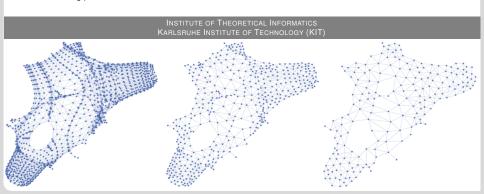


Algorithmen zur Visualisierung von Graphen Lagenlayouts II

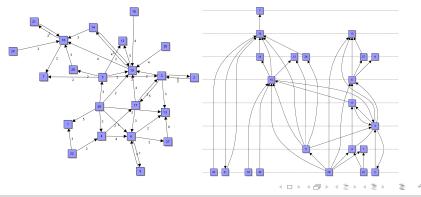
Marcus Krug | WS 2011/12



Lagenlayouts

Problemstellung

- Gegeben: gerichteter Graph D = (V, A)
- Gesucht: Zeichnung von D, die Hierarchie möglichst gut wiedergibt



Lagenlayouts

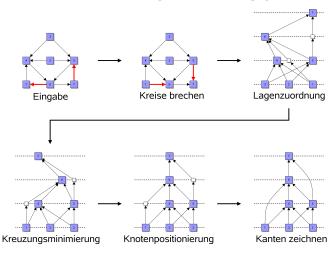
Problemstellung

- Gegeben: gerichteter Graph D = (V, A)
- Gesucht: Zeichnung von D, die Hierarchie möglichst gut wiedergibt

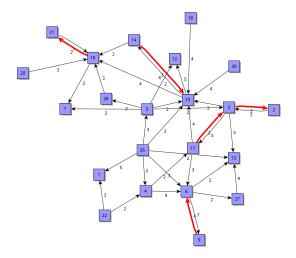
Desiderata

- möglichst viele Kanten aufwärtsgerichtet
- Kanten möglichst geradlinig und kurz
- Zuordnung der Knoten auf (wenige) horizontale Linien
- möglichst wenige Kantenkreuzungen
- Knoten gleichmäßig verteilt
 - ! Kriterien widersprechen sich

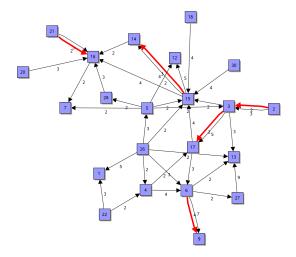
Klassisches Vorgehen (Sugiyama)



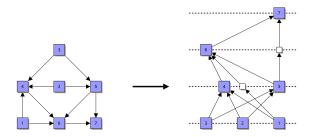
E-Mail-Graph der Fakultät für Informatik



E-Mail-Graph der Fakultät für Informatik



2. Schritt: Lagenzuordnung



Problemstellung

- Gegeben: azyklischer, gerichteter Graph D = (V, A)
- Finde zulässige Partition der Knotenmenge V in Lagen L_{V} , so dass für all $(u, v) \in A$ gilt y(u) < y(v)
- minimiere Gesamthöhe

Problemstellung

- Gegeben: azyklischer, gerichteter Graph D = (V, A)
- Finde zulässige Partition der Knotenmenge V in Lagen L_{V} , so dass für all $(u, v) \in A$ gilt y(u) < y(v)
- minimiere Gesamthöhe

Weitere Zielfunktion

- minimiere längste Kante
- minimiere Gesamtlänge der Kanten (wenige Dummy-Knoten)

ungerichteter Fall?

• Ordne alle Quellen q Layer 1 zu, d.h. y(q) = 0

- Ordne alle Quellen q Layer 1 zu, d.h. y(q) = 0
- sei $N^{\leftarrow}(u)$ Menge der Knoten v mit $(v, u) \in A$

- Ordne alle Quellen q Layer 1 zu, d.h. y(q) = 0
- sei $N^{\leftarrow}(u)$ Menge der Knoten v mit $(v, u) \in A$
- setze

$$y(u) := \max_{v \in N^{\leftarrow}(u)} \{y(v)\} + 1$$

- Ordne alle Quellen q Layer 1 zu, d.h. y(q) = 0
- sei $N^{\leftarrow}(u)$ Menge der Knoten v mit $(v, u) \in A$
- setze

$$y(u) := \max_{v \in N^{\leftarrow}(u)} \{y(v)\} + 1$$

d.h. y-Koordinate ist Länge des Längsten Wegs von einer Quelle zu v

- Ordne alle Quellen q Layer 1 zu, d.h. y(q) = 0
- sei $N^{\leftarrow}(u)$ Menge der Knoten v mit $(v, u) \in A$
- setze

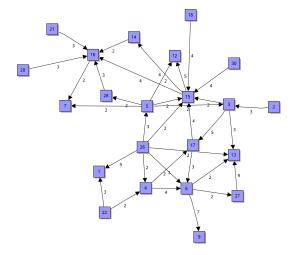
$$y(u) := \max_{v \in N^{\leftarrow}(u)} \{y(v)\} + 1$$

d.h. y-Koordinate ist Länge des Längsten Wegs von einer Quelle zu v

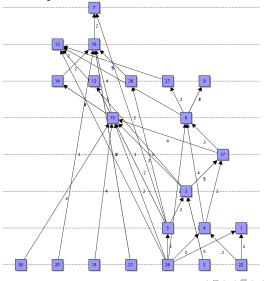
Implementation in Linearzeit

• topologisch sortieren in $\mathcal{O}(n+m)$ Wie?

E-Mail-Graph der Fakultät für Informatik



E-Mail-Graph der Fakultät für Informatik



Minimierung der Kantenlängen

Ganzzahliges lineares Programm

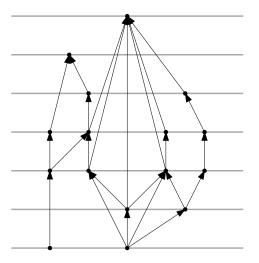
$$\min \sum_{(u,v)\in A} w(u,v) \cdot (y(v) - y(u))$$

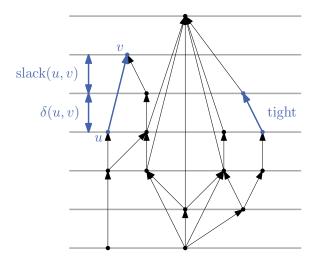
wobei für alle $(u, v) \in A$ gilt

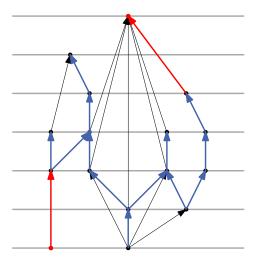
$$y(v) - y(u) \ge \delta(u, v)$$

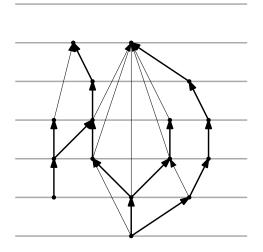
$$w(u, v)$$
 Gewichtung von $(u, v) \in A$
 $\delta(u, v)$ Minimallänge von $(u, v) \in A$

