

Theoretische Grundlagen der Informatik

Komplexitätsklassen - Teil 2

INSTITUT FÜR THEORETISCHE INFORMATIK

Kapitel

Komplementsprachen

Die Klassen NPI, co-P und co-NP

- Die Klasse \mathcal{NPC} (\mathcal{NP} -complete) sei die Klasse der \mathcal{NP} -vollständigen Sprachen/Probleme.
- Die Klasse \mathcal{NPI} (\mathcal{NP} -intermediate) ist definiert durch $\mathcal{NPI} := \mathcal{NP} \setminus (\mathcal{P} \cup \mathcal{NPC})$.

Klasse der Komplementsprachen

- Die Klasse ${\bf co}-{\cal P}$ ist die Klasse aller Sprachen $\Sigma^*\backslash L$ für $L\subseteq \Sigma^*$ und $L\in {\cal P}$.
- Die Klasse **co** − \mathcal{NP} ist die Klasse aller Sprachen $\Sigma^* \setminus L$ für $L \subseteq \Sigma^*$ und $L \in \mathcal{NP}$.

Die Klassen NPI, co-P und co-NP

- Die Klasse \mathcal{NPC} (\mathcal{NP} -complete) sei die Klasse der \mathcal{NP} -vollständigen Sprachen/Probleme.
- Die Klasse \mathcal{NPI} (\mathcal{NP} -intermediate) ist definiert durch $\mathcal{NPI} := \mathcal{NP} \setminus (\mathcal{P} \cup \mathcal{NPC})$.

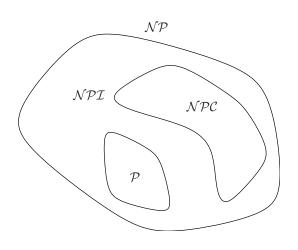
Klasse der Komplementsprachen

- Die Klasse ${\bf co}-{\cal P}$ ist die Klasse aller Sprachen $\Sigma^*\backslash L$ für $L\subseteq \Sigma^*$ und $L\in {\cal P}$.
- Die Klasse **co** \mathcal{NP} ist die Klasse aller Sprachen $\Sigma^* \backslash L$ für $L \subseteq \Sigma^*$ und $L \in \mathcal{NP}$.

Satz (Ladner (1975)):

Falls $\mathcal{P} \neq \mathcal{NP}$, so folgt $\mathcal{NPI} \neq \emptyset$.

Vermutete Situation



Offensichtlich: $\mathcal{P} = co - \mathcal{P}$.

Frage: Gilt auch $\mathcal{NP} = co - \mathcal{NP}$?

- Natürlich folgt aus $\mathcal{NP} \neq \text{co} \mathcal{NP}$, dass $\mathcal{P} \neq \mathcal{NP}$ gilt.
- Aber was folgt aus $\mathcal{NP} = \text{co} \mathcal{NP}$?
- Vermutlich ist $\mathcal{NP} \neq \text{co} \mathcal{NP}$ (Verschärfung der $\mathcal{P} \neq \mathcal{NP}$ -Vermutung).

Das TSP-Komplement-Problem

Problem co-TSP

Gegeben: Graph $G = (V, E), c: E \to \mathbb{Z}^+$ und ein Parameter K.

Aufgabe: Gibt es *keine* Tour der Länge $\leq K$?

- Bemerkung: Für ein vernünftiges Kodierungsschema von TSP ist es leicht nachzuweisen, ob ein gegebener String eine gültige TSP-Instanz repräsentiert.
- lacktriangledown co-TSP in co $-\mathcal{NP}$, denn TSP in \mathcal{NP} .
- Frage: lst co–TSP in NP?
- Vermutung: Nein.

Lemma

Satz (Lemma):

Falls $L \mathcal{NP}$ -vollständig ist und $L \in \text{co} - \mathcal{NP}$, so ist $\mathcal{NP} = \text{co} - \mathcal{NP}$.

Lemma

Satz (Lemma):

Falls $L \mathcal{NP}$ -vollständig ist und $L \in \text{co} - \mathcal{NP}$, so ist $\mathcal{NP} = \text{co} - \mathcal{NP}$.

Beweis:

- Sei $L \in co \mathcal{NP}$.
- Dann existiert eine polynomiale nichtdet. Berechnung für L^c.
- Für alle $L' \in \mathcal{NP}$ gilt: $L' \propto L$
- Also existiert eine det. poly. Transformation $L'^c \propto L^c$.
- Deshalb existiert eine poly. nichtdet. Berechnung für L'c
- Also $L' \in co \mathcal{NP}$.

Bemerkung

- Mit der Vermutung $\mathcal{NP} \neq \text{co} \mathcal{NP}$ folgt auch $\mathcal{NPC} \cap \text{co} \mathcal{NP} = \emptyset$.
- Wenn ein Problem in \mathcal{NP} und co $-\mathcal{NP}$ ist, vermutlich aber nicht in \mathcal{P} , so ist es in \mathcal{NPI} .

Das Problem Subgraphisomorphie

Problem Subgraphisomorphie

Gegeben: Graphen G = (V, E) und H = (V', E') mit |V'| < |V|

Frage: Gibt es eine Menge $U \subseteq V$ mit |U| = |V'| und

eine bijektive Abbildung Iso: $V' \rightarrow U$,

so dass für alle $x, y \in V'$ gilt:

 $\{x,y\} \in E' \iff \{\mathsf{Iso}(x),\mathsf{Iso}(y)\} \in E$

Frage anschaulich: Ist *H* isomorph zu einem Subgraphen von *G*?

