

Algorithmen zur Visualisierung von Graphen

Kombinatorische Optimierung mittels Flussmethoden II

Vorlesung im Wintersemester 2011/2012
Ignaz Rutter

10.11.2011

Orthogonale Zeichnungen II

letztes Mal:

Satz

G Maxgrad-4-Graph mit fester planarer Einbettung Orthogonale Zeichnung von G mit minimaler Anzahl an Knicken kann effizient berechnet werden.

Orthogonale Zeichnungen II

letztes Mal:

Satz

G Maxgrad-4-Graph mit fester planarer Einbettung Orthogonale Zeichnung von G mit minimaler Anzahl an Knicken kann effizient berechnet werden.

Durch Erweiterung des Flußnetzwerks ebenfalls lösbar: Gegeben Funktion flex : $E \to \mathbb{N}_0$, finde Zeichnung mit minimaler Knickzahl, sodass Kante e höchstens flex(e) Knicke hat.

Orthogonale Zeichnungen II

letztes Mal:

Satz

G Maxgrad-4-Graph mit fester planarer Einbettung Orthogonale Zeichnung von G mit minimaler Anzahl an Knicken kann effizient berechnet werden.

Durch Erweiterung des Flußnetzwerks ebenfalls lösbar: Gegeben Funktion flex : $E \to \mathbb{N}_0$, finde Zeichnung mit minimaler Knickzahl, sodass Kante e höchstens flex(e) Knicke hat.

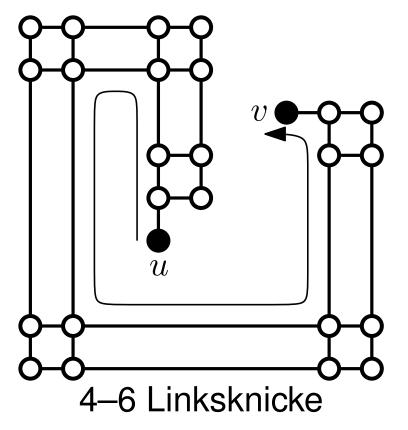
heute:

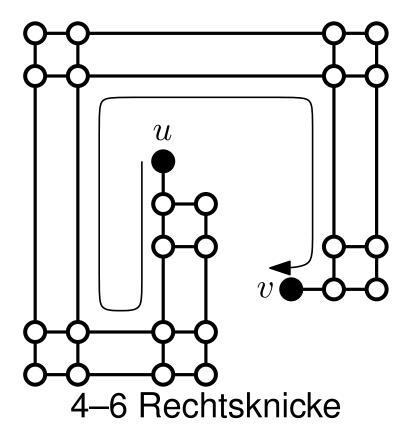
Satz

G Maxgrad-4-Graph mit variabler Einbettung Entscheiden, ob G orthogonale Zeichnung ohne Knicke besitzt ist NP-schwer.

Schwierigkeit bei 0-Knick-Zeichenbarkeit

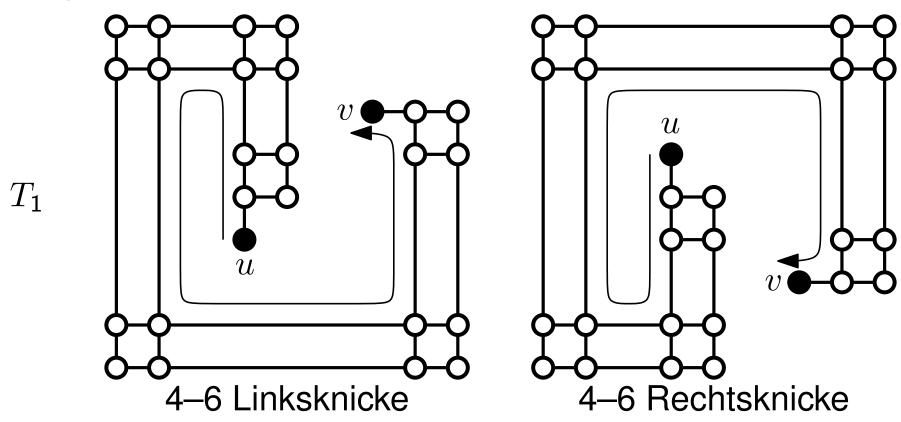
Es gibt starre Konstruktionen



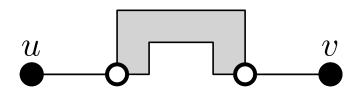


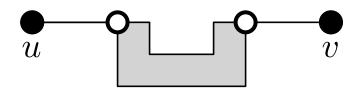
Schwierigkeit bei 0-Knick-Zeichenbarkeit

Es gibt starre Konstruktionen

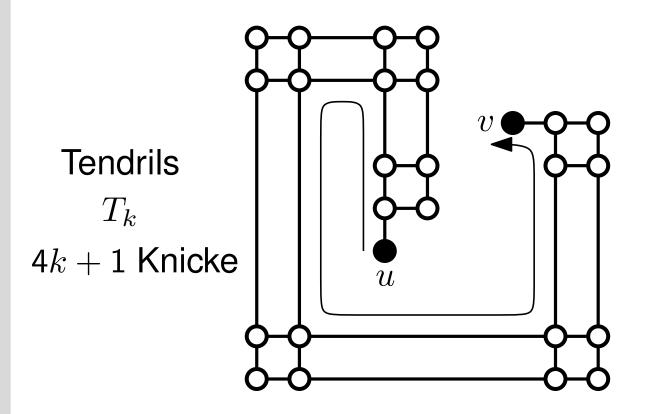


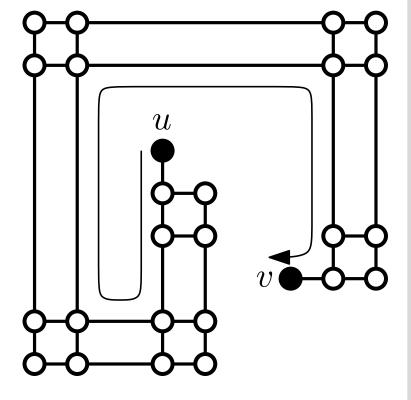
Tendril T_k : Konstruktion mit 4k bis 4k + 2 Links- oder Rechsknicken



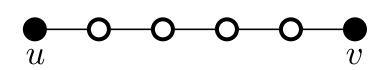


Zwei Gadgets





Wiggles W_k



Pfad der Länge 4k + 1

0 bis 4k Knicke



Ein neues Flußproblem

Problem (Switch-Flow Network)

Eingabe:

- ungerichtetes Netzwerk N = (V, E)
- für jede Kante einen Kapazitätsbereichs $[c' \cdots c'']$
- schreibe [c] für $[c \cdots c]$

Gültiger Fluß:

- Orientierung der Kanten
- Flußzuweisung an jede Kante gemäß Kapazitätsbereich
- Flußerhaltung gilt in jedem Knoten

Existiert ein gültiger Fluß?

Ein neues Flußproblem

Problem (Switch-Flow Network)

Eingabe:

- ungerichtetes Netzwerk N = (V, E)
- lacktriangle für jede Kante einen Kapazitätsbereichs $[c'\cdots c'']$
- schreibe [c] für $[c \cdots c]$

Gültiger Fluß:

- Orientierung der Kanten
- Flußzuweisung an jede Kante gemäß Kapazitätsbereich
- Flußerhaltung gilt in jedem Knoten

Existiert ein gültiger Fluß?

Satz

Switch-Flow Network ist NP-schwer, sogar wenn N planar und 3-fach zusammenhängend ist.

Not-All-Equal 3SAT

Problem Not-All-Equal 3SAT:

Gegeben: 3SAT-Formel Φ

Gesucht: Variablenbelegung, sodass in keiner Klausel

alle Literale gleich belegt sind

Beispiel: $\Phi = (\neg x_1, x_2, \neg x_3), (\neg x_1, \neg x_2, x_3), (x_1, x_2, x_3)$

- $\mathbf{x}_1 = \mathtt{true}, x_2 = \mathtt{false}, x_3 = \mathtt{true}$ ist erfüllend
- \mathbf{n} $x_1 = \mathtt{true}, x_2 = \mathtt{true}, x_3 = \mathtt{true}$ ist nicht erfüllend

Not-All-Equal 3SAT

Problem Not-All-Equal 3SAT:

Gegeben: 3SAT-Formel Φ

Gesucht: Variablenbelegung, sodass in keiner Klausel

alle Literale gleich belegt sind

Beispiel: $\Phi = (\neg x_1, x_2, \neg x_3), (\neg x_1, \neg x_2, x_3), (x_1, x_2, x_3)$

- $\mathbf{x}_1 = \mathtt{true}, x_2 = \mathtt{false}, x_3 = \mathtt{true}$ ist erfüllend
- $\mathbf{x_1} = \mathtt{true}, x_2 = \mathtt{true}, x_3 = \mathtt{true}$ ist nicht erfüllend

Satz

Not-All-Equal 3SAT ist NP-schwer.