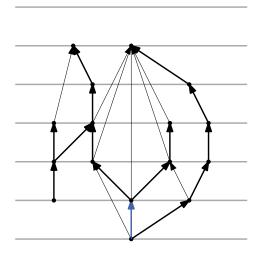
Total unimodular ⇒ Relaxierung besitzt optimale ganzzahlige Lösung

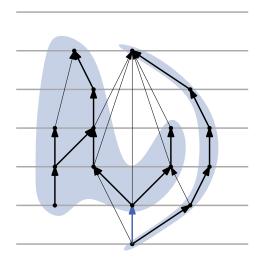


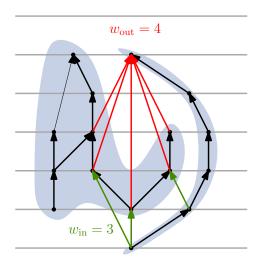


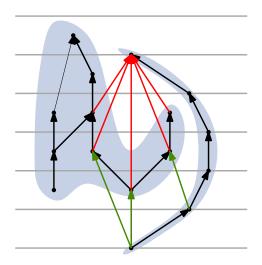


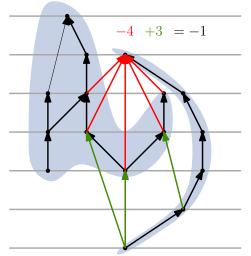


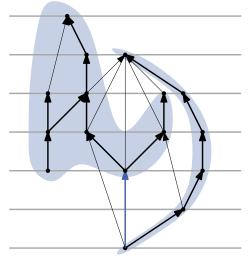


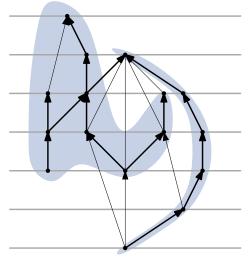


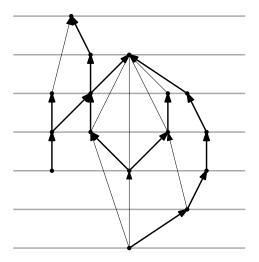












Implementierung

Algorithmus

- Bestimme Initiallösung, Spannbaum, tight
- solange Verbesserung möglich
 - suche Schnittkante e mit $w_{out} w_{in} > 0$
 - suche Ersatzkante f mit minimalem Slack
 - ersetze e durch f

Implementierung

Algorithmus

- Bestimme Initiallösung, Spannbaum, tight
- solange Verbesserung möglich
 - suche Schnittkante e mit $w_{out} w_{in} > 0$
 - suche Ersatzkante f mit minimalem Slack
 - ersetze e durch f

Bemerkung

Laufzeit unklar, aber in der Praxis effizient

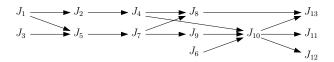
Limitationen

Problem LAYER ASSIGNMENT

- Gegeben: azyklischer, gerichteter Graph D = (V, A) und Breite B
- Finde Partition der Knotenmenge mit minimaler Anzal von Lagen, so dass in jeder Lage höchstens B Elemente sind
- NP-schwer da äquivalent zu MINIMUM PRECEDENCE CONSTRAINED SCHEDULING

Problem MINIMUM PRECEDENCE CONSTRAINED SCHEDULING

- Gegeben: n Jobs mit Bearbeitungsdauer 1 und B Maschinen sowie partielle Ordnung < auf den Jobs
- Finde Schedule mit minimaler Bearbeitunszeit, der <</p> berücksichtigt



Problem MINIMUM PRECEDENCE CONSTRAINED SCHEDULING

- Gegeben: n Jobs mit Bearbeitungsdauer 1 und B Maschinen sowie partielle Ordnung < auf den Jobs</p>
- Finde Schedule mit minimaler Bearbeitunszeit, der < berücksichtigt
- NP-schwer

Problem MINIMUM PRECEDENCE CONSTRAINED SCHEDULING

- Gegeben: n Jobs mit Bearbeitungsdauer 1 und B Maschinen sowie partielle Ordnung < auf den Jobs
- Finde Schedule mit minimaler Bearbeitunszeit, der <</p> berücksichtigt
- NP-schwer
- nicht $(4/3 \varepsilon)$ -approximierbar

Problem MINIMUM PRECEDENCE CONSTRAINED SCHEDULING

- Gegeben: n Jobs mit Bearbeitungsdauer 1 und B Maschinen sowie partielle Ordnung < auf den Jobs</p>
- Finde Schedule mit minimaler Bearbeitunszeit, der < berücksichtigt
- NP-schwer
- nicht $(4/3 \varepsilon)$ -approximierbar
- approximierbar mit Faktor 2 1/B bzw. 2 2/B

(2-1/B)-Approximation

Verfahren wie bei List-Scheduling:

Lagenzuordnung

(2-1/B)-Approximation

- Verfahren wie bei List-Scheduling:
- Knoten sind in Liste L gespeichert (beliebige Reihenfolge)

Lagenzuordnung

(2-1/B)-Approximation

- Verfahren wie bei List-Scheduling:
- Knoten sind in Liste L gespeichert (beliebige Reihenfolge)
- betrachte Layer in aufsteigender Reihenfolge

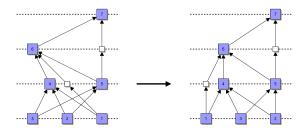
(2-1/B)-Approximation

- Verfahren wie bei List-Scheduling:
- Knoten sind in Liste *L* gespeichert (beliebige Reihenfolge)
- betrachte Layer in aufsteigender Reihenfolge
- Knoten heißt verfügbar, falls alle Vorgänger kleineren Layern zugeordnet sind

(2-1/B)-Approximation

- Verfahren wie bei List-Scheduling:
- Knoten sind in Liste L gespeichert (beliebige Reihenfolge)
- betrachte Layer in aufsteigender Reihenfolge
- Knoten heißt verfügbar, falls alle Vorgänger kleineren Layern zugeordnet sind
- so lange aktuelles Layer nicht voll und verfügbarere Knoten in L existiert, lösche ersten verfügbaren Knoten aus L und ordne ihn aktuellem Layer zu

3. Schritt: Kreuzungsreduktion



Kreuzungsreduktion

Problemstellung

- Gegeben: Graph G, Knoten sind je einem Layer zugeordnet
- Gesucht: Umordnung der Knoten innerhalb der Layer, so dass die Anzahl der Kreuzungen minimiert wird
- Problem ist \mathcal{NP} -schwer, sogar für 2 Lagen
- BIPARTITE CROSSING NUMBER (Garey und Johnson, '83)
- kaum Ansätze, die echt über mehrere Layer optimieren