Das Problem Subgraphisomorphie

Problem Subgraphisomorphie

Gegeben: Graphen G = (V, E) und H = (V', E') mit |V'| < |V|

Frage: Gibt es eine Menge $U \subseteq V$ mit |U| = |V'| und

eine bijektive Abbildung Iso: V' o U,

so dass für alle $x, y \in V'$ gilt:

 $\{x,y\} \in E' \iff \{\mathsf{Iso}(x),\mathsf{Iso}(y)\} \in E$

Problem Subgraphisomorphie ist \mathcal{NP} -vollständig (ohne Beweis).

Das Problem Graphisomorphie

Problem Graphisomorphie

Gegeben: Graphen G = (V, E) und H = (V', E') mit |V| = |V'|.

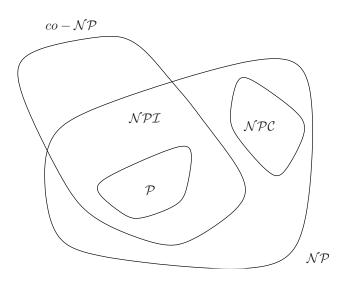
Frage: Existiert eine bijektive Abbildung Iso: $V' \rightarrow V$ mit

 $\{x,y\} \in E' \iff \{\mathsf{Iso}(x),\mathsf{Iso}(y)\} \in E$?

Frage anschaulich: Sind G und H isomorph?

lacksquare Graphisomorphie ist ein Kandidat für ein Problem aus \mathcal{NPI}

• Graphisomorphie liegt in \mathcal{NP} und co $-\mathcal{NP}$.



Kapitel

■ Weitere Komplexitätsklassen über NP hinaus

Suchprobleme

Ein **Suchproblem** Π wird beschrieben durch

- die Menge der Problembeispiele / Instanzen D_{Π} und
- für $I \in D_{\Pi}$ die Menge $S_{\Pi}(I)$ aller Lösungen von I.

Die **Lösung** eines Suchproblems für eine Instanz D_{Π} ist

- ein beliebiges Element aus $S_{\Pi}(I)$ falls $S_{\Pi}(I) \neq \emptyset$
- Ø sonst

Beispiel: TSP-Suchproblem

TSP-Suchproblem (Variante 1)

Gegeben: Graph G = (V, E) vollständig und gewichtet mit

Gewichtsfunktion $c \colon E \to \mathbb{Q}$.

Aufgabe: Gib eine optimale Tour zu *G* bezüglich *c* an.

lacksquare Bemerkung: $\mathcal{S}_\Pi(\mathcal{G})$ ist die Menge aller optimalen Touren zu \mathcal{G} .

TSP-Suchproblem (Variante 2)

Gegeben: Graph G = (V, E) vollständig und gewichtet mit

Gewichtsfunktion $c \colon E \to \mathbb{Q}$, Parameter $k \in \mathbb{Q}$.

Aufgabe: Gib eine Tour zu G bezüglich c mit

Maximallänge k an, falls eine existiert.

Beispiel: Hamilton-Kreis Suchproblem

Gegeben ist ein Graph G = (V, E).

Ein Hamilton–Kreis in G ist eine Permutation π auf V, so dass

$$\{\pi(n), \pi(1)\} \in E \text{ und } \{\pi(i), \pi(i+1)\} \in E \text{ für } 1 \le i \le n-1 \text{ ist.}$$

Hamilton-Kreis Suchproblem

Gegeben: Ein ungerichteter, ungewichteter Graph G = (V, E). **Aufgabe:** Gib einen Hamilton-Kreis in G an, falls einer existiert.

Bemerkung: $S_{\Pi}(G)$ ist die Menge aller Hamilton-Kreise in G.

Aufzählungsprobleme

Ein Aufzählungsproblem Π ist gegeben durch

- die Menge der Problembeispiele D_{Π} und
- für $I \in D_{\Pi}$ die Menge $S_{\Pi}(I)$ aller Lösungen von I.

Die **Lösung** der Instanz I eines Aufzählungsproblem Π besteht in der Angabe der Kardinalität von $S_{\Pi}(I)$, d.h. von $|S_{\Pi}(I)|$.

Beispiel: Hamilton-Kreis Aufzählungsproblem

Hamilton-Kreis Aufzählungsproblem

Gegeben: Ein ungerichteter, ungewichteter Graph G = (V, E).

Aufgabe: Wieviele Hamilton–Kreise gibt es in *G*?

Reduzierbarkeit für Suchprobleme

Zu einem Suchproblem Π sei R_{Π} folgende Relation:

$$R_{\Pi} := \{(x, s) \mid x \in D_{\Pi}, s \in S_{\Pi}(x)\}$$

Eine Funktion $f: \Sigma^* \to \Sigma^*$ realisiert eine Relation R, wenn für alle $x \in \Sigma^*$ gilt:

$$f(x) = \begin{cases} \varepsilon & \not\exists y \in \Sigma^* \backslash \{\varepsilon\} : (x, y) \in R \\ y & \text{sonst, mit beliebigem } y : (x, y) \in R \end{cases}$$

Ein Algorithmus **löst** das durch R_{Π} beschriebene Suchproblem Π , wenn er eine Funktion berechnet, die R_{Π} realisiert.