Achtung: Planares Not-All-Equal 3SAT ist polynomiell lösbar.

(Äquivalent zu MAXCUT auf planaren Graphen, vgl. Vorlesung "Algorithmen für planare Graphen")

Φ Instanz von Not-All-Equal 3SAT

Literale: $x_1, y_1, \ldots, x_n, y_n$ mit $y_i = \neg x_i$

Klauseln: c_1, \ldots, c_m

Φ Instanz von Not-All-Equal 3SAT

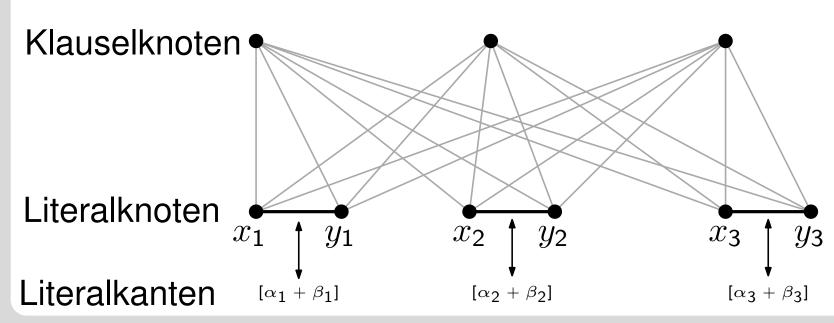
Literale: $x_1, y_1, \ldots, x_n, y_n$ mit $y_i = \neg x_i$

