input: planar 3-SAT formula $\varphi = (x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

Input: planar 3-SAT formula $\varphi =$

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

Goal: planar embedded graph G_{φ} with:

 G_{φ} has a metro map drawing $\Leftrightarrow \varphi$ satisfiable.

Input: planar 3-SAT formula $\varphi =$

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

Goal: planar embedded graph G_{φ} with:

 G_{φ} has a metro map drawing $\Leftrightarrow \varphi$ satisfiable.

Variable Gadget

Variable Gadget

Input: planar 3-SAT formula $\varphi =$

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

Goal: planar embedded graph G_{φ} with:

 G_{φ} has a metro map drawing $\Leftrightarrow \varphi$ satisfiable.

Clause Gadget

Clause Gadget

Clause Gadget

Summary of the Reduction

- Indeed we have:
 - ullet φ satisfiable \Rightarrow corresponding MM drawing of G_{φ}
 - ullet G_{arphi} has MM drawing \Rightarrow satisfying truth assignment of arphi

Martin Nöllenburg 16 40 Drawing Metro Maps

Outline

- Modeling the Metro Map Problem
 - What is a Metro Map?
 - Hard and Soft Constraints
- NP-Hardness: Bad News—Nice Proof
 - Rectilinear vs. Octilinear Drawing
 - Reduction from PLANAR 3-SAT
- MIP Formulation & Experiments
 - Mixed-Integer Programming Formulation
 - Labeling
 - Experiments

Martin Nöllenburg 17 40 _____ Drawing Metro Maps

- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables

- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
 - example: maximize x + 2ysubject to $y \le 0.9x + 1.5$ y > 1.4x - 1.3

- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
 - example: $maximize \ x + 2y$ $subject \ to$ $y \le 0.9x + 1.5$ y > 1.4x - 1.3

- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
 - example:

```
maximize x + 2y subject to
```

$$y \le 0.9x + 1.5$$

$$y \ge 1.4x - 1.3$$

- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
- Mixed-Integer Programming (MIP)
 - allows also integer variables
 - NP-hard in general
 - still practical method for many hard optimization problems

- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
- Mixed-Integer Programming (MIP)
 - allows also integer variables
 - NP-hard in general
 - still practical method for many hard optimization problems

- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
- Mixed-Integer Programming (MIP)
 - allows also integer variables
 - NP-hard in general
 - still practical method for many hard optimization problems

Theorem (GD'05 / TVCG'11)

The metro map layout problem can be formulated as a MIP s.th.

hard constraints → linear constraints soft constraints → objective function

Definitions: Sectors and Coordinates

Sectors

- for each vtx. *u* partition plane into sectors 0–7
 - here: sec(u, v) = 5 (input)

Definitions: Sectors and Coordinates

Sectors

- for each vtx. u partition plane into sectors 0–7
 - here: sec(u, v) = 5 (input)
- number octilinear edge directions accordingly
 - e.g. dir(u, v) = 4 (output)

Definitions: Sectors and Coordinates

Sectors

- for each vtx. *u* partition plane into sectors 0–7
 - here: sec(u, v) = 5 (input)
- number octilinear edge directions accordingly
 - e.g. dir(u, v) = 4 (output)

Coordinates

assign z_1 - and z_2 -coordinates to each vertex v:

•
$$z_1(v) = x(v) + y(v)$$

•
$$z_2(v) = x(v) - y(v)$$

Draw edge *uv*

- octilinearly
- ullet with minimum length ℓ_{uv}
- restricted to 3 directions

How to model this using linear constraints?

Draw edge uv

- octilinearly
- ullet with minimum length ℓ_{uv}
- restricted to 3 directions

How to model this using linear constraints?

Binary Variables

$$\alpha_{\text{pred}}(u, v) + \alpha_{\text{orig}}(u, v) + \alpha_{\text{succ}}(u, v) = 1$$

Predecessor Sector

$$egin{array}{lll} y(u)-y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ -y(u)+y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ x(u)-x(v) & \geq & -M(1-lpha_{ extsf{pred}}(u,v))+\ell_{uv} \end{array}$$

Predecessor Sector

$$egin{array}{lll} y(u)-y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ -y(u)+y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ x(u)-x(v) & \geq & -M(1-lpha_{ extsf{pred}}(u,v))+\ell_{uv} \end{array}$$

How does this work?

Predecessor Sector

$$egin{array}{lll} y(u)-y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ -y(u)+y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ x(u)-x(v) & \geq & -M(1-lpha_{ extsf{pred}}(u,v))+\ell_{uv} \end{array}$$

How does this work?