Orakel-Turing-Maschine

Eine **Orakel-Turing-Maschine** zum Orakel $G: \Sigma^* \to \Sigma^*$ ist eine deterministische Turing-Maschine mit

- einem ausgezeichnetem Orakelband
- zwei zusätzlichen Zuständen q_f und q_a.

Dabei ist

- q_f der Fragezustand
- q_a der Antwortzustand

des Orakels.

■ Die Arbeitsweise ist in allen Zuständen $q \neq q_f$ wie bei der normalen Turing-Maschine.

Orakel-TM: Verhalten im Fragezustand

Wenn der

- Zustand q_f angenommen wird,
- Kopf sich auf Position i des Orakelbandes befindet
- Inhalt des Orakelbandes auf Position 1,..., i das Wort $y = y_1 ... y_i$ ist,

dann verhält sich die Orakel-TM wie folgt:

- falls $y \notin \Sigma^*$: Fehlermeldung und die Orakel-TM hält.
- In einem Schritt wird y auf dem Orakelband gelöscht
- G(y) wird auf Positionen $1, \ldots, |G(y)|$ des Orakelbandes geschrieben
- Der Kopf des Orakelbandes springt auf Position 1
- Folgezustand ist q_a.

Bemerkung

• Orakel-TM und Nichtdeterministische TM sind verschiedene Konzepte.

Turing-Reduktion

Turing-Reduktion

Seien R, R' Relationen über Σ^* . Eine **Turing-Reduktion** α_T von R auf R' ($R \alpha_T R'$), ist eine Orakel-Turing-Maschine \mathcal{M} ,

- deren Orakel die Relation R¹ realisiert
- die selbst in polynomialer Zeit die Funktion f berechnet, die R realisiert.

Bemerkung:

- Falls R' in polynomialer Zeit realisierbar ist und $R \propto_T R'$, so ist auch R in polynomialer Zeit realisierbar.
- Falls $R \propto_T R'$ und $R' \propto_T R''$ so auch $R \propto_T R''$.

NP-schwer

Ein Suchproblem Π heißt \mathcal{NP} -schwer, falls es eine \mathcal{NP} -vollständige Sprache L gibt mit $L \propto_{\mathcal{T}} \Pi$.

Bemerkung

 \blacksquare Ein Problem das $\mathcal{NP}\text{--}\text{schwer}$ ist, muss nicht notwendigerweise in \mathcal{NP} sein.

Das TSP-Suchproblem ist NP-schwer

TSP-Suchproblem (Variante 1)

Gegeben: Graph G = (V, E) vollständig und gewichtet mit

Gewichtsfunktion $c \colon E \to \mathbb{Q}$.

Aufgabe: Gib eine optimale Tour zu G bezüglich c an.

TSP-Entscheidungsproblem

Gegeben: Graph G = (V, E) vollständig und gewichtet mit

Gewichtsfunktion $c \colon E \to \mathbb{Q}$, Parameter $k \in \mathbb{Q}$.

Aufgabe: Gibt es eine Tour der Länge höchstens *k*?

Satz:

Das TSP-Suchproblem ist NP-schwer.

Beweisskizze

- Bezeichne TSP_E das Entscheidungsproblem.
- Bezeichne TSP_S das Suchproblem.

Die zu TSP_E bzw, TSP_S gehörenden Relationen R_E und R_S sind gegeben durch

$$R_E := \{(x, J) \mid x \in J_{TSP_E}\}\$$

 $R_S := \{(x, y) \mid x \in D_{TSP_O}, y \in S_{TSP_O}(x)\}\$.

Beweisskizze

$$R_E := \{(x, J) \mid x \in J_{TSP_E}\}\$$

 $R_S := \{(x, y) \mid x \in D_{TSP_O}, y \in S_{TSP_O}(x)\}\$.

Wir zeigen $R_E \propto_T R_S$:

Dazu geben wir eine OTM (Orakel-Turing-Maschine) mit Orakel $\Omega: \Sigma^* \to \Sigma^*$ an. Ω realisiert R_S .

Die OTM arbeitet wie folgt für eine Eingabe w:

- Schreibe die Eingabe auf das Orakelband und gehe in Zustand q_f .
- Weise das Orakel an, in einem Schritt $\Omega(w)$ auf das Orakelband zu schreiben und anschließend in den Zustand q_a zu wechseln.
- Prüfe, ob $\Omega(w)$ eine Tour der Länge $\leq k$ kodiert. Falls ja, lösche das Band und schreibe J, andernfalls lösche das Band.

Die gegebene OTM realisiert R_E und hat polynomial beschränkte Laufzeit.

Verallgemeinerte NP-Schwere

■ Wir nennen ein Problem \mathcal{NP} -schwer, wenn es mindestens so schwer ist, wie alle \mathcal{NP} -vollständigen Probleme.

Darunter fallen auch

- \blacksquare Optimierungsprobleme, für die das zugehörige Entscheidungsproblem $\mathcal{NP}\text{--vollst"andig}$ ist.
- Entscheidungsprobleme Π , für die gilt, dass für alle Probleme $\Pi' \in \mathcal{NP}$ gilt $\Pi' \propto \Pi$, aber für die nicht klar ist, ob $\Pi \in \mathcal{NP}$.

Klar ist, dass ein \mathcal{NP} -vollständiges Problem auch \mathcal{NP} -schwer ist.

Das Problem INTEGER PROGRAMMING

Problem INTEGER PROGRAMMING

Gegeben: $a_{ij} \in \mathbb{N}_0$, b_i , $c_j \in \mathbb{N}_0$, $1 \le i \le m$, $1 \le j \le n$, $B \in \mathbb{N}_0$.