Klauseln: c_1, \ldots, c_m

 $\alpha_i := \#Vorkommen von x_i$ in Klauseln von Φ

 $β_i := #Vorkommen von <math>y_i$ in Klauseln von Φ

$$(\neg x_1, x_2, \neg x_3), (\neg x_1, \neg x_2, x_3), (x_1, x_2, x_3)$$



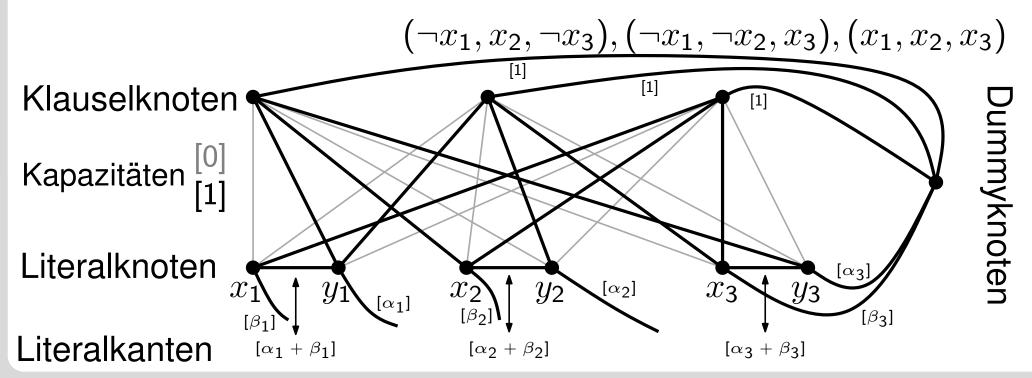
Φ Instanz von Not-All-Equal 3SAT

Literale: $x_1, y_1, \ldots, x_n, y_n$ mit $y_i = \neg x_i$

Klauseln: c_1, \ldots, c_m

 $α_i := #Vorkommen von <math>x_i$ in Klauseln von Φ

 $β_i := #Vorkommen von <math>y_i$ in Klauseln von Φ



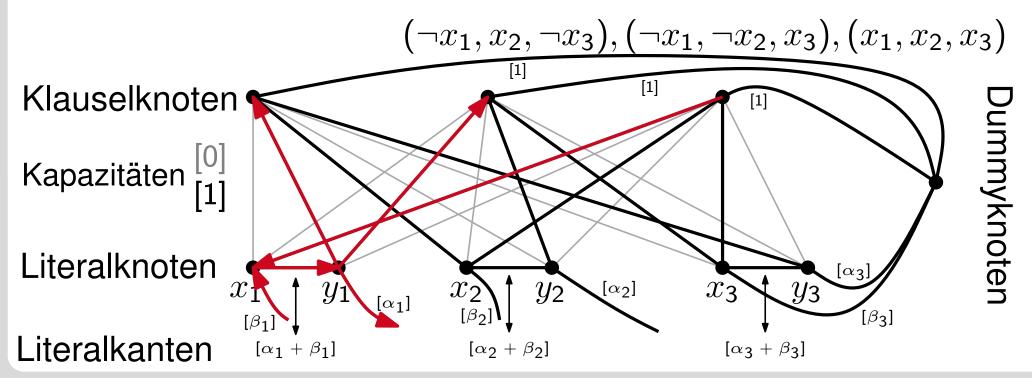
Φ Instanz von Not-All-Equal 3SAT

Literale: $x_1, y_1, \ldots, x_n, y_n$ mit $y_i = \neg x_i$

Klauseln: c_1, \ldots, c_m

 $α_i := #Vorkommen von <math>x_i$ in Klauseln von Φ

 $β_i := #Vorkommen von <math>y_i$ in Klauseln von Φ



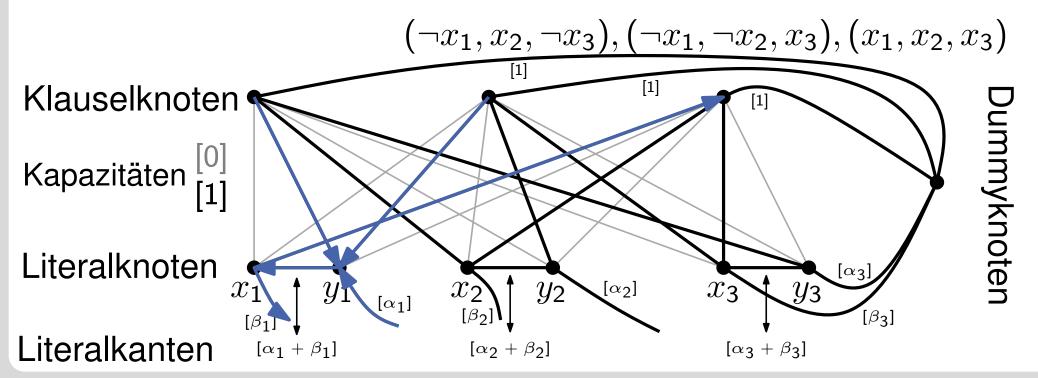
Φ Instanz von Not-All-Equal 3SAT

Literale: $x_1, y_1, \ldots, x_n, y_n$ mit $y_i = \neg x_i$

Klauseln: c_1, \ldots, c_m

 $α_i := #Vorkommen von <math>x_i$ in Klauseln von Φ

 $β_i := #Vorkommen von <math>y_i$ in Klauseln von Φ



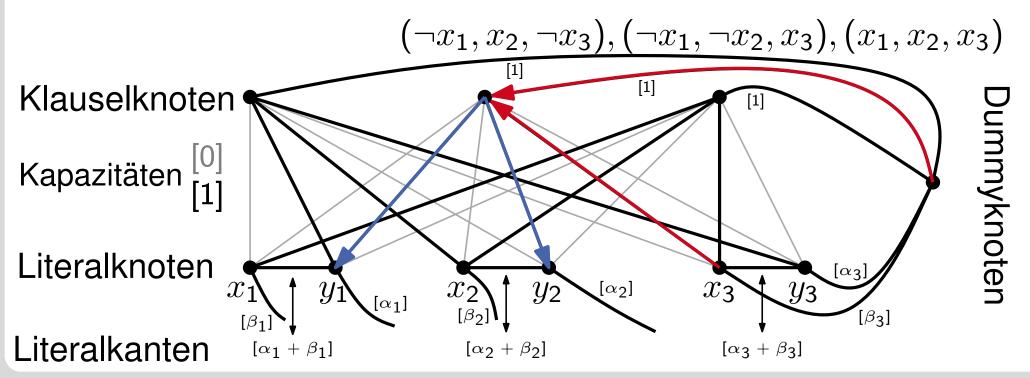
Φ Instanz von Not-All-Equal 3SAT

Literale: $x_1, y_1, \ldots, x_n, y_n$ mit $y_i = \neg x_i$

Klauseln: c_1, \ldots, c_m

 $α_i := #Vorkommen von <math>x_i$ in Klauseln von Φ

 $β_i := #Vorkommen von <math>y_i$ in Klauseln von Φ



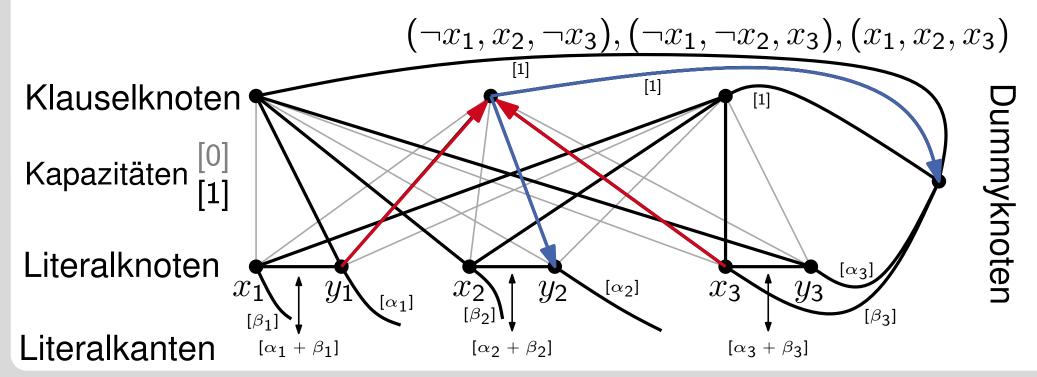
Φ Instanz von Not-All-Equal 3SAT

Literale: $x_1, y_1, \ldots, x_n, y_n$ mit $y_i = \neg x_i$

Klauseln: c_1, \ldots, c_m

 $α_i := #Vorkommen von <math>x_i$ in Klauseln von Φ

 $β_i := #Vorkommen von <math>y_i$ in Klauseln von Φ



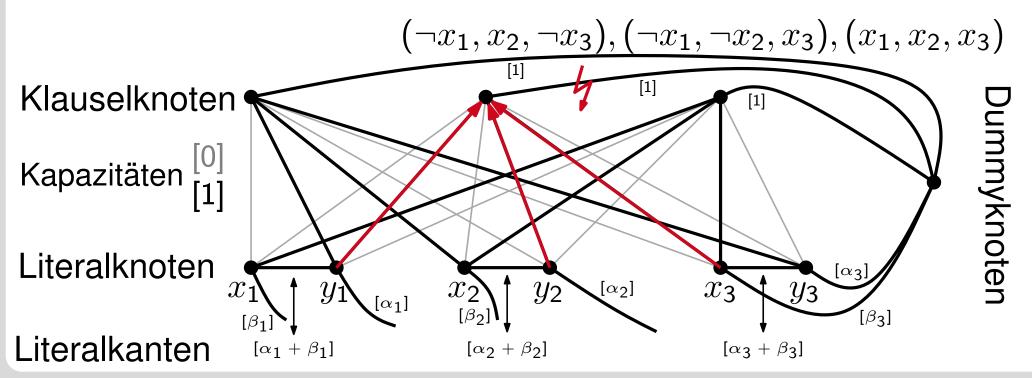
Φ Instanz von Not-All-Equal 3SAT

Literale: $x_1, y_1, \ldots, x_n, y_n$ mit $y_i = \neg x_i$

Klauseln: c_1, \ldots, c_m

 $α_i := #Vorkommen von <math>x_i$ in Klauseln von Φ

 $β_i := #Vorkommen von <math>y_i$ in Klauseln von Φ



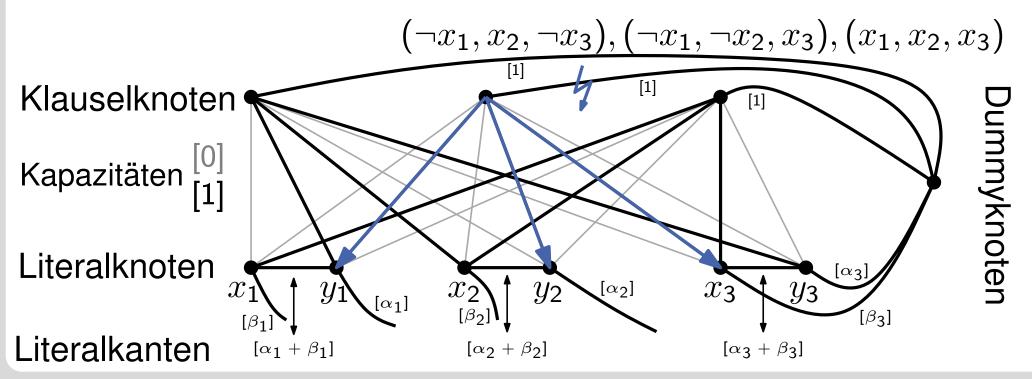
Φ Instanz von Not-All-Equal 3SAT

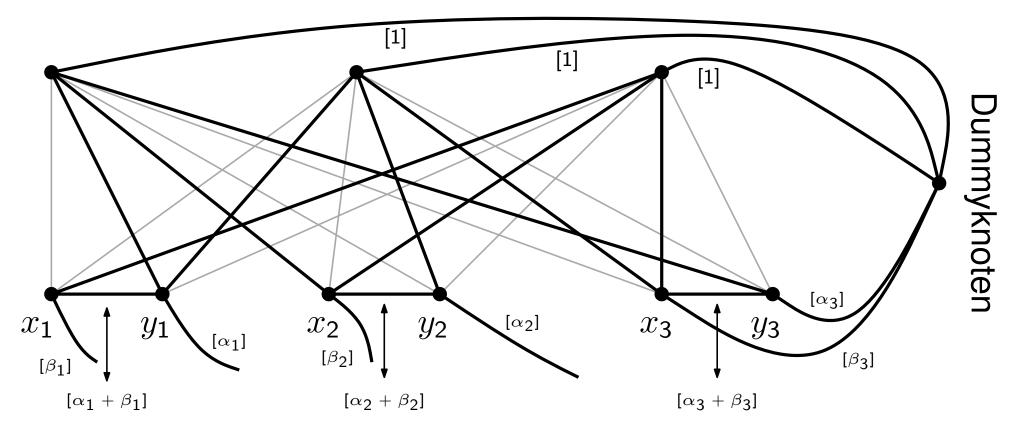
Literale: $x_1, y_1, \ldots, x_n, y_n$ mit $y_i = \neg x_i$