Case 1:
$$\alpha_{\text{pred}}(u, v) = 0$$

$$y(u) - y(v) \leq M$$

$$-y(u) + y(v) \leq M$$

$$x(u) - x(v) \geq \ell_{uv} - M$$

Predecessor Sector

$$\begin{array}{lcl} y(u) - y(v) & \leq & M(1 - \alpha_{\mathsf{pred}}(u, v)) \\ -y(u) + y(v) & \leq & M(1 - \alpha_{\mathsf{pred}}(u, v)) \\ x(u) - x(v) & \geq & -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell_{uv} \end{array}$$

How does this work?

Case 2:
$$\alpha_{\mathsf{pred}}(u,v) = 1$$

$$y(u) - y(v) \leq 0 \\ -y(u) + y(v) \leq 0 \\ x(u) - x(v) \geq \ell_{\mathit{uv}}$$

Original Sector

$$egin{array}{lll} z_2(u) - z_2(v) & \leq & M(1 - lpha_{
m orig}(u,v)) \ - z_2(u) + z_2(v) & \leq & M(1 - lpha_{
m orig}(u,v)) \ z_1(u) - z_1(v) & \geq & -M(1 - lpha_{
m orig}(u,v)) + 2\ell_{uv} \end{array}$$

Original Sector

$$egin{array}{lll} & z_2(u) - z_2(v) & \leq & M(1 - lpha_{
m orig}(u,v)) \ - z_2(u) + z_2(v) & \leq & M(1 - lpha_{
m orig}(u,v)) \ z_1(u) - z_1(v) & \geq & -M(1 - lpha_{
m orig}(u,v)) + 2\ell_{uv} \end{array}$$

Successor Sector

$$x(u) - x(v) \le M(1 - \alpha_{\sf succ}(u, v))$$

 $-x(u) + x(v) \le M(1 - \alpha_{\sf succ}(u, v))$
 $y(u) - y(v) \ge -M(1 - \alpha_{\sf succ}(u, v)) + \ell_{uv}$

Definition

Two planar drawings of *G* have the same *embedding* if the induced orderings on the neighbors of each vertex are equal.

Same Embedding

Definition

Two planar drawings of *G* have the same *embedding* if the induced orderings on the neighbors of each vertex are equal.

Different Embeddings

Constraints (Example)

- $N(v) = \{u_1, u_2, u_3, u_4\}$
- circular input order: $u_1 < u_2 < u_3 < u_4 < u_1$

All but one of the following inequalities must hold

$$dir(v, u_1) < dir(v, u_2) < dir(v, u_3) < dir(v, u_4) < dir(v, u_1)$$

Constraints (Example)

- $N(v) = \{u_1, u_2, u_3, u_4\}$
- circular input order: $u_1 < u_2 < u_3 < u_4 < u_1$

All but one of the following inequalities must hold

$$dir(v, u_1) \not< dir(v, u_2) < dir(v, u_3) < dir(v, u_4) < dir(v, u_1)$$

Observation

For octilinear, straight edge e_1 non-incident edge e_2 must be placed d_{min} to the

Observation

For octilinear, straight edge e_1 non-incident edge e_2 must be placed d_{min} to the

Observation

For octilinear, straight edge e_1 non-incident edge e_2 must be placed d_{min} to the

N

Observation

For octilinear, straight edge e_1 non-incident edge e_2 must be placed d_{min} to the

Observation

For octilinear, straight edge e_1 non-incident edge e_2 must be placed d_{min} to the

Observation

For octilinear, straight edge e_1 non-incident edge e_2 must be placed d_{min} to the

Observation

For octilinear, straight edge e_1 non-incident edge e_2 must be placed d_{min} to the

Observation

For octilinear, straight edge e_1 non-incident edge e_2 must be placed d_{min} to the

Planarity (H4)

Observation

For octilinear, straight edge e_1 non-incident edge e_2 must be placed d_{min} to the

 east, northeast, north, northwest, west, southwest, south, or southeast

Constraints

model as MIP with binary variables

$$\alpha_{E} + \alpha_{NE} + \alpha_{N} + \alpha_{NW} + \alpha_{W} + \alpha_{SW} + \alpha_{S} + \alpha_{SE} \ge 1$$

• required for each pair of non-incident edges

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}$

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}$

Line Bends (S1)

- draw as straight as possible
- increase cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}$

Line Bends (S1)

- draw as straight as possible
- increase cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}$

Line Bends (S1)

- draw as straight as possible
- increase cost bend(u, v, w) for increasing acuteness of $\angle(\overline{uv}, \overline{vw})$

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}$

Line Bends (S1)

- draw as straight as possible
- increase cost bend(u, v, w) for increasing acuteness of $\angle(\overline{uv}, \overline{vw})$