Frage: Existieren $x_1, \ldots, x_n \in \mathbb{N}_0$, so dass

$$\sum_{j=1}^{n} c_j \cdot x_j = B \text{ und}$$

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i \text{ für } 1 \le i \le m?$$

 $A \cdot \bar{x} < \bar{b}$

Das Problem INTEGER PROGRAMMING

Problem INTEGER PROGRAMMING

Gegeben: $a_{ij} \in \mathbb{N}_0, \, b_i, \, c_j \in \mathbb{N}_0, \, 1 \leq i \leq m, \, 1 \leq j \leq n, \, B \in \mathbb{N}_0.$

Frage: Existieren $x_1, \ldots, x_n \in \mathbb{N}_0$, so dass

$$\sum_{j=1}^{n} c_j \cdot x_j = B \text{ und}$$

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i \text{ für } 1 \le i \le m?$$

$$A \cdot x < \overline{b}$$

Problem INTEGER PROGRAMMING ist \mathcal{NP} -schwer.

Beweis

$$\exists x_1,\ldots,x_n \in \mathbb{N}_0, \, \text{dass} \, \sum_{j=1}^n c_j \cdot x_j = B \, \text{und} \, \underbrace{\sum_{j=1}^n a_{ij} \cdot x_j \leq b_i}_{A \cdot \bar{\lambda} < \bar{b}} \, \text{für } 1 \leq i \leq m?$$

Beweis:

Zeigen: SUBSET SUM ∝ INTEGER PROGRAMMING.

Zu M, $w: M \to \mathbb{N}_0$ und $K \in \mathbb{N}_0$ Beispiel für SUBSET SUM wähle m=n:=|M|, o.B.d.A. $M=\{1,\ldots,n\}$, $c_j:=w(j)$, B:=K, $b_i=1$ und $A=(a_{ij})$ Einheitsmatrix. Dann gilt:

$$\exists M' \subseteq M \text{ mit } \sum_{j \in M'} w(j) = K$$

$$\exists x_1, \dots, x_n \in \mathbb{N}_0 \text{ mit } \sum_{j \in M} w(j) \cdot x_j = B \text{ und } x_j \leq 1 \text{ für } 1 \leq j \leq n.$$

$$_{27}M' = \{j \in M : x_j = 1\}$$

Bemerkungen

- INTEGER PROGRAMMING ∈ NP ist nicht so leicht zu zeigen. Siehe: Papadimitriou "On the complexity of integer programming", J.ACM, 28, 2, pp. 765-769, 1981.
- Wie der vorherige Beweis zeigt, ist INTEGER PROGRAMMING sogar schon \mathcal{NP} -schwer, falls a_{ij} , $b_i \in \{0, 1\}$ und $x_i \in \{0, 1\}$.
- Es kann sogar unter der Zusatzbedingung $c_{ij} \in \{0, 1\}$ \mathcal{NP} –Vollständigkeit gezeigt werden (ZERO-ONE PROGRAMMING).
- Für beliebige lineare Programme $(a_{ij}, c_j, b_i \in \mathbb{Q}; x_i \in \mathbb{R})$ existieren polynomiale Algorithmen.

Kapitel

Pseudopolynomiale Algorithmen

Pseudopolynomielle Algorithmen

- Kodiert man vorkommende Zahlen nicht binär sondern unär, gehen diese nicht logarithmisch, sondern linear in die Inputlänge ein.
- Es gibt \mathcal{NP} -vollständige Probleme, die für solche Kodierungen polynomiale Algorithmen besitzen.
- Solche Algorithmen nennt man pseudopolynomielle Algorithmen

Sei Π ein Optimierungsproblem. Ein Algorithmus, der Problem Π löst, heißt pseudopolynomiell, falls seine Laufzeit durch ein Polynom der beiden Variablen

- Eingabegröße und
- Größe der größten in der Eingabe vorkommenden Zahl beschränkt ist.

Beispiel: Problem KNAPSACK

Problem KNAPSACK

Gegeben: Eine endliche Menge M,

eine Gewichtsfunktion $w: M \to \mathbb{N}_0$, eine Kostenfunktion $c: M \to \mathbb{N}_0$

W, $C \in \mathbb{N}_0$.

Frage: Existiert eine Teilmenge $M' \subseteq M$ mit $\sum_{a \in M'} w(a) \leq W$

und $\sum_{a \in M'} c(a) \geq C$?

Satz:

Ein beliebiges Beispiel (M, w, c, W, C) für KNAPSACK kann in $\mathcal{O}(|M| \cdot W)$ entschieden werden.

Beispiel: Problem KNAPSACK

Satz:

Ein beliebiges Beispiel (M, w, c, W, C) für KNAPSACK kann in $\mathcal{O}(|M| \cdot W)$ entschieden werden.

Beweis:

Sei o.B.d.A. $M = \{1, ..., n\}$. Für jedes $w \in N_0$, $w \le W$ und $i \in M$ definiere

$$c_i^{w} := \max_{M' \subseteq \{1,\ldots,i\}} \left\{ \sum_{j \in M'} c(j) : \sum_{j \in M'} w(j) = w \right\}.$$

Dann kann c_{i+1}^{w} für $0 \le i < n$ leicht berechnet werden als

$$c_{i+1}^{w} = \max \left\{ c_{i}^{w}, c(i+1) + c_{i}^{w-w(i+1)} \right\}.$$

Starke NP-Vollständigkeit

- Für ein Problem Π und eine Instanz / von Π bezeichne | I | die Länge der Instanz / und max(I) die größte in / vorkommende Zahl.
- Für ein Problem Π und ein Polynom p sei Π_p das Teilproblem von Π , in dem nur die Eingaben I mit $\max(I) \leq p(|I|)$ vorkommen.
- Ein Entscheidungsproblem Π heißt **stark** \mathcal{NP} -vollständig, wenn Π_p für ein Polynom p \mathcal{NP} -vollständig ist.