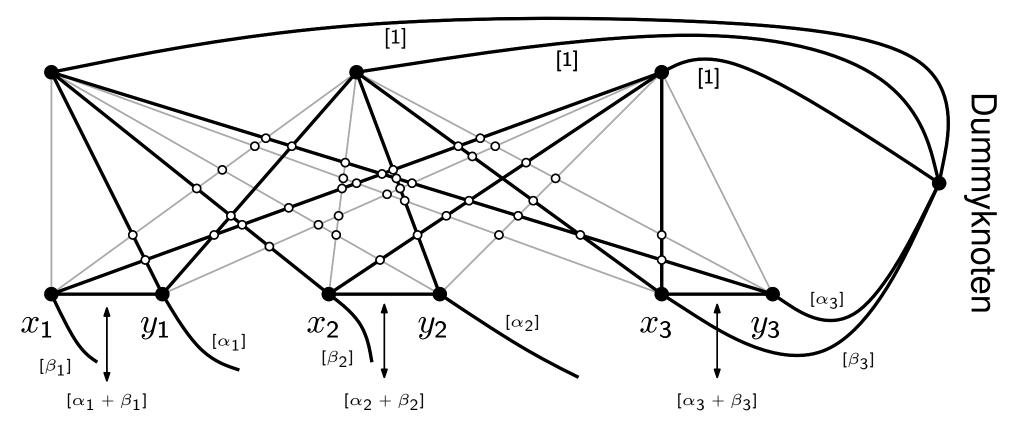
Klauseln: c_1, \ldots, c_m

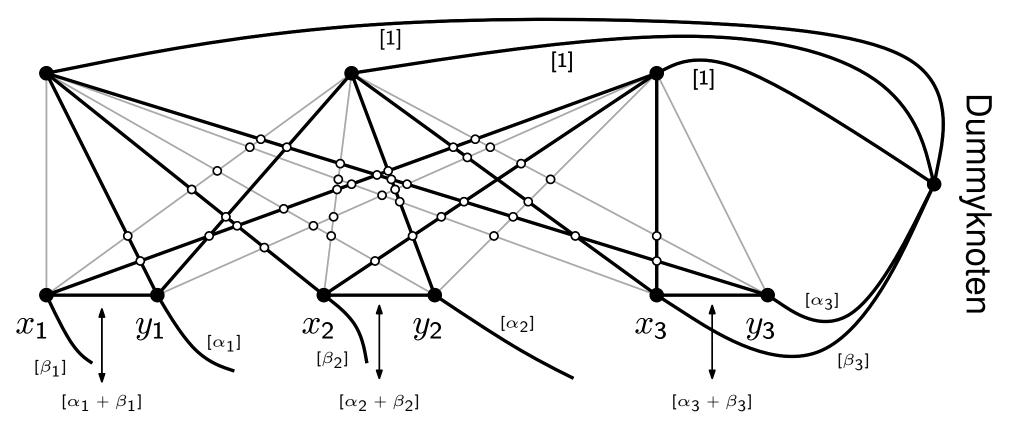
 $α_i := #Vorkommen von <math>x_i$ in Klauseln von Φ

 $β_i := #Vorkommen von <math>y_i$ in Klauseln von Φ

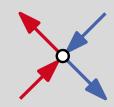


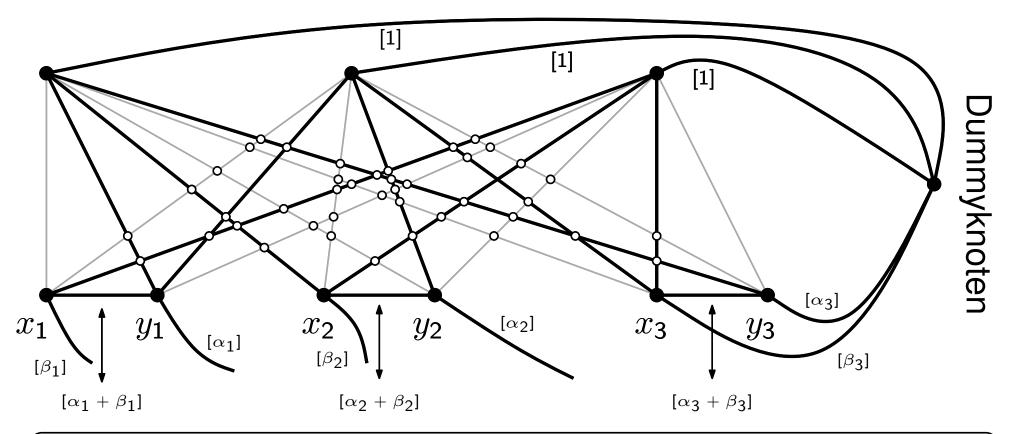


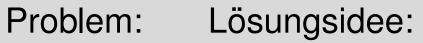


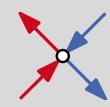


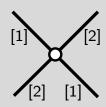
Problem:

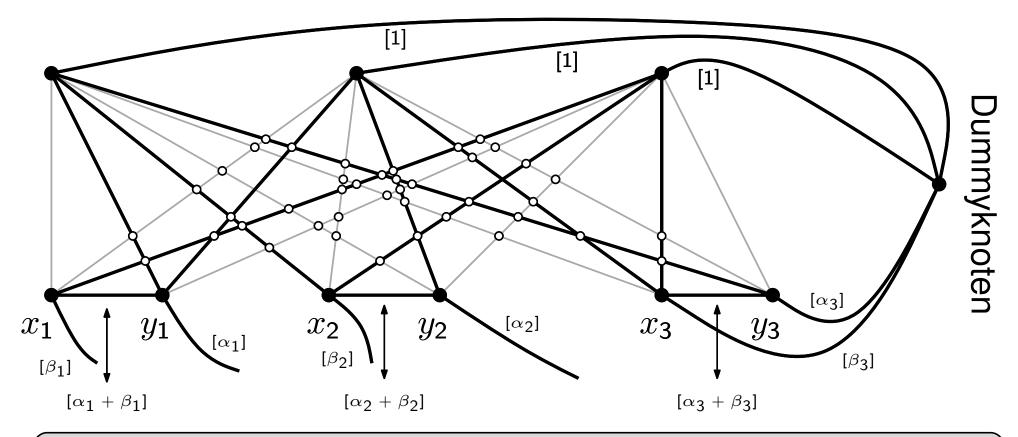




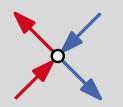




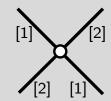




Problem:



Lösungsidee:

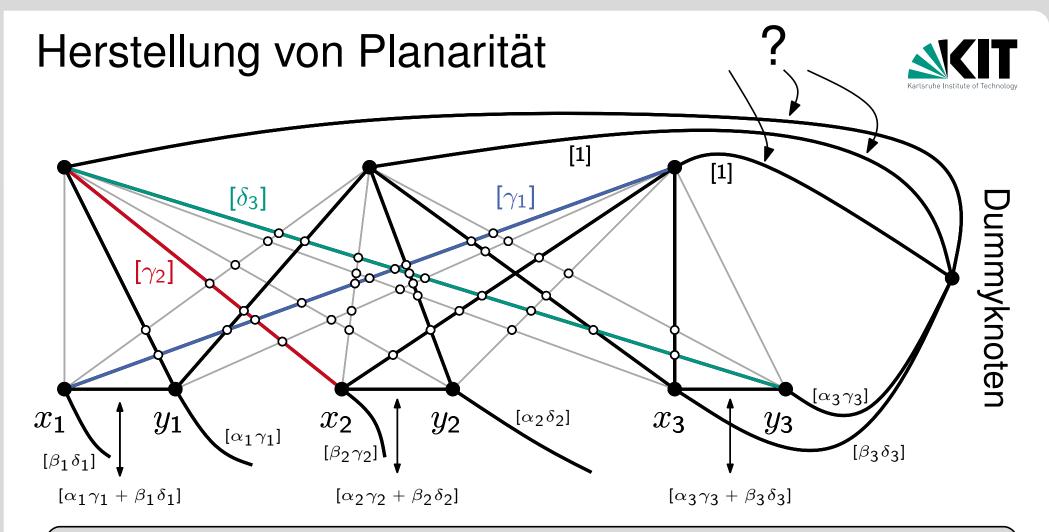


Allgemeiner:

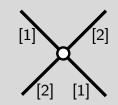
. Verschiedene Flußwerte für verschiedene Literale

 $f\ddot{\mathsf{u}}\mathsf{r}\ x_i:\gamma_i:=(2i-1)\Theta$

 $f \ddot{\mathsf{u}} \mathsf{r} \ y_i : \delta_i := 2i\Theta$



Problem:



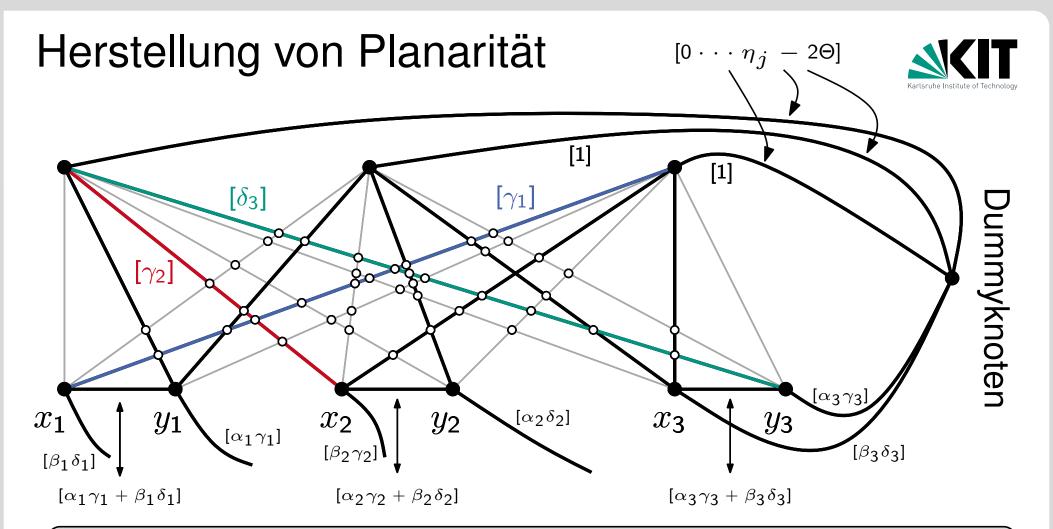
Lösungsidee:

Allgemeiner:

Verschiedene Flußwerte für verschiedene Literale

 $f\ddot{\mathsf{u}} \mathsf{r} \ x_i := (2i-1)\Theta$

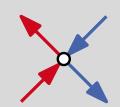
 $f\ddot{\mathsf{u}}\mathsf{r}\ y_i:\delta_i:=2i\Theta$

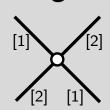


Problem:

Lösungsidee:

Allgemeiner: Verschiedene Flußwerte für verschiedene Literale

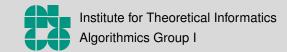




 $f \ddot{\mathsf{u}} \mathsf{r} \; x_i := (2i-1)\Theta$

 $f \ddot{\mathsf{u}} \mathsf{r} \ y_i : \delta_i := 2i\Theta$

 $\eta_i :=$ Summe der Kapazitäten inzidenter Literal-Klausel-Kanten für Klausel j



Zwischenstand

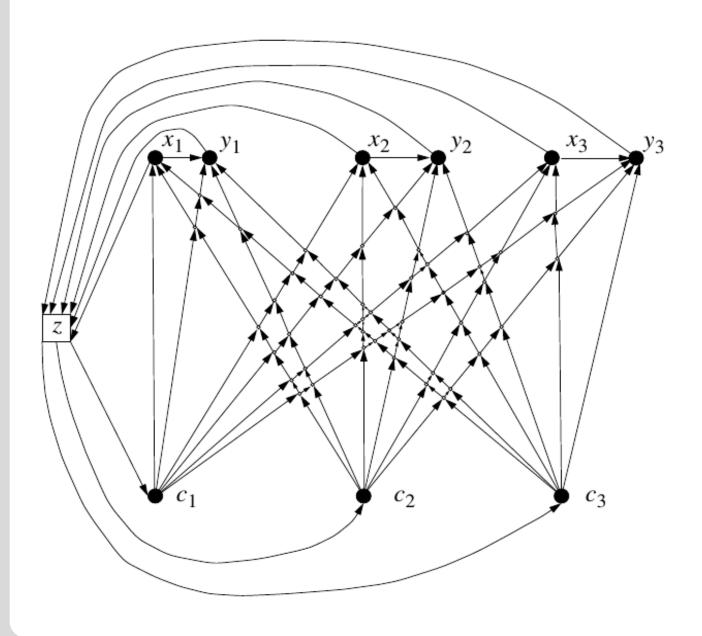
Konstruierter Graph ist 3-fach zusammenhängend

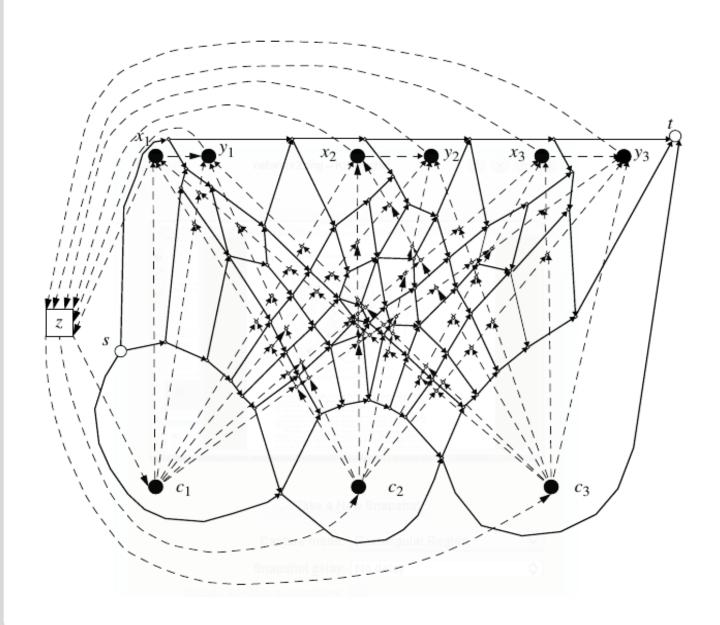
Satz

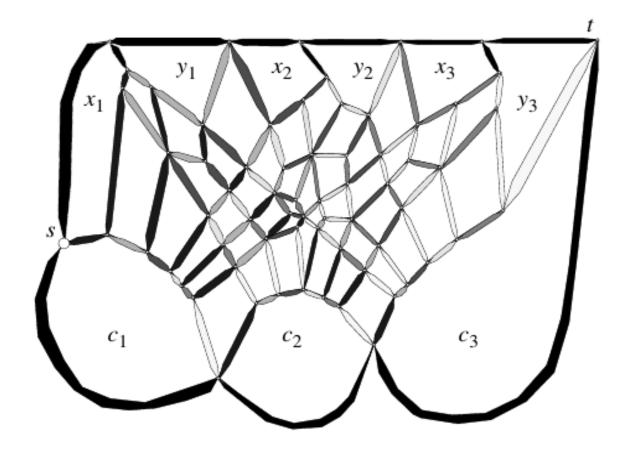
Switch-Flow Network ist NP-schwer, sogar wenn N planar und 3-fach zusammenhängend ist.

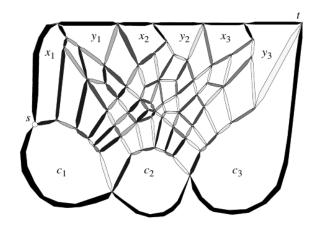
Idee: Konstruiere Graph G mit G besitzt Zeichnung ohne Knicke $\Leftrightarrow N$ lösbar.

- N hat eindeutige planare Einbettung
- lacktriangle Verwende Dualgraph von N als Basis
- Ersetze Kanten des Dualgraphs durch Konstruktionen, die den Fluß modellieren



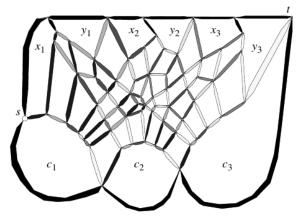






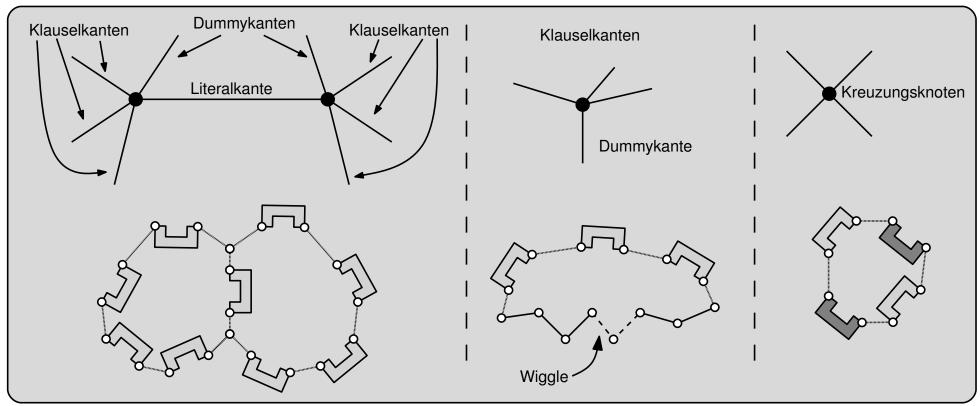
Ersetze:

- lacktriangle Kante mit Kapazität $[c]
 ightarrow {\sf Tendril} \ T_c$
- Nante mit Kapazität $[0 \cdots c] \rightarrow Wiggle W_c$



Ersetze:

- lacksquare Kante mit Kapazität $[c]
 ightarrow {\sf Tendril}\ T_c$
- Nante mit Kapazität $[0 \cdots c] \rightarrow Wiggle W_c$

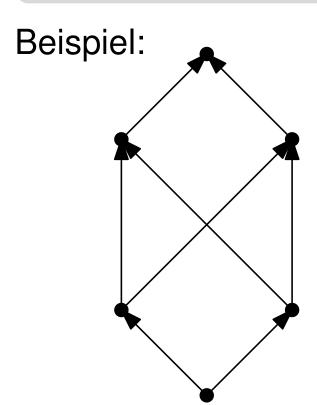


Aufwärtsplanare Zeichnungen

Aufwärtsplanarität

Definition

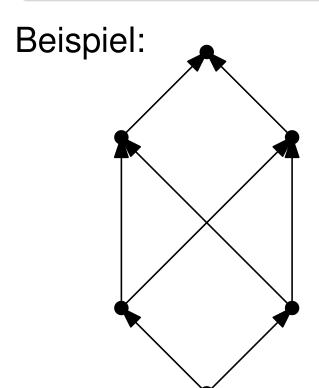
Ein gerichteter azyklischer Graph D = (V, A) heißt aufwärtsplanar, wenn es eine planare Einbettung von D in die Ebene gibt, bei der alle Kanten aufwärtsgerichtet sind.

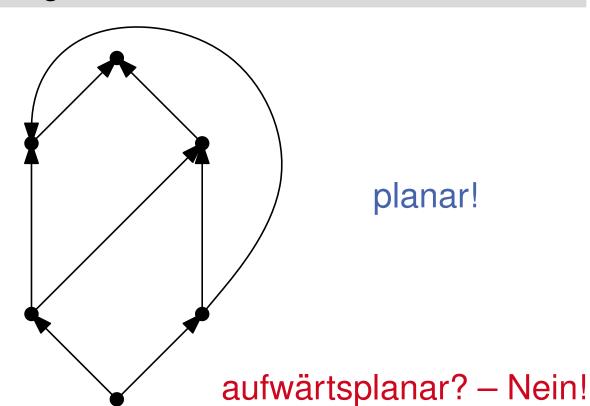


Aufwärtsplanarität

Definition

Ein gerichteter azyklischer Graph D = (V, A) heißt aufwärtsplanar, wenn es eine planare Einbettung von D in die Ebene gibt, bei der alle Kanten aufwärtsgerichtet sind.





Algorithmics Group I

Problemstellung

Problem: Test auf Aufwärtsplanarität

Gegeben ein gerichteter azyklischer Graph D=(V,A). Teste, ob D aufwärtsplanar ist. Falls D aufwärtsplanar ist, so konstruiere ein entsprechendes Layout

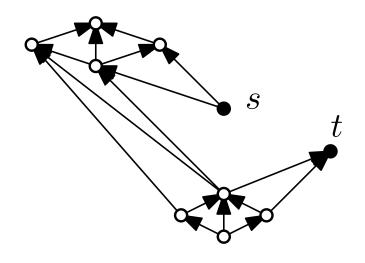
Problemstellung

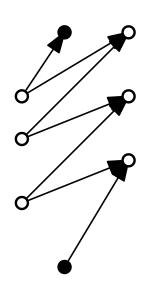
Problem: Test auf Aufwärtsplanarität

Gegeben ein gerichteter azyklischer Graph D=(V,A). Teste, ob D aufwärtsplanar ist. Falls D aufwärtsplanar ist, so konstruiere ein entsprechendes Layout

Garg & Tamassia: Das Problem ist NP-schwer.

- ähnliche Konstruktion wie zuvor
- andere Tendrils und Wiggles





Trotzdem Charakterisierung

Definition:

DAG D = (V, A) heißt st-Graph, wenn

- lacktriangle es ex. eindeutige Quelle s in V
- lacktriangle es ex. eindeutige Senke t in V
- lacktriangle Kante st ist in A enthalten

Trotzdem Charakterisierung

Definition:

DAG D = (V, A) heißt st-Graph, wenn

- lacktriangle es ex. eindeutige Quelle s in V
- lacksquare es ex. eindeutige Senke t in V
- lacktriangle Kante st ist in A enthalten

Satz (Charakterisierung aufwärtsplanarer Graphen)

Für einen gerichteten Graphen D = (V, A) sind folgende Aussagen äquivalent:

- 1. D ist aufwärtsplanar
- 2. D hat ein geradliniges aufwärtsplanares Layouts
- 3. D ist aufspannender Subgraph eines planaren st-Graphen

Trotzdem Charakterisierung

Definition:

DAG D = (V, A) heißt st-Graph, wenn

- lacktriangle es ex. eindeutige Quelle s in V
- lacksquare es ex. eindeutige Senke t in V
- Kante st ist in A enthalten

Satz (Charakterisierung aufwärtsplanarer Graphen)

Für einen gerichteten Graphen D = (V, A) sind folgende Aussagen äquivalent:

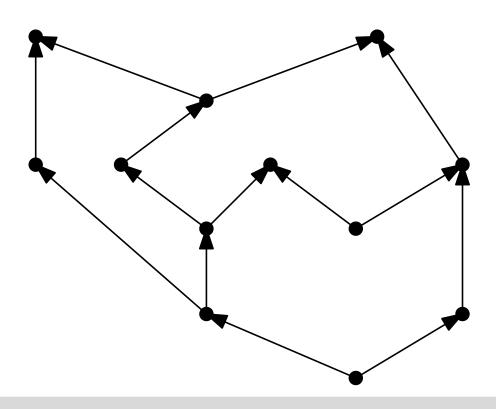
- 1. D ist aufwärtsplanar
- 2. D hat ein geradliniges aufwärtsplanares Layouts
- 3. D ist aufspannender Subgraph eines planaren st-Graphen

Beweis:
$$(2) \Rightarrow (1)$$
 ist klar $(3) \Leftrightarrow (1)$ einfach $(3) \Rightarrow (2)$ braucht etwas mehr Arbeit

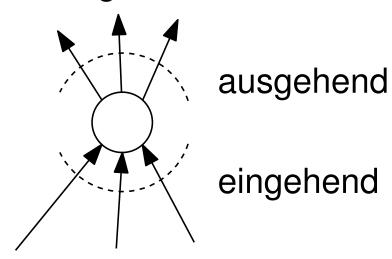
Neue Problemstellung: Feste Einbettung

Problem: Test auf Aufwärtsplanarität mit fester Einbettung

Gegeben ein gerichteter azyklischer Graph D = (V, A) mit Elnbettung \mathcal{F}, f_0 . Teste, ob D, \mathcal{F}, f_0 aufwärtsplanar ist und konstruiere ggf. ein entsprechendes Layout



Einbettung ist bimodal



Bimodalität notwendig (nicht hinreichend)

- Bimodalität notwendig (nicht hinreichend)
- nur zw. ein-bzw. aus-gehenden Kanten! betrachte Winkel zw. zwei ein-/ausgehenden Kanten Winkel α ist groß wenn $\alpha > \pi$, klein sonst.
 - L(v) :=# große Winkel an Knoten v
 - L(f) := # große Winkel in Facette f.
 - S(v) bzw. S(f): Anzahl kleiner Winkel

- Bimodalität notwendig (nicht hinreichend)
- nur zw. ein-bzw. aus-gehenden Kanten! betrachte Winkel zw. zwei ein-/ausgehenden Kanten Winkel α ist groß wenn $\alpha > \pi$, klein sonst.
 - L(v) :=# große Winkel an Knoten v
 - L(f) := # große Winkel in Facette f.
 - S(v) bzw. S(f): Anzahl kleiner Winkel

Lemma:

in Aufwärs-Layout von D gilt:

(1)
$$\forall v \in V : L(v) = \begin{cases} 0 & \text{v innerer Knoten} \\ 1 & \text{v Quelle/Senke} \end{cases}$$

(2)
$$\forall f \in \mathcal{F} : L(f) - S(f) = \begin{cases} -2 & \neq f_0 \\ 2 & f_0 \end{cases}$$