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}$

Line Bends (S1)

- draw as straight as possible
- increase cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}$

Line Bends (S1)

- draw as straight as possible
- increase cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}$

Line Bends (S1)

Edges uv and vw on a metro line $L \in \mathcal{L}$

- draw as straight as possible
- increase cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}$

Line Bends (S1)

Edges uv and vw on a metro line $L \in \mathcal{L}$

- draw as straight as possible
- increase cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

$$\mathsf{cost}_{\mathsf{bends}} = \sum_{L \in \mathcal{L}} \ \sum_{uv,vw \in L} \mathsf{bend}(u,v,w)$$

Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Relative Position (S3)

only three directions possible

Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Relative Position (S3)

- only three directions possible
- charge 1 if edge deviates from original sector

Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Relative Position (S3)

- only three directions possible
- charge 1 if edge deviates from original sector

Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Relative Position (S3)

- only three directions possible
- charge 1 if edge deviates from original sector

Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Relative Position (S3)

- only three directions possible
- charge 1 if edge deviates from original sector

$$cost_{relpos} = \sum_{uv \in E} relpos(uv)$$

Effects of the Soft Constraints

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}$

Input

Output

Effects of the Soft Constraints

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Input

Output

Effects of the Soft Constraints

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Input

- hard constraints:
 - octilinearity
 - minimum edge length
 - (partially) relative position
 - preservation of embedding
 - planarity

- hard constraints:
 - octilinearity
 - minimum edge length
 - (partially) relative position
 - preservation of embedding
 - planarity
- soft constraints:

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

- hard constraints:
 - octilinearity
 - minimum edge length
 - (partially) relative position
 - preservation of embedding
 - planarity
- soft constraints:

```
minimize \lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}
```

models MetroMapLayout as MIP

- hard constraints:
 - octilinearity
 - minimum edge length
 - (partially) relative position
 - preservation of embedding
 - planarity
- soft constraints:

```
\label{eq:loss_total_loss} \mbox{minimize } \lambda_{\mbox{bends}} \mbox{cost}_{\mbox{bends}} + \lambda_{\mbox{length}} \mbox{cost}_{\mbox{length}} + \lambda_{\mbox{relpos}} \mbox{cost}_{\mbox{relpos}}
```

- models MetroMapLayout as MIP
- in total $O(|V|^2)$ constraints and variables

- hard constraints:
 - octilinearity
 - minimum edge length
 - (partially) relative position
 - preservation of embedding
 - planarity
- soft constraints:

```
minimize \lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}
```

- models MetroMapLayout as MIP
- in total $O(|V|^2)$ constraints and variables

- metro graphs have many degree-2 vertices
- want to optimize line straightness

- metro graphs have many degree-2 vertices
- want to optimize line straightness

Idea 1 collapse all degree-2 vertices

- metro graphs have many degree-2 vertices
- want to optimize line straightness

Idea 1 collapse all degree-2 vertices

- metro graphs have many degree-2 vertices
- want to optimize line straightness

Idea 1 collapse all degree-2 vertices

- metro graphs have many degree-2 vertices
- want to optimize line straightness

Idea 1 collapse all degree-2 vertices

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility
 - Idea 2 keep two joints

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility
 - Idea 2 keep two joints

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility
 - Idea 2 keep two joints

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility
 - Idea 2 keep two joints

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility
 - Idea 2 keep two joints
 - higher flexibility
 - more similar to input

Speed-Up Techniques: Reduce MIP Size

- $O(|V|^2)$ planarity constraints (for each pair of edges...)
- in practice 95–99% of constraints

- $O(|V|^2)$ planarity constraints (for each pair of edges...)
- in practice 95–99% of constraints

Observation 1

- consider only pairs of edges incident to the same face
- still $O(|V|^2)$ constraints

- $O(|V|^2)$ planarity constraints (for each pair of edges...)
- in practice 95-99% of constraints

Observation 1

- consider only pairs of edges incident to the same face
- still $O(|V|^2)$ constraints

Observation 2

in practice no or only few crossings due to soft constraints

- $O(|V|^2)$ planarity constraints (for each pair of edges...)
- in practice 95-99% of constraints

Observation 1

- consider only pairs of edges incident to the same face
- still $O(|V|^2)$ constraints

Observation 2

in practice no or only few crossings due to soft constraints

- $O(|V|^2)$ planarity constraints (for each pair of edges...)
- in practice 95-99% of constraints

Observation 1

- consider only pairs of edges incident to the same face
- still $O(|V|^2)$ constraints

Observation 2

in practice no or only few crossings due to soft constraints

Speed-Up Techniques: Callback Functions

- MIP optimizer CPLEX offers advanced callback functions
- add required planarity constraints on the fly