Satz:

lst Π stark \mathcal{NP} -vollständig und $\mathcal{NP} \neq \mathcal{P}$, dann gibt es keinen pseudopolynomiellen Algorithmus für Π .

Problem TSP ist stark NP-vollständig.

Kapitel

Approximationsalgorithmen für Optimierungsprobleme

Absolute Approximationsalgorithmen

Absoluter Approximationsalgorithmus

Sei Π ein Optimierungsproblem. Ein polynomialer Algorithmus \mathcal{A} , der für jedes $I \in \mathcal{D}_{\Pi}$ einen Wert $\mathcal{A}(I)$ liefert, mit

$$|\mathsf{OPT}(I) - \mathcal{A}(I)| \le K$$

und $K \in \mathbb{N}_0$ konstant, heißt Approximationsalgorithmus mit Differenzengarantie oder absoluter Approximationsalgorithmus.

- \blacksquare Es gibt nur wenige $\mathcal{NP}-$ schwere Optimierungsprobleme, für die ein absoluter Approximationsalgorithmus existiert
- Es gibt viele Negativ–Resultate.

Das allgemeine KNAPSACK-Suchproblem

Das allgemeine KNAPSACK-Suchproblem

Gegeben: Menge $M = \{1, \ldots, n\}$,

Kosten $c_1, \ldots, c_n \in \mathbb{N}_0$ Gewichte $w_1, \ldots, w_n \in \mathbb{N}$ Gesamtgewicht $W \in \mathbb{N}$.

Aufgabe: Gib $x_1, \ldots, x_n \in \mathbb{N}_0$ an, so dass $\sum_{i=0}^n x_i w_i \leq W$ und

 $\sum_{i=1}^{n} x_i c_i$ maximal ist.

Das allgemeine KNAPSACK-Suchproblem

Das allgemeine KNAPSACK-Suchproblem

Gegeben: Menge $M = \{1, \ldots, n\}$,

Kosten $c_1, \ldots, c_n \in \mathbb{N}_0$ Gewichte $w_1, \ldots, w_n \in \mathbb{N}$ Gesamtgewicht $W \in \mathbb{N}$.

Aufgabe: Gib $x_1, \ldots, x_n \in \mathbb{N}_0$ an, so dass $\sum_{i=0}^n x_i w_i \leq W$ und

 $\sum_{i=1}^{n} x_i c_i$ maximal ist.

Das allgemeine KNAPSACK-Suchproblem ist \mathcal{NP} -schwer.

Satz

Satz:

Falls $\mathcal{P} \neq \mathcal{NP}$, so gibt es keinen absoluten Approximationsalgorithmus \mathcal{A} für das allgemeine KNAPSACK-Suchproblem.

(Widerspruchs-)Beweis

Sei $\mathcal A$ ein abs. Approximationsalgo mit $|\mathsf{OPT}(I) - \mathcal A(I)| \leq K$ für alle I. Sei $I = (M, w_i, c_i, W)$ eine KNAPSACK-Instanz. Betrachte KNAPSACK-Instanz

$$I' = (M' := M, w'_i := w_i, W' := W, c'_i := c_i \cdot (K+1))$$

Damit ist

$$OPT(I') = (K+1)OPT(I)$$

Dann liefert \mathcal{A} zu I' eine Lösung x_1, \ldots, x_n mit Wert $\sum_{i=1}^n x_i c_i' = \mathcal{A}(I')$, für den gilt:

$$|\mathsf{OPT}(I') - \mathcal{A}(I')| \le K.$$

(Widerspruchs-)Beweis

Dann liefert \mathcal{A} zu l' eine Lösung x_1, \ldots, x_n mit Wert $\sum_{i=1}^n x_i c_i' = \mathcal{A}(l')$, für den gilt:

$$|\mathsf{OPT}(I') - \mathcal{A}(I')| \le K.$$

 $\mathcal{A}(I')$ induziert damit eine Lösung x_1, \ldots, x_n für I mit dem Wert

$$\mathcal{L}(I) := \sum_{i=1}^{n} x_i c_i,$$

für den gilt:

$$|(K+1) \mathsf{OPT}(I) - (K+1)\mathcal{L}(I)| \le K$$

Also ist

$$|\operatorname{OPT}(I) - \mathcal{L}(I)| \le \frac{K}{K+1} < 1 \ .$$

(Widerspruchs-)Beweis

Also ist

$$|\mathsf{OPT}(I) - \mathcal{L}(I)| \le \frac{K}{K+1} < 1$$
.

Da

$$\mathsf{OPT}(I)$$
 und $\mathcal{L}(I) \in \mathbb{N}_0$ für alle I ,

ist also

$$OPT(I) = L(I)$$
.

Der entsprechende Algorithmus ist natürlich polynomial und liefert einen Optimalwert für das KNAPSACK-Problem. Dies steht im Widerspruch zu $\mathcal{P} \neq \mathcal{NP}$.