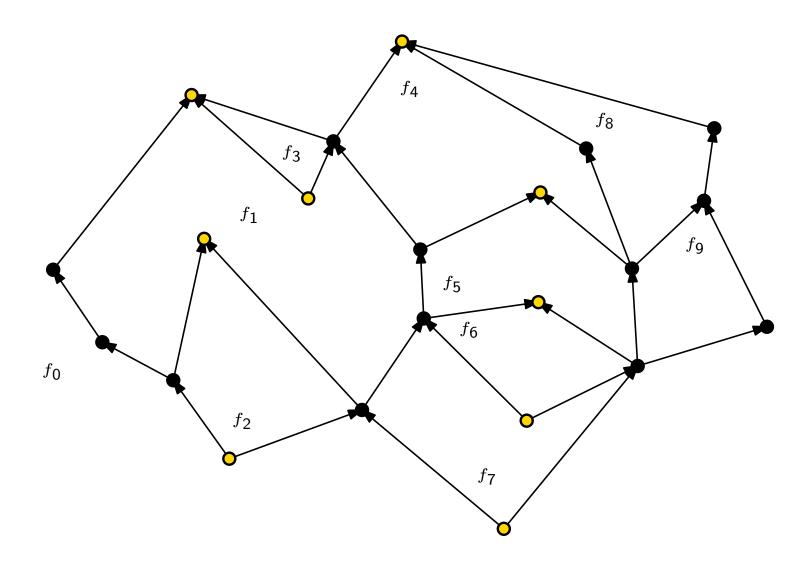
Folgerung

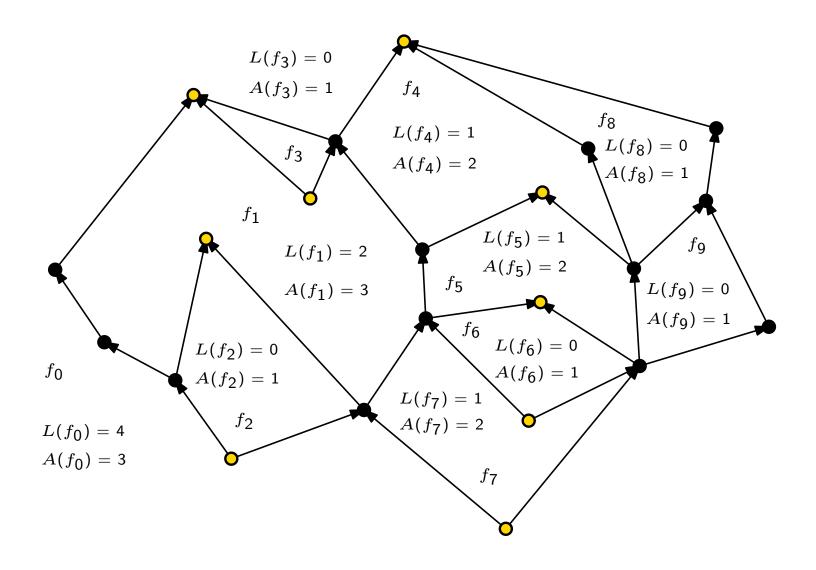
- lacksquare A(f) := # Winkel zwischen zwei eingehenden Kanten an fEs gilt stets: L(f) + S(f) = 2A(f) für alle Facetten
- lacktriangle in Aufwärs-Layout von D gilt:

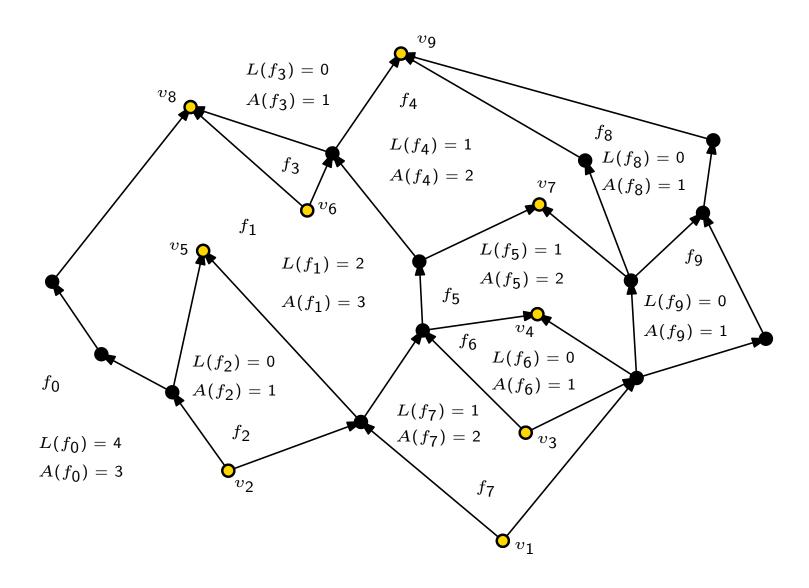
(2)
$$\forall f \in \mathcal{F}: L(f) = egin{cases} A(f) - 1 & \neq f_0 \\ A(f) + 1 & f_0 \end{cases}$$

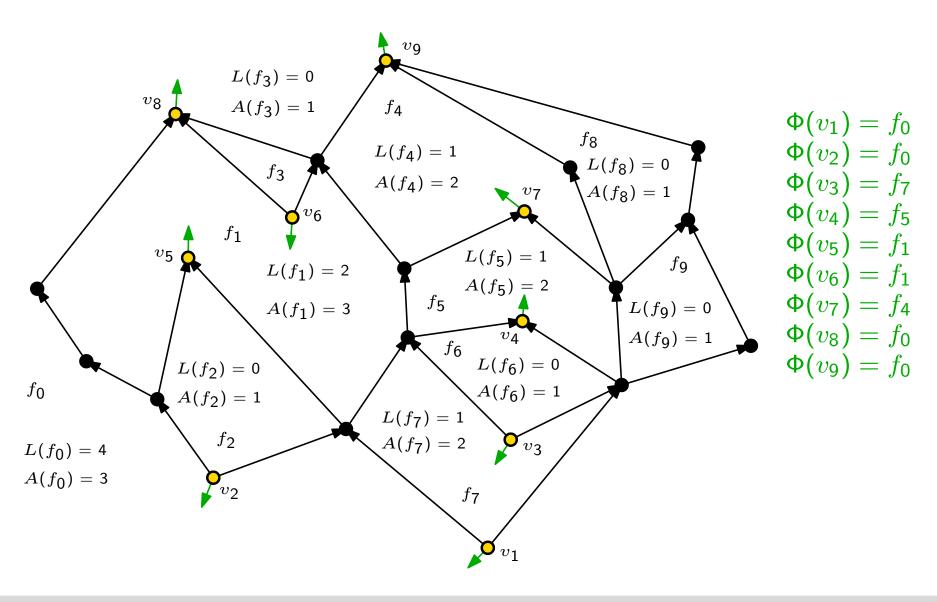
Definiert Zuordnung von Quellen/Senken zu inzidenten Facetten

 $\Phi: \{Q,S\} \to \mathcal{F}$









Satz

Für einen gerichteten azyklischen Graphen D = (V, A) mit kombinatorischer Einbettung \mathcal{F}, f_0 gilt:

aufwärtsplanar ←⇒ bimodal und ∃ konsistentes Φ

Satz

Für einen gerichteten azyklischen Graphen D = (V, A) mit kombinatorischer Einbettung \mathcal{F}, f_0 gilt: aufwärtsplanar \iff bimodal und \exists konsistentes Φ

⇒: soeben hergeleitet

Satz

Für einen gerichteten azyklischen Graphen D = (V, A) mit kombinatorischer Einbettung \mathcal{F}, f_0 gilt:

aufwärtsplanar ←⇒ bimodal und ∃ konsistentes Φ

⇒: soeben hergeleitet

Zunächst: $D, \mathcal{F}, f_0 \stackrel{?}{\leadsto} \Phi$ konsistent

Satz

Für einen gerichteten azyklischen Graphen D = (V, A) mit kombinatorischer Einbettung \mathcal{F}, f_0 gilt:

aufwärtsplanar ←⇒ bimodal und ∃ konsistentes Φ

⇒: soeben hergeleitet

Zunächst: $D, \mathcal{F}, f_0 \stackrel{?}{\leadsto} \Phi$ konsistent

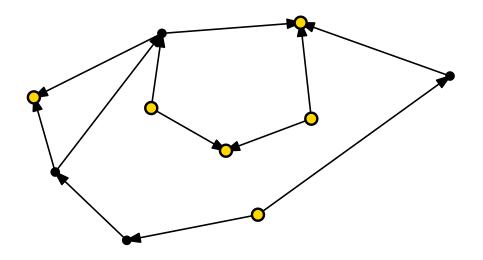
Flußnetzwerk!