Iterative Kreuzungsreduktion

■ füge Dummy-Knoten für Kanten mit Layerabstand > 1 ein

- füge Dummy-Knoten für Kanten mit Layerabstand > 1 ein
- betrachte jeweils benachbarte Layer nacheinander

- füge Dummy-Knoten für Kanten mit Layerabstand > 1 ein
- betrachte jeweils benachbarte Layer nacheinander
- minimiere Layer L_{i+1} bei gegebener Ordnung der Knoten in Layer L_i

- füge Dummy-Knoten für Kanten mit Layerabstand > 1 ein
- betrachte jeweils benachbarte Layer nacheinander
- \blacksquare minimiere Layer L_{i+1} bei gegebener Ordnung der Knoten in Layer L_i
- Beobachtung: Kreuzungszahl hängt nur von der Permutation der Knoten auf den benachbarten Layern ab

(1) berechne zufällige Permutation für unterstes Layer

Lagenzuordnung

- (1) berechne zufällige Permutation für unterstes Layer
- (2) betrachte iterativ jeweils benachbare Layer L_i und L_{i+1}

- (1) berechne zufällige Permutation für unterstes Laver
- (2) betrachte iterativ jeweils benachbare Layer L_i und L_{i+1}
- (3) minimiere Anzahl der Kreuzungen durch Umordnen der Knoten in L_{i+1} (L_i fest) \rightarrow Einseitige Kreuzungsminimierung

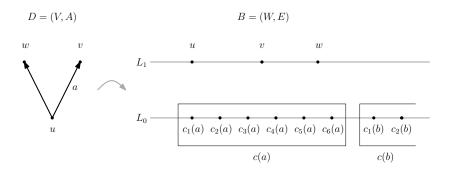
- (1) berechne zufällige Permutation für unterstes Laver
- (2) betrachte iterativ jeweils benachbare Layer L_i und L_{i+1}
- (3) minimiere Anzahl der Kreuzungen durch Umordnen der Knoten in L_{i+1} (L_i fest) \rightarrow Einseitige Kreuzungsminimierung
- (4) wiederhole Schritte (2) und (3) in umgekehrter Richtung ausgehend von Layer L_{h-1}

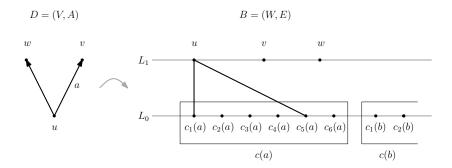
- (1) berechne zufällige Permutation für unterstes Laver
- (2) betrachte iterativ jeweils benachbare Layer L_i und L_{i+1}
- (3) minimiere Anzahl der Kreuzungen durch Umordnen der Knoten in L_{i+1} (L_i fest) \leftrightarrow Einseitige Kreuzungsminimierung
- (4) wiederhole Schritte (2) und (3) in umgekehrter Richtung ausgehend von Layer L_{h-1}
- (5) wiederhole Schritte (2)-(4) bis keine Verbesserung mehr erzielt wird

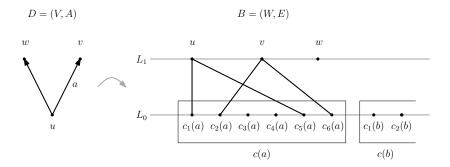
- (1) berechne zufällige Permutation für unterstes Layer
- (2) betrachte iterativ jeweils benachbare Layer L_i und L_{i+1}
- (3) minimiere Anzahl der Kreuzungen durch Umordnen der Knoten in L_{i+1} (L_i fest) \leadsto Einseitige Kreuzungsminimierung
- (4) wiederhole Schritte (2) und (3) in umgekehrter Richtung ausgehend von Layer L_{h-1}
- (5) wiederhole Schritte (2)-(4) bis keine Verbesserung mehr erzielt wird
- (6) wiederhole Schritte (1)-(4) mit unterschiedlichen initialen Permutationen

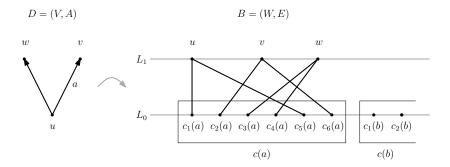
Einseitige Kreuzungsminimierung

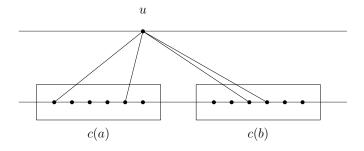
- Gegeben: Graph G mit Partition L₁, L₂ der Kanten und gegebener Ordnung (Permutation) π_1 der Knoten in L_1
- Finde Knotenordnung π_2 auf L_2 , so dass die Anzahl der Kantenpaare, die sich kreuzen, minimiert wird
- \blacksquare Problem ist \mathcal{NP} -schwer (Eades & Whitesides, 1994) und (Eades & Wormald, 1994)

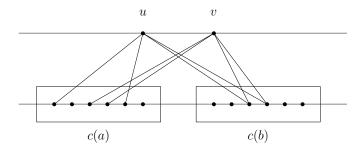




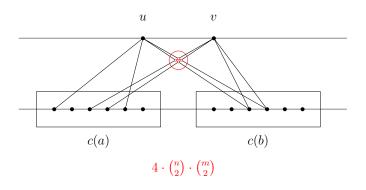




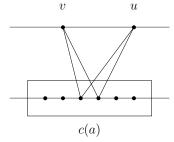


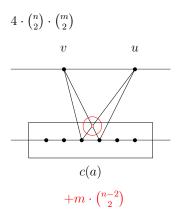


21/52

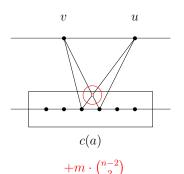


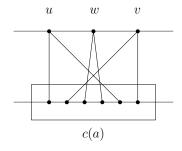
$$4 \cdot \binom{n}{2} \cdot \binom{m}{2}$$

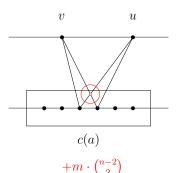


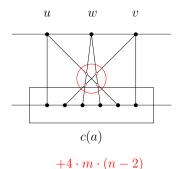


$$4 \cdot \binom{n}{2} \cdot \binom{m}{2}$$

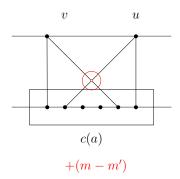




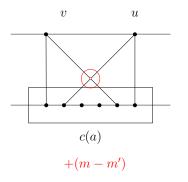


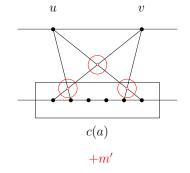


$$4 \cdot {n \choose 2} \cdot {m \choose 2} + m \cdot {n-2 \choose 2} + 4 \cdot m \cdot (n-2) =: M$$



$$4 \cdot {n \choose 2} \cdot {m \choose 2} + m \cdot {n-2 \choose 2} + 4 \cdot m \cdot (n-2) =: M$$





$$4 \cdot \binom{n}{2} \cdot \binom{m}{2} + m \cdot \binom{n-2}{2} + 4 \cdot m \cdot (n-2) =: M$$

$$v \qquad u \qquad v$$

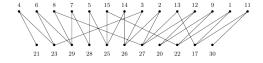
$$\operatorname{cross}(G, x_1) \leq M + m + 2m' \Leftrightarrow D \text{ hat FAS der Größe } \leq m'$$

$$c(a) \qquad c(a)$$

$$+(m-m') \qquad +m'$$

Heuristiken

- Baryzentrisch
- Median
- Greedy Switch
- uvm.