Approximation mit relativer Gütegarantie

Sei Π ein Optimierungsproblem. Ein polynomialer Algorithmus \mathcal{A} , der für jedes $I \in \mathcal{D}_{\Pi}$ einen Wert $\mathcal{A}(I)$ liefert mit $R_{\mathcal{A}}(I) \leq K$, wobei $K \geq 1$ eine Konstante, und

$$\mathcal{R}_{\mathcal{A}}(I) := \begin{cases} \frac{\mathcal{A}(I)}{\mathsf{OPT}(I)} & \text{falls } \Pi \text{ Minimierungsproblem} \\ \\ \frac{\mathsf{OPT}(I)}{\mathcal{A}(I)} & \text{falls } \Pi \text{ Maximierungsproblem} \end{cases}$$

heißt Approximationsalgorithmus mit relativer Gütegarantie. \mathcal{A} heißt ε -approximativ, falls $\mathcal{R}_{\mathcal{A}}(I) \leq 1 + \varepsilon$ für alle $I \in \mathcal{D}_{\Pi}$.

Idee: Es werden der Reihe nach so viele Elemente wie möglich mit absteigender Gewichtsdichte in die Lösung aufgenommen.

- Berechne die Gewichtsdichten $p_i := rac{c_i}{w_i}$ für $i=1,\ldots,n$
- Sortiere nach Gewichtsdichtenindiziere: $p_1 \geq p_2 \geq \ldots \geq p_n$
- Dies kann in Zeit $\mathcal{O}(n \log n)$ geschehen.
- Für i=1 bis n setze $x_i:=\left\lfloor \frac{W}{w_i} \right\rfloor$ und $W:=W-\left\lfloor \frac{W}{w_i} \right\rfloor \cdot w_i$.

Die Laufzeit dieses Algorithmus ist in $\mathcal{O}(n \log n)$.

- Berechne die Gewichtsdichten $p_i := \frac{c_i}{w_i}$ für i = 1, ..., n
- Sortiere nach Gewichtsdichtenindiziere: $p_1 \ge p_2 \ge ... \ge p_n$
- Dies kann in Zeit $\mathcal{O}(n \log n)$ geschehen.
- Für i=1 bis n setze $x_i:=\left\lfloor \frac{W}{w_i} \right\rfloor$ und $W:=W-\left\lfloor \frac{W}{w_i} \right\rfloor \cdot w_i$.

Satz:

Der Greedy–Algorithmus \mathcal{A} für KNAPSACK erfüllt $\mathcal{R}_{\mathcal{A}}(I) \leq 2$ für alle Instanzen I.

- Berechne die Gewichtsdichten $p_i := \frac{c_i}{w_i}$ für i = 1, ..., n
- Sortiere nach Gewichtsdichtenindiziere: $p_1 \ge p_2 \ge ... \ge p_n$
- Dies kann in Zeit $\mathcal{O}(n \log n)$ geschehen.
- Für i=1 bis n setze $x_i:=\left\lfloor \frac{W}{w_i} \right\rfloor$ und $W:=W-\left\lfloor \frac{W}{w_i} \right\rfloor \cdot w_i$.

Beweis:

O.B.d.A. sei $w_1 \leq W$. Offensichtlich gilt:

$$\mathcal{A}(I) \geq c_1 \cdot x_1 = c_1 \cdot \left| \frac{W}{w_1} \right|$$
 für alle I

und

$$\mathsf{OPT}(I) \le c_1 \cdot \frac{W}{w_1} \le c_1 \cdot \left(\left\lfloor \frac{W}{w_1} \right\rfloor + 1 \right) \le 2 \cdot c_1 \cdot \left\lfloor \frac{W}{w_1} \right\rfloor \le 2 \cdot \mathcal{A}(I)$$
.

Also $\mathcal{R}_{\mathcal{A}}(I) \leq 2$.

- Berechne die Gewichtsdichten $p_i := \frac{c_i}{w_i}$ für i = 1, ..., n
- Sortiere nach Gewichtsdichtenindiziere: $p_1 \geq p_2 \geq \ldots \geq p_n$
- Dies kann in Zeit $\mathcal{O}(n \log n)$ geschehen.
- Für i=1 bis n setze $x_i:=\left\lfloor \frac{W}{w_i} \right\rfloor$ und $W:=W-\left\lfloor \frac{W}{w_i} \right\rfloor \cdot w_i$.

Bemerkung: Die Schranke $\mathcal{R}_{\mathcal{A}}(I)$ ist in gewissem Sinne scharf.

Sei n=2, $w_2=w_1-1$, $c_1=2\cdot w_1$, $c_2=2\cdot w_2-1$, $W=2\cdot w_2$. Dann ist

$$\frac{c_1}{w_1} = 2 > \frac{c_2}{w_2} = 2 - \frac{1}{w_2}$$

und $A(I) = 2w_1$ und $OPT(I) = 4w_2 - 2$, also

$$\frac{\mathsf{OPT}(I)}{\mathcal{A}(I)} = \frac{4w_2 - 2}{2w_1} = \frac{2w_1 - 3}{w_1} \longrightarrow 2 \qquad \text{für } w_1 \to \infty$$

Definition

Zu einem polynomialen Approximationsalgorithmus ${\mathcal A}$ sei

$$\mathcal{R}_{\mathcal{A}}^{\infty} := \inf \left\{ r \geq 1 \; \left| \; \begin{array}{c} \text{es gibt ein } N_0 > 0 \text{, so dass } \mathcal{R}_{\mathcal{A}}(I) \leq r \\ \text{für alle } I \text{ mit OPT}(I) \geq N_0 \end{array} \right. \right\}$$

$$\mathcal{R}_{\mathcal{A}}^{\infty} := \inf \left\{ r \geq 1 \; \left| \begin{array}{c} \text{es gibt ein } N_0 > 0 \text{, so dass } \mathcal{R}_{\mathcal{A}}(I) \leq r \\ \text{für alle } I \text{ mit OPT}(I) \geq N_0 \end{array} \right. \right\}$$

Problem COLOR (Optimalwertfassung)

Gegeben: Graph G = (V, E)

Frage: Wieviele Farben benötigt man um V zu färben,

so dass je zwei adjazente Knoten verschiedene Farben

besitzen?