Flussnetzwerk zur Konstruktion von Ф

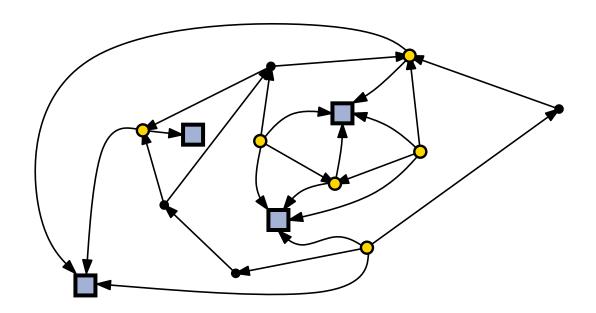
Definition Flussnetzwerk $N_{\mathcal{F},f_0}(D) = ((W,A_N); \ell; u; b)$

- $lackbox{W} = \{v \in V \mid v \text{ ist Quelle oder Senke}\} \cup \mathcal{F}$
- lacksquare $A_N = \{(v, f) \mid v \text{ inzident zu } f$
- $l(a) = 0 \quad \forall a \in A_N$
- $u(a) = 1 \quad \forall a \in A_N$

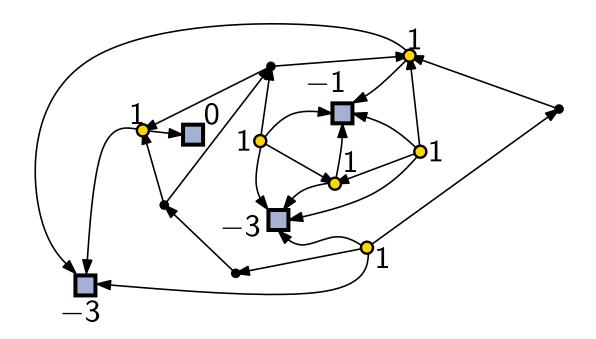
$$b(q) = \begin{cases} 1 & \forall q \in W \cap V \\ -(A(q) - 1) & \forall q \in \mathcal{F} \setminus \{f_0\} \\ -(A(q) + 1) & q = f_0 \end{cases}$$



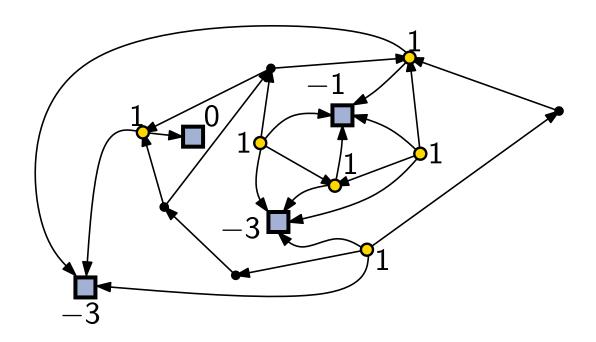
- normaler Knoten
- Quelle / Senke



- normaler Knoten
- Quelle / Senke
- Facettenknoten



- normaler Knoten
- Quelle / Senke
- Facettenknoten

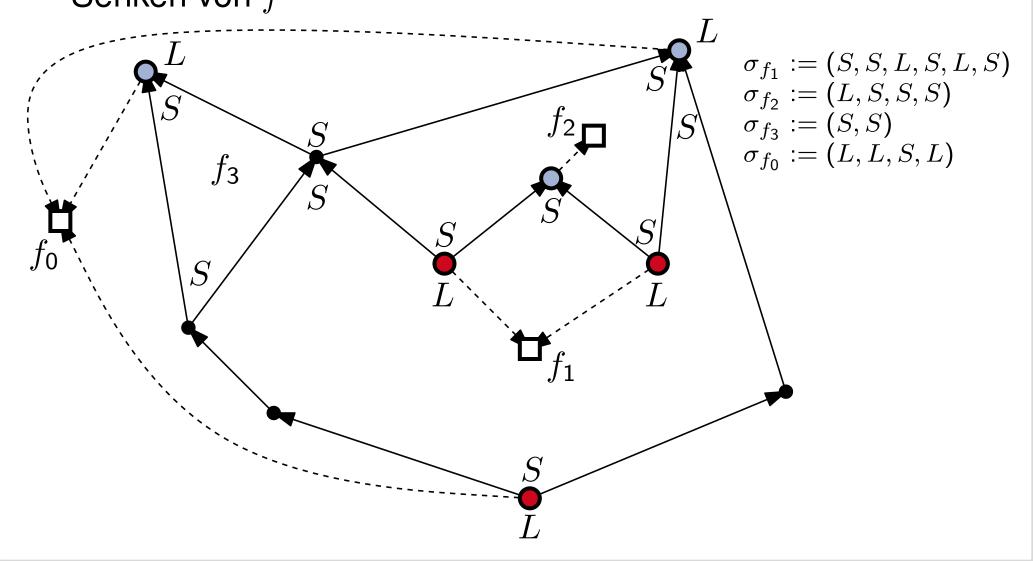


- normaler Knoten
- Quelle / Senke
- Facettenknoten

- Starte mit Nullfluss
- Suche erhöhende Wege
- lacktriangle Geht auch ohne festgelegtes f_0

Winkelfolgen an Facetten

Betrachte Folge σ_f von Winkeln L,S an lokalen Quellen und Senken von f



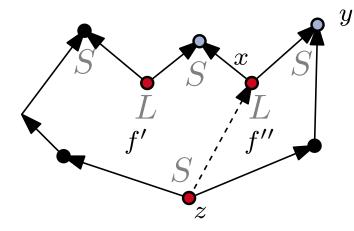
Algorithmus: Φ , \mathcal{F} , $f_0 \rightsquigarrow s$ -t-Graph $\supseteq D$

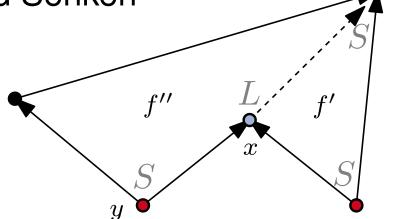
• $f \neq f_0$ mit $|\sigma_f| \geq 2$ enthält L, S, S an x, y, z

Algorithmus: $\Phi, \mathcal{F}, f_0 \rightsquigarrow s$ -t-Graph $\supseteq D$

- $f \neq f_0$ mit $|\sigma_f| \geq 2$ enthält L, S, S an x, y, z
- \blacksquare x Quelle \Rightarrow verfeinere mit (z, x)
- \blacksquare x Senke \Rightarrow verfeinere mit (x, z)

Ziel: Entferne alle Quellen und Senken

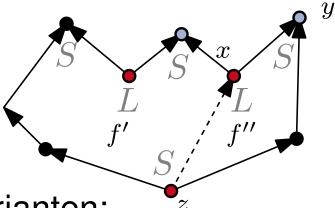


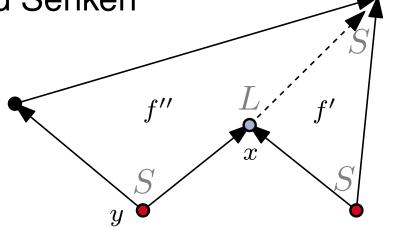


Algorithmus: $\Phi, \mathcal{F}, f_0 \rightsquigarrow s$ -t-Graph $\supseteq D$

- $f \neq f_0$ mit $|\sigma_f| \geq 2$ enthält L, S, S an x, y, z
- \blacksquare x Quelle \Rightarrow verfeinere mit (z,x)
- \blacksquare x Senke \Rightarrow verfeinere mit (x, z)

Ziel: Entferne alle Quellen und Senken





Invarianten:

- Planarität, Azyklizität, Bimodalität
- lacktriangle Quellen/Senken von f werden Quellen/Senken von f'
- Füge zwischen irgendeiner Quelle s und Senke t auf f_0 die Kante (s,t) ein.
 - \Rightarrow planarer s-t-Graph, der D enthält