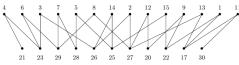


Abb. aus Drawing Graphs, Kaufmann und Wagner

Exakt

ILP

Bemerkung: Heuristiken funktionieren besser für dichte Graphen

Baryzenter-Heuristik (Sugiyama et al., 1981)

Intuition: wenige Kreuzungen, wenn Knoten nah bei Nachbarn

Baryzenter-Heuristik (Sugiyama et al., 1981)

- Intuition: wenige Kreuzungen, wenn Knoten nah bei Nachbarn
- Baryzenter von u ist durchschnittliche x-Koordinate der Nachbarn N(u) in Layer L_1

$$\mathsf{bary}(u) = \frac{1}{\mathsf{deg}(u)} \sum_{v \in N(u)} x_1(v)$$

Baryzenter-Heuristik (Sugiyama et al., 1981)

- Intuition: wenige Kreuzungen, wenn Knoten nah bei Nachbarn
- Baryzenter von u ist durchschnittliche x-Koordinate der Nachbarn N(u) in Layer L₁

$$\mathsf{bary}(u) = \frac{1}{\mathsf{deg}(u)} \sum_{v \in N(u)} x_1(v)$$

• setze $x_2(u) = bary(u)$

- Intuition: wenige Kreuzungen, wenn Knoten nah bei Nachbarn
- Baryzenter von u ist durchschnittliche x-Koordinate der Nachbarn N(u) in Layer L_1

$$\mathsf{bary}(u) = \frac{1}{\mathsf{deg}(u)} \sum_{v \in N(u)} x_1(v)$$

- setze $x_2(u) = bary(u)$
- bei gleichen Werten werden Knoten um einen Wert δ versetzt

- Intuition: wenige Kreuzungen, wenn Knoten nah bei Nachbarn
- Baryzenter von u ist durchschnittliche x-Koordinate der Nachbarn N(u) in Layer L_1

$$\mathsf{bary}(u) = \frac{1}{\mathsf{deg}(u)} \sum_{v \in N(u)} x_1(v)$$

- setze $x_2(u) = bary(u)$
- bei gleichen Werten werden Knoten um einen Wert δ versetzt
- sortiere Knoten nach x-Koordinate, um Ordnung der Knoten zu erhalten

- Intuition: wenige Kreuzungen, wenn Knoten nah bei Nachbarn
- Baryzenter von u ist durchschnittliche x-Koordinate der Nachbarn N(u) in Layer L_1

$$\mathsf{bary}(u) = \frac{1}{\mathsf{deg}(u)} \sum_{v \in N(u)} x_1(v)$$

- setze $x_2(u) = bary(u)$
- lacktriangle bei gleichen Werten werden Knoten um einen Wert δ versetzt
- sortiere Knoten nach x-Koordinate, um Ordnung der Knoten zu erhalten
- Laufzeit $\mathcal{O}(|E_{12}| + |V_2| \log |V_2|)$

- geringer Implementationsaufwand
- schnell
- relativ gute Ergebnisse
- optimal, falls keine Kreuzung benötigt wird
- $\mathcal{O}(\sqrt{n})$ -Approximation
- es muss keine Kreuzungsmatrix berechnet werden

Median-Heuristik (Eades und Wormald, 1994)

- x-Koordinate von u wird auf Median der x-Koordinaten der Nachbarn von u in L_1 gesetzt
- seien v_1, \ldots, v_k Nachbarn von u mit $\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$

$$\mathsf{med}(u) = \pi_1(v_{\lceil k/2 \rceil})$$

- ullet med(u) = 0 falls $N(u) = \emptyset$
- verschiebe Knoten um δ geeignet, falls med(u) = med(v)

Median-Heuristik (Eades und Wormald, 1994)

- geringer Implementationsaufwand
- schnell
- relativ gute Ergebnisse
- ebenfalls keine Kreuzung, falls möglich
- es muss keine Kreuzungsmatrix berechnet werden
- Faktor-3-Approximation

Greedy-Switch

- vertausche iterativ jeweils benachbarte Knoten, falls dadurch weniger Kreuzungen induziert werden
- Laufzeit $\mathcal{O}(|V_2|)$ pro Iteration und maximal $|V_2|$ Iterationen
- als Post-Processing für andere Heuristiken

ILP-Modellierung (Jünger und Mutzel, 1997)

■ Betrachte Variablen δ_{ii}^1 (1 ≤ $i < j \le n_1$)

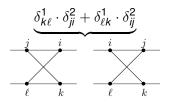
$$\delta_{ij}^1 = \left\{ egin{array}{ll} 1 & ext{falls } \pi_1(v_i) < \pi_1(v_j) \\ 0 & ext{sonst} \end{array} \right.$$

• und δ_{ii}^2 (1 $\leq i < j \leq n_2$)

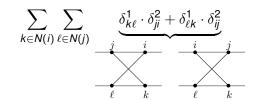
$$\delta_{ij}^2 = \left\{ egin{array}{ll} 1 & ext{falls } \pi_2(v_i) < \pi_2(v_j) \\ 0 & ext{sonst} \end{array} \right.$$

■ N(i) L_1 -Nachbarn von $i \in L_2$

$$cross(\pi_2) =$$



$$cross(\pi_2) =$$



$$cross(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} \sum_{k \in N(i)} \sum_{\ell \in N(j)} \underbrace{\delta_{k\ell}^1 \cdot \delta_{ji}^2 + \delta_{\ell k}^1 \cdot \delta_{jj}^2}_{i}$$

$$cross(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} \sum_{k \in N(i)} \sum_{\ell \in N(j)} \underbrace{\delta_{k\ell}^1 \cdot \delta_{ji}^2 + \delta_{\ell k}^1 \cdot \delta_{ij}^2}_{\ell \quad k}$$

$$=\sum_{i=1}^{n_2-1}\sum_{i=i+1}^{n_2}\left(c_{ij}\delta_{ij}^2+c_{ji}(1-\delta_{ij}^2)\right)$$

mit $c_{ij} = \sum_{k \in N(i)} \sum_{\ell \in N(i)} \delta_{\ell k}^1$: # Kreuzungen, falls $\pi_2(i) < \pi_2(j)$

$$cross(\pi_{2}) = \sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}} \sum_{k \in N(i)} \sum_{\ell \in N(j)} \underbrace{\delta_{k\ell}^{1} \cdot \delta_{ji}^{2} + \delta_{\ell k}^{1} \cdot \delta_{ij}^{2}}_{i}$$

$$=\sum_{i=1}^{n_2-1}\sum_{i=i+1}^{n_2}\left(c_{ij}\delta_{ij}^2+c_{ji}(1-\delta_{ij}^2)\right)$$

mit $c_{ij} = \sum_{k \in N(i)} \sum_{\ell \in N(i)} \delta_{\ell k}^1$: # Kreuzungen, falls $\pi_2(i) < \pi_2(j)$

$$=\sum_{i=1}^{n_2-1}\sum_{j=i+1}^{n_2}(c_{ij}-c_{ji})\delta_{ij}^2+\sum_{i=1}^{konstant}\sum_{j=i+1}^{konstant}c_{ji}$$