Satz:

Falls $\mathcal{P} \neq \mathcal{NP}$, dann existiert kein relativer Approximationsalgorithmus \mathcal{A} für COLOR mit $\mathcal{R}^{\infty}_{A} \leq \frac{4}{3}$.

$$\mathcal{R}_{\mathcal{A}}^{\infty} := \inf \left\{ r \geq 1 \; \left| \begin{array}{c} \text{es gibt ein } N_0 > 0 \text{, so dass } \mathcal{R}_{\mathcal{A}}(I) \leq r \\ \text{für alle } I \text{ mit OPT}(I) \geq N_0 \end{array} \right. \right\}$$

Satz:

Falls $\mathcal{P} \neq \mathcal{NP}$, dann existiert kein relativer Approximationsalgorithmus \mathcal{A} für COLOR mit $\mathcal{R}^{\infty}_{\mathcal{A}} \leq \frac{4}{3}$.

Beweis:

- Angenommen es gibt einen relativen Approximationsalgorithmus $\mathcal A$ für COLOR mit $\mathcal R^\infty_{\mathcal A} \leq \frac43$.
- Wir benutzen A um 3COLOR zu lösen.
- Dies ist ein Widerspruch zu $P \neq \mathcal{NP}$

Zu zwei Graphen

$$G_1 = (V_1, E_1) \text{ und } G_2 = (V_2, E_2)$$

sei

$$G:=(\textit{V},\textit{E}):=\textit{G}_1[\textit{G}_2]$$

definiert durch

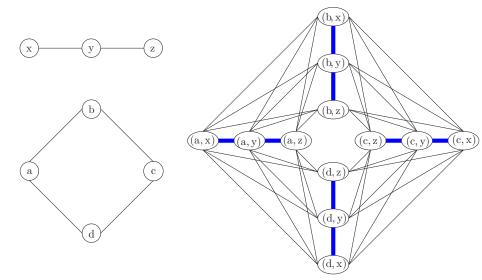
$$V := V_1 \times V_2$$

und

$$E := \left\{ \{(u_1, u_2), (v_1, v_2)\} \middle| \begin{array}{c} \text{entweder } \{u_1, v_1\} \in E_1, \text{oder} \\ u_1 = v_1 \text{ und } \{u_2, v_2\} \in E_2 \end{array} \right\}$$

Anschaulich

- Jeder Knoten aus G_1 wird durch eine Kopie von G_2 ersetzt
- Jede Kante aus E₁ durch einen vollständig bipartiten Graphen zwischen den entsprechenden Kopien.



$$\mathcal{R}_{\mathcal{A}}^{\infty} := \inf \left\{ r \geq 1 \; \left| \begin{array}{c} \text{es gibt ein } N_0 > 0 \text{, so dass } \mathcal{R}_{\mathcal{A}}(I) \leq r \\ \text{für alle } I \text{ mit OPT}(I) \geq N_0 \end{array} \right. \right\}$$

- Angenommen es gibt einen relativen Approximationsalgorithmus $\mathcal A$ für COLOR mit $\mathcal R^\infty_{\mathcal A} \leq \frac43$.
- Dann existiert ein $N \in \mathbb{N}$ so, dass $\mathcal{A}(G) < \frac{4}{3} \operatorname{OPT}(G)$ für alle Graphen G mit $\operatorname{OPT}(G) \geq N$.

- Dann existiert ein $N \in \mathbb{N}$ so, dass $\mathcal{A}(G) < \frac{4}{3}\operatorname{OPT}(G)$ für alle Graphen G mit $\operatorname{OPT}(G) \geq N$.
- Sei also G = (V, E) ein beliebiges Beispiel für 3COLOR.
- Dann definiere $G^* := K_N[G]$, wobei K_N der vollständige Graph über N Knoten ist.
- Dann gilt: $OPT(G^*) = N \cdot OPT(G) \ge N$.

Fallunterscheidung:

Falls G dreifärbbar ist, gilt:

$$\mathcal{A}(G^*) < \frac{4}{3} \operatorname{OPT}(G^*) = \frac{4}{3} \cdot N \cdot \operatorname{OPT}(G) \le \frac{4}{3} \cdot N \cdot 3 = 4N.$$

Andererseits, falls G nicht dreifärbbar ist, gilt

$$A(G^*) \ge \mathsf{OPT}(G^*) = N \cdot \mathsf{OPT}(G) \ge 4N.$$

Fazit: G ist dreifärbbar genau dann, wenn $\mathcal{A}(G^*) < 4N$.

- Die Größe von G* polynomial in der Größe von G.
- Also kann G^* in polynomialer Zeit konstruiert werden.
- Damit ist die Anwendung von \mathcal{A} auf G^* polynomial in der Größe von G.
- Also haben wir einen polynomialen Algorithmus zur Lösung von 3COLOR konstruiert.
- Dies ist ein Widerspruch zu $\mathcal{P} \neq \mathcal{N}\mathcal{P}$.