Algorithm

- start solving MIP without planarity constraints
- for each new solution
 - interrupt CPLEX
 - if solution is not planar
 - add planarity constraints for intersecting edges
 - reject solution

else

- accept solution
- 3 continue solving the MIP (until optimal)

4 D M 4 D M 4 E M 4 E M E M 9 U C

Martin Nöllenburg 32 40 Drawing Metro Maps

 unlabeled metro map of little use in practice

- unlabeled metro map of little use in practice
- labels
 - occupy space
 - may not overlap

- unlabeled metro map of little use in practice
- labels
 - occupy space
 - may not overlap
- static edge labeling is NP-hard [Tollis, Kakoulis '01]

- unlabeled metro map of little use in practice
- labels
 - occupy space
 - may not overlap
- static edge labeling is
 NP-hard [Tollis, Kakoulis '01]
- combine layout and labeling for better results

Model labels as special metro lines:

 put all labels between each pair of interchange stations into one parallelogram,

- put all labels between each pair of interchange stations into one parallelogram,
- allow parallelograms to change sides,

- put all labels between each pair of interchange stations into one parallelogram,
- allow parallelograms to change sides,

- put all labels between each pair of interchange stations into one parallelogram,
- allow parallelograms to change sides,
- bad news: a lot more planarity constraints

- put all labels between each pair of interchange stations into one parallelogram,
- allow parallelograms to change sides,
- bad news: a lot more planarity constraints
- good news: callback method helps

Results – Sydney unlabeled

Input	<i>V</i>	<i>E</i>	fcs.	$\mid \mathcal{L} $
full reduced	174 88	183 97	11	10

skipped

Results – Sydney unlabeled

3,034

1,642

Results – Sydney unlabeled

Input	<i>V</i>	<i>E</i>	fcs.	$ \mathcal{L} $
full reduced	174 88	183 97	11	10

MIP	constr.	var.
full	152,194	37,802
callback*	3,529	4,834
skipped	3,034	1,642

 23 minutes w/o proof of opt. constr. of 3 edge pairs added

Results - Sydney unlabeled

Output (23 min.)

Results - Sydney unlabeled

Official map

Output (23 min.)

Results - Sydney labeled

Input	<i>V</i>	<i>E</i>	fcs.	$ \mathcal{L} $
full reduced	174 88	183 97	11	10
labeled	242	270	30	

Results – Sydney labeled

Input	<i>V</i>	<i>E</i>	fcs.	$ \mathcal{L} $
full reduced labeled	174 88 242	183 97 270	11 30	10

MIP	constr.	var.
full callback	1,191,406 21,988	290,137 92,681
skipped	6,838	2,969

Results - Sydney labeled

Input	<i>V</i>	E	fcs.	$ \mathcal{L} $
full reduced labeled	174 88 242	183 97 270	11 30	10

MIP	constr.	var.
full	1,191,406	290,137
callback*	21,988	92,681
skipped	6,838	2,969

*) 10:30 hours w/o proof of opt. add constr. of 123 edge pairs

Results – Sydney labeled

Output (10:30 hrs.)

Results - Sydney labeled

Official map

Output (10:30 hrs.)

Results – Sydney labeled

Official map

Output (1:40 hrs.)

Sydney: Related Work

[Hong et al. GD'04] (7.6 sec.)

Our output (10:30 hrs.)

Sydney: Related Work

[Stott, Rodgers TVCG'10] (2 hrs.)

Our output (10:30 hrs.)

Large Example: London

Large Example: London

Large Example: London

Are we done yet?

- more user interaction
- how to handle large stations and many parallel lines?
- formulate global aesthetics like symmetry and balance
- octilinear maps are not necessarily always best how to compute curved metro maps?

Martin Nöllenburg 39 40 Drawing Metro Maps

Summary

- METROMAPLAYOUT is NP-hard
- formulation of hard and soft constraints as MIP
- combined layout and labeling
- MIP size & runtime reductions
- high-quality results
- MIP can schematize any kind of graph sketch

Martin Nöllenburg 40 40 Drawing Metro Maps

Summary

- METROMAPLAYOUT is NP-hard
- formulation of hard and soft constraints as MIP
- combined layout and labeling
- MIP size & runtime reductions
- high-quality results
- MIP can schematize any kind of graph sketch

For more info see:

M. Nöllenburg and A. Wolff. *Drawing and labeling high-quality metro maps by mixed-integer programming.* IEEE Trans. Visualization and Computer Graphics 17(5):626–641, 2011.

Martin Nöllenburg 40 40 Drawing Metro Maps