ILP-Modellierung (Jünger und Mutzel, 1997)

Minimiere Anzahl der Kreuzungen:

$$\min \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Lagenzuordnung

ILP-Modellierung (Jünger und Mutzel, 1997)

Minimiere Anzahl der Kreuzungen:

$$\min \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Nebenbedingungen:

$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1$$
 $1 \le i < j < k \le n_2$
 $0 \le x_{ij} \le 1$ $1 \le i < j < k \le n_2$
 $x_{ij} \in \mathbb{Z}$ $1 \le i < j < k \le n_2$

ILP-Modellierung (Jünger und Mutzel, 1997)

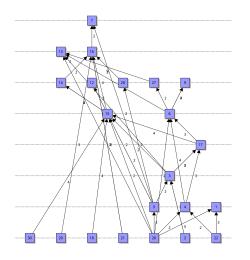
Minimiere Anzahl der Kreuzungen:

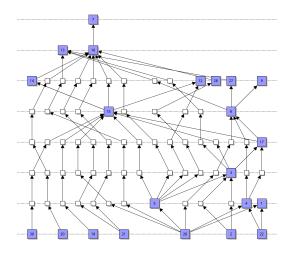
$$\min \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Nebenbedingungen:

$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1$$
 $1 \le i < j < k \le n_2$
 $0 \le x_{ij} \le 1$ $1 \le i < j < k \le n_2$
 $x_{ij} \in \mathbb{Z}$ $1 \le i < j < k \le n_2$

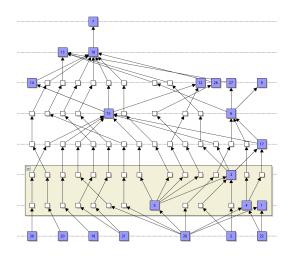
Implementierung mit Branch-and-Cut bei wenigen Knoten pro Layer relativ schnell





WS 2011/12

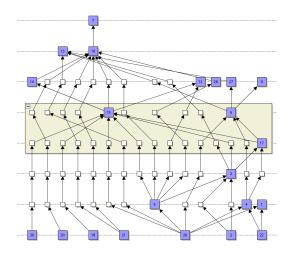
31/52

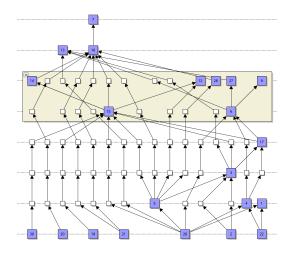


Marcus Krug - Lagenlayouts

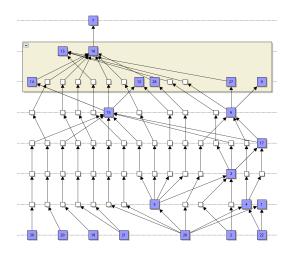


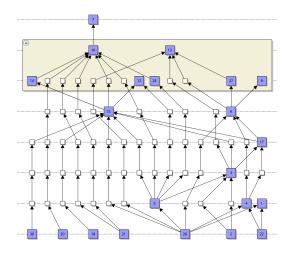
Marcus Krug - Lagenlayouts

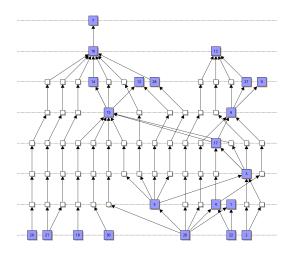




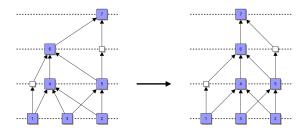
31/52







4. Schritt: Knotenpositionierung



Ziel

minimiere Abweichung der Kanten-Pfade von gerader Linie

Exakt

Quadratisches Programm

Heuristisch

iterative Heuristiken

Quadratisches Programm

- Betrachte Kanten-Pfad $p_e = (v_1, ..., v_k)$ zu Kante e und Dummy-Knoten v_i
- x-Koordinate von v_i bei gerader Kante (gleicher Layerabstand):

$$\overline{X(v_i)} = \frac{i-1}{k-1} \left(X(v_k) - X(v_1) \right)$$

definiere Abweichung von gerader Linie

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

Quadratisches Programm

Zielfunktion:

$$\min \sum_{e \in E} \operatorname{dev}(p_e)$$

Quadratisches Programm

Zielfunktion:

$$\min \sum_{e \in E} \operatorname{dev}(p_e)$$

Nebenbedingungen: für alle Knoten v und alle Knoten w im aleichen Layer mit w rechts von v

$$x(w) - x(v) \ge \rho(w, v)$$

Quadratisches Programm

Zielfunktion:

$$\min \sum_{e \in E} \operatorname{dev}(p_e)$$

Nebenbedingungen: für alle Knoten v und alle Knoten w im gleichen Layer mit w rechts von v

$$x(w) - x(v) \ge \rho(w, v)$$

 $\rho(w,v)$ ist minimaler horizontaler Abstand zwischen den Knoten

Quadratisches Programm

Zielfunktion:

$$\min \sum_{e \in E} \operatorname{dev}(p_e)$$

Nebenbedingungen: für alle Knoten v und alle Knoten w im aleichen Layer mit w rechts von v

$$x(w) - x(v) \ge \rho(w, v)$$

- $\rho(w,v)$ ist minimaler horizontaler Abstand zwischen den Knoten
- Problem: quadratisches Programm und potentiell sehr breit

Quadratisches Programm

Zielfunktion:

$$\min \sum_{e \in E} \operatorname{dev}(p_e)$$

Nebenbedingungen: für alle Knoten v und alle Knoten w im gleichen Layer mit w rechts von v

$$x(w) - x(v) \ge \rho(w, v)$$

- $\rho(w,v)$ ist minimaler horizontaler Abstand zwischen den Knoten
- Problem: quadratisches Programm und potentiell sehr breit
- evtl. weitere Constraints f
 ür Breite

Algorithmus von Gansner et al. (1993)

Zielstellung: möglichst vertikale, gerade Kanten

$$\min \sum_{(u,v)\in A} \Omega(u,v) \cdot \omega(u,v) \cdot |x_u - x_v|$$

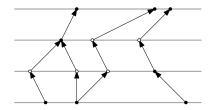
so dass für $u, v \in V$ mit u links von v gilt

$$x_{v}-x_{u}\geq \rho(u,v)$$

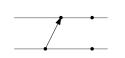
 $\Omega(u,v)$ reflektiert Art der Kante, z.B.:

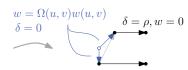
- Regular-Regular $\Omega(u, v) = 1$
- Regular-Dummy $\Omega(u, v) = 2$
- Dummy-Dummy $\Omega(u, v) = 8$

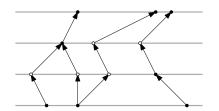
Reduktion auf Lagenzuweisung



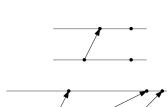
Reduktion auf Lagenzuweisung

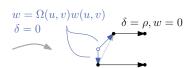


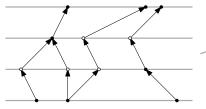


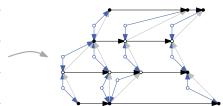


Reduktion auf Lagenzuweisung

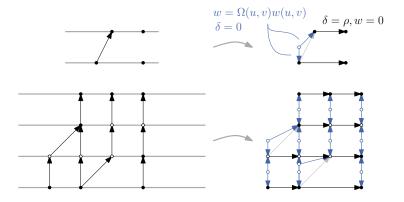


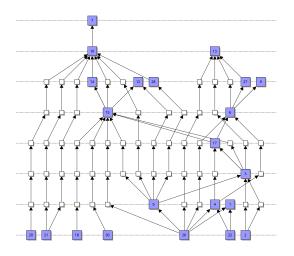


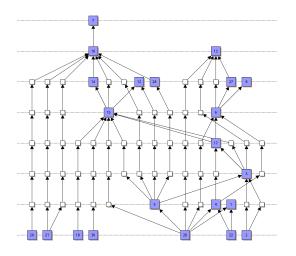




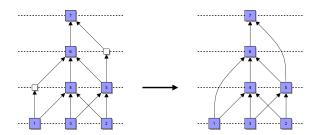
Reduktion auf Lagenzuweisung







5. Schritt: Kanten zeichnen



Kanten zeichnen

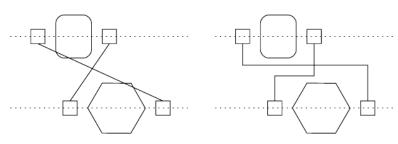


Abb. aus Drawing Graphs, Kaufmann und Wagner

Lagenzuordnung

Kanten zeichnen

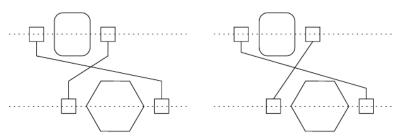


Abb. aus Drawing Graphs, Kaufmann und Wagner

Lagenzuordnung

Kanten zeichnen

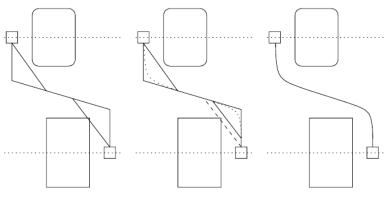
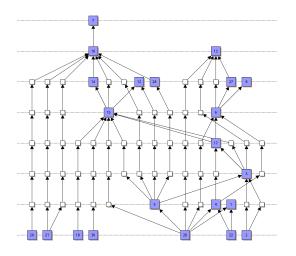
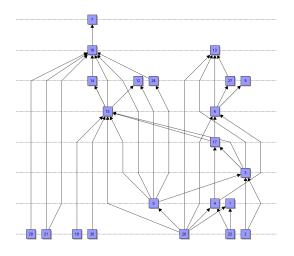
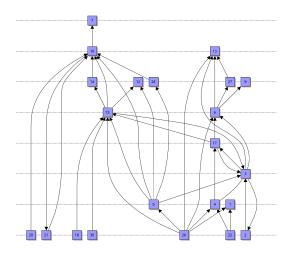


Abb. aus Drawing Graphs, Kaufmann und Wagner







Zusammenfassung

- Framework zur Visualisierung von gerichteten Graphen
- Reduktion der Komplexität durch unabhängige Optimierung verschiedener Desiderata
- + Modularisierung, überschaubare Optimierungsprobleme
- Einschränkung der Lösungen

Demo

Exkurs: Kreuzungszahl

Problem Kreuzungsminimierung

- Gegeben: Graph G = (V, E)
- Gesucht: Zeichnung von G mit minimaler Anzahl von Kreuzungen
- Varianten: topologisch, geradlinig

WS 2011/12

Exkurs: Kreuzungszahl

Problem Kreuzungsminimierung

- Gegeben: Graph G = (V, E)
- Gesucht: Zeichnung von G mit minimaler Anzahl von Kreuzungen
- Varianten: topologisch, geradlinig

Definition (Kreuzungszahl)

Die Kreuzungszahl cr(G) von G = (V, E) bezeichnet die minimale Anzahl von Kreuzungen, die man in einer (topologischen) Zeichnung von G benötigt.

 Crossing-Number ist NP-schwer, selbst f
ür kubische Graphen [Garey & Johnson, '83]

Kreuzungsreduktion

- Crossing-Number ist NP-schwer, selbst für kubische
 Graphen [Garey & Johnson, '83]
- Kreuzungszahl von K_n ist unbekannt für fast alle n

WS 2011/12

- Crossing-Number ist NP-schwer, selbst für kubische
 Graphen [Garey & Johnson, '83]
- Kreuzungszahl von K_n ist unbekannt für fast alle n
- Crossing-Number ist FPT mit Parameter Kreuzungszahl

- Crossing-Number ist NP-schwer, selbst für kubische
 Graphen [Garey & Johnson, '83]
- Kreuzungszahl von K_n ist unbekannt für fast alle n
- Crossing-Number ist FPT mit Parameter Kreuzungszahl
- m > 7.5n

$$\Rightarrow cr(G) \geq \frac{m^3}{33.75n^2}$$

Idee

- berechne möglichst großen planaren Teilgraphen
- füge restliche Kanten iterativ hinzu

Idee

- berechne möglichst großen planaren Teilgraphen
- füge restliche Kanten iterativ hinzu

Komplexität

maximalen planaren Teilgraphen finden ist NP-schwer

Idee

- berechne möglichst großen planaren Teilgraphen
- füge restliche Kanten iterativ hinzu

- maximalen planaren Teilgraphen finden ist NP-schwer
- Heuristik (z.B. iteratives Einfügen)

Idee

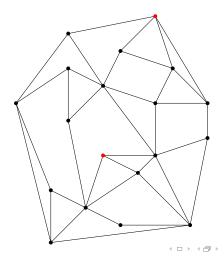
- berechne möglichst großen planaren Teilgraphen
- füge restliche Kanten iterativ hinzu

- maximalen planaren Teilgraphen finden ist NP-schwer
- Heuristik (z.B. iteratives Einfügen)
- Optimales Einfügen in einer Kante bei gegebener Einbettung entspricht Küzeste-Wege Problem

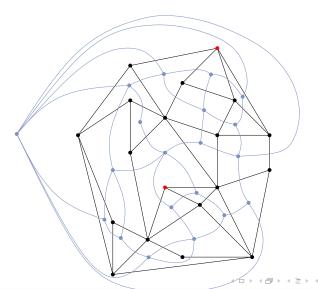
Idee

- berechne möglichst großen planaren Teilgraphen
- füge restliche Kanten iterativ hinzu

- maximalen planaren Teilgraphen finden ist NP-schwer
- Heuristik (z.B. iteratives Einfügen)
- Optimales Einfügen in einer Kante bei gegebener Einbettung entspricht Küzeste-Wege Problem
- Optimierung über alle Einbettungen mit SPQR-Baum (Gutwenger et al., 2001)



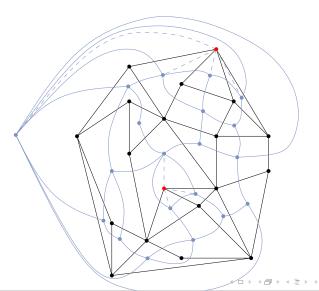
990



Lagenzuordnung
ooooooooo

Marcus Krug – Lagenlayouts

Positionierung 0000000000000

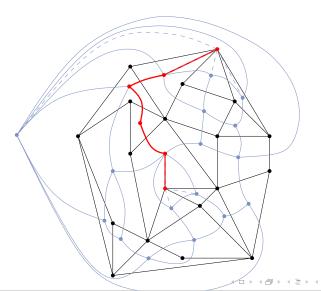


Lagenzuordnung
ooooooooo

Marcus Krug – Lagenlayouts

Kreuzungsreduktion

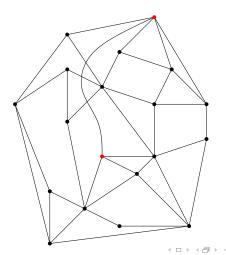
Positionierung 0000000000000



Lagenzuordnung
0000000000

Marcus Krug – Lagenlayouts

Positionierung 000000000000

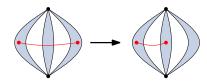


990

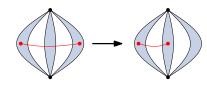
SPQR-Baum

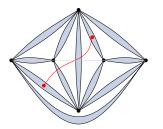
Lagenzuordnung

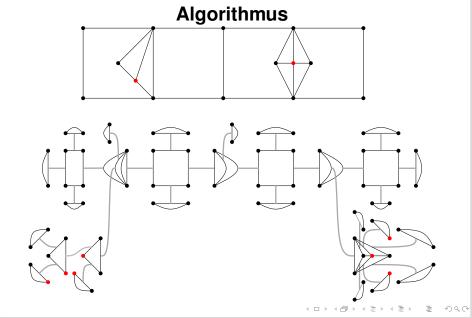
SPQR-Baum



SPQR-Baum



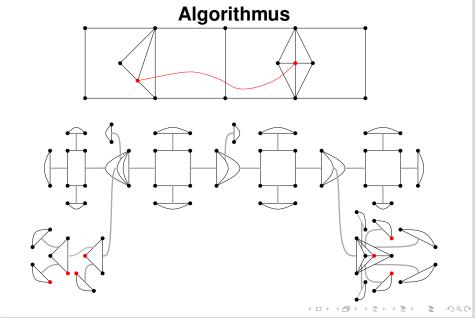




Lagenzuordnung
000000000

Marcus Krug – Lagenlayouts

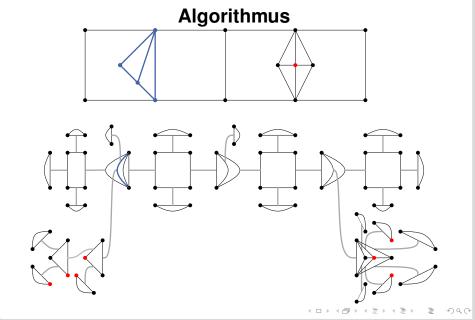
Kreuzungsreduktion 000000000000000 Positionierung 000000000000 Exkurs: Kreuzungszahl ○○○○●○○ WS 2011/12 50/52



Lagenzuordnung
000000000

Marcus Krug – Lagenlayouts

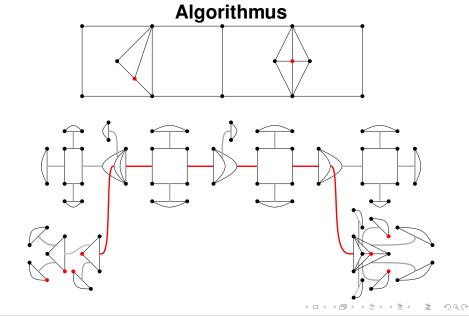
Kreuzungsreduktion 000000000000000 Positionierung 000000000000



Lagenzuordnung
ooooooooo

Marcus Krug – Lagenlayouts

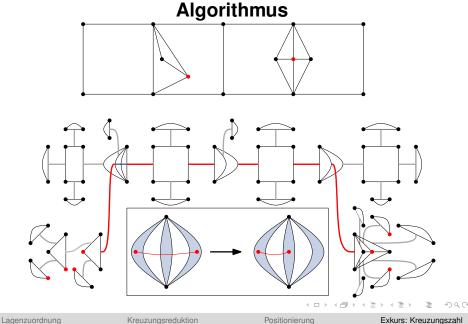
Kreuzungsreduktion 000000000000000 Positionierung 00000000000



Lagenzuordnung Marcus Krug - Lagenlayouts Kreuzungsreduktion

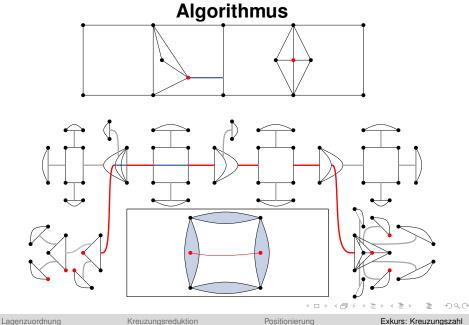
Positionierung

Exkurs: Kreuzungszahl 00000000 WS 2011/12



Kreuzungsreduktion

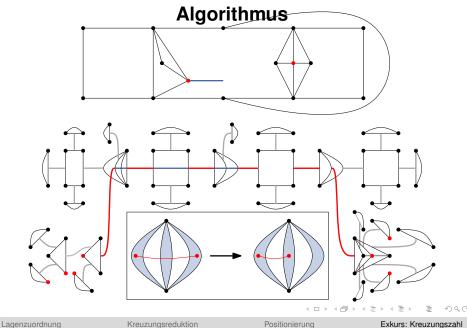
ooooooooo



Marcus Krug – Lagenlayouts

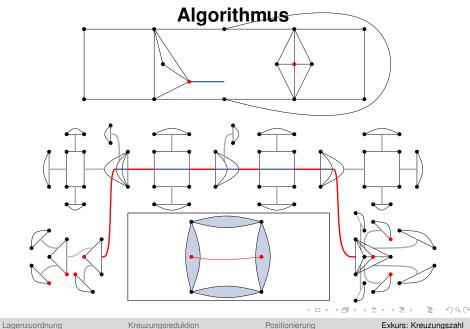
Kreuzungsreduktion

Positionierung 00000000000



Kreuzungsreduktion

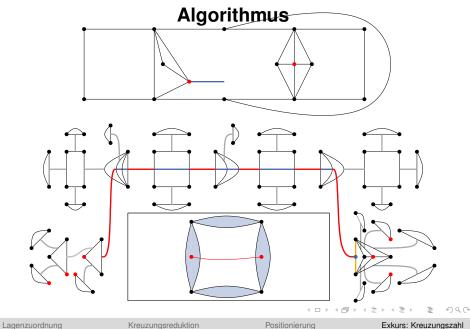
ooooooooo



Marcus Krug – Lagenlayouts

Kreuzungsreduktion

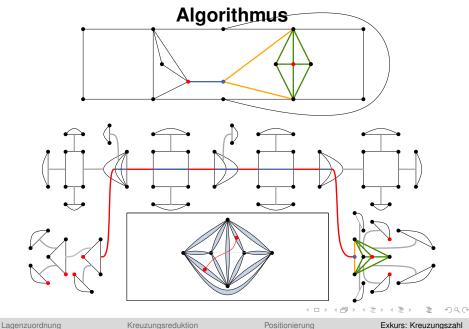
Positionierung



Marcus Krug - Lagenlayouts

Exkurs: Kreuzungszahl 00000000

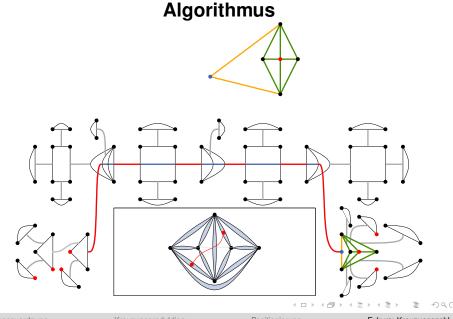
WS 2011/12 50/52



Lagenzuordnung
000000000

Marcus Krug – Lagenlayouts

Kreuzungsreduktion 0000000000000000 ooooooooo

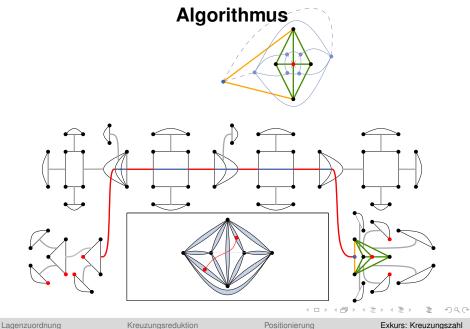


Lagenzuordnung
000000000

Marcus Krug – Lagenlayouts

Kreuzungsreduktion

Positionierung 00000000000

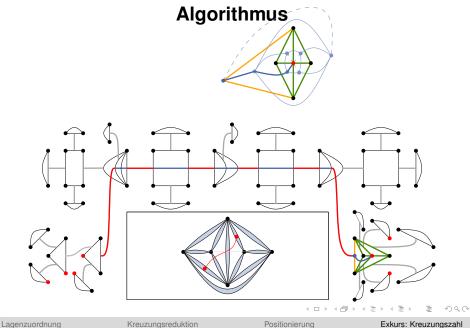


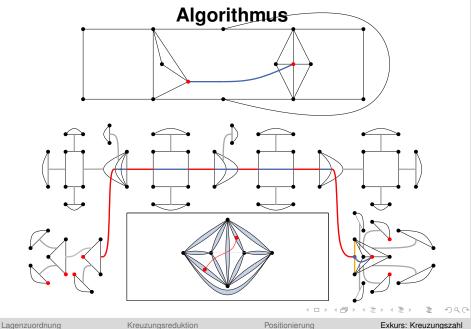
Kreuzungsreduktion

oooooooooo

Exkurs: Kreuzungszahl

WS 2011/12 50/52





Kreuzungsreduktion

ooooooooo

Exkurs: Kreuzungszahl ○○○○○●○○ WS 2011/12 50/52

lacktriangle Annahme: es existiert besserer Einfüge-Pfad π

WS 2011/12

- lacktriangle Annahme: es existiert besserer Einfüge-Pfad π
- **a** dann ex. R-Knoten r, in welchem π weniger Kreuzungen hat

Lagenzuordnung

- Annahme: es existiert besserer Einfüge-Pfad π
- **a** dann ex. R-Knoten r, in welchem π weniger Kreuzungen hat
- betrachte induzierten Pfad π_S in Seklett S von r

- Annahme: es existiert besserer Einfüge-Pfad π
- **a** dann ex. R-Knoten r, in welchem π weniger Kreuzungen hat
- betrachte induzierten Pfad π_S in Seklett S von r
- sei e Skelett-Kante, die von π_S geschnitten wird

- Annahme: es existiert besserer Einfüge-Pfad π
- **a** dann ex. R-Knoten r, in welchem π weniger Kreuzungen hat
- betrachte induzierten Pfad π_S in Seklett S von r
- sei e Skelett-Kante, die von π_S geschnitten wird
- Anzahl Kreuzungen von Graph G_e und π ist unabhängig von Einbettung von G_e (Strukturelle Induktion auf SPQR-Baum)

- lacktriangle Annahme: es existiert besserer Einfüge-Pfad π
- **a** dann ex. R-Knoten r, in welchem π weniger Kreuzungen hat
- betrachte induzierten Pfad π_S in Seklett S von r
- sei e Skelett-Kante, die von π_S geschnitten wird
- Anzahl Kreuzungen von Graph G_e und π ist unabhängig von Einbettung von G_e (Strukturelle Induktion auf SPQR-Baum)
- in Laufzeit $\mathcal{O}(n)$ implementierbar

Ausblick

- Optimales Einfügen einer Kante approximiert cr(H+e) mit Faktor $\Delta/2$
- Optimales Einfügen eines Knotens ist in P
- Optimales Einfügen mehrerer Kanten ist NP-schwer