TSP-Optimalwertproblem mit Dreiecksungleichung

Gegeben: Graph G = (V, E) vollständig und gewichtet mit

Gewichtsfunktion $c \colon E \to \mathbb{Q}$.

es gilt $c(u, w) \le c(u, v) + c(v, w)$ für alle $u, v, w \in V$

Frage: Wie lange ist optimale Tour zu *G* bezüglich *c*?

Satz:

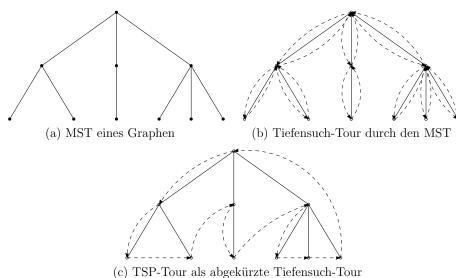
Für das TSP-Optimalwertproblem mit Dreiecksungleichung existiert ein Approximationsalgorithmus $\mathcal A$ mit $\mathcal R_{\mathcal A} \leq 2$ für alle Instanzen I.

Beweis.

Sei (G = (V, E), c) eine Instanz des TSP-Optimalwertproblems mit \triangle -UGL

Betrachte folgenden Algorithmus:

- Berechne einen Minimum Spanning Tree (MST) von G.
- Wähle einen beliebigen Knoten w als Wurzel
- Durchlaufe den MST in einer Tiefensuche mit Startpunkt w
- Ergebnis: Tour T mit Start- und Endpunkt w, die jede Kante zweimal durchläuft.
- Konstruiere aus T eine Tour T indem bereits besuchte Knoten übersprungen werden und die Tour beim nächsten unbesuchten Knoten fortgesetzt wird.



lacktriangle Bezeichne c(G') die Summe der Kantengewichte in Subgraph G' Es gilt

$$c(T') \le c(T) = 2 \cdot c(MST)$$
.

Eine TSP-Tour kann als ein aufspannender Baum plus eine zusätzliche Kante betrachtet werden. Also gilt

$$c(MST) \leq c(OPT)$$
.

Insgesamt erhält man

$$c(T^{'}) \leq c(T) = 2 \cdot c(MST) \leq 2 \cdot c(OPT),$$

also

$$\mathcal{R}_{\mathcal{A}} = rac{c(\mathit{T}')}{c(\mathsf{OPT})} \leq 2$$
 .

Ein (polynomiales) **Approximationsschema** (**PAS**) für ein Optimierungsproblem Π ist eine Familie von Algorithmen $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$, so dass für alle $\varepsilon > 0$

- $\mathcal{R}_{\mathcal{A}_{\varepsilon}} \leq 1 + \varepsilon$ ist (d.h. $\mathcal{A}_{\varepsilon}$ ist ein ε -approximierender Algorithmus).
- $\mathcal{A}_{\varepsilon}$ polynomial in der Größe des Inputs ist.

Ein Approximationsschema $\{\mathcal{A}_{\epsilon} \mid \epsilon>0\}$ heißt **vollpolynomial** (**FPAS**) falls seine Laufzeit zudem polynomial in $\frac{1}{\epsilon}$ ist.

Bezeichne $\langle I \rangle$ die Länge von Input I.

Satz:

Sei Π ein \mathcal{NP} -schweres Optimierungsproblem mit

- OPT(I) ∈ \mathbb{N} für alle I ∈ D_{Π} , und
- es existiert ein Polynom q mit $\mathsf{OPT}(I) < q(\langle I \rangle)$ für alle $I \in \mathcal{D}_{\Pi}$.

Falls $\mathcal{P} \neq \mathcal{NP}$, so gibt es kein FPAS $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ für Π .

Satz:

Sei Π ein \mathcal{NP} -schweres Optimierungsproblem mit

- OPT(I) ∈ \mathbb{N} für alle I ∈ D_{Π} , und
- es existiert ein Polynom q mit $\mathsf{OPT}(I) < q(\langle I \rangle)$ für alle $I \in \mathcal{D}_\Pi$.

Falls $\mathcal{P} \neq \mathcal{NP}$, so gibt es kein FPAS $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ für Π .

Beweis:

- Sei $\{A_{\varepsilon} \mid \varepsilon > 0\}$ ein FPAS für Π
- Sei Π ein Maximierungsproblem.
- Sei *I* ∈ *D*_Π
- lacksquare Sei $arepsilon_0 := rac{1}{q(\langle I
 angle)}$
- lacksquare Es ist $\mathcal{A}_{arepsilon_0}$ polynomial in $\langle \mathit{I}
 angle$ und in $rac{1}{arepsilon_0} = q(\langle \mathit{I}
 angle)$
- Also ist $\mathcal{A}_{\varepsilon_0}$ polynomial in $\langle I \rangle$.

Satz:

Sei Π ein \mathcal{NP} -schweres Optimierungsproblem mit

- OPT(I) ∈ \mathbb{N} für alle I ∈ D_{Π} , und
- es existiert ein Polynom q mit $\mathsf{OPT}(I) < q(\langle I \rangle)$ für alle $I \in \mathcal{D}_{\Pi}$.

Falls $\mathcal{P} \neq \mathcal{NP}$, so gibt es kein FPAS $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ für Π .

$$OPT(I) \leq (1 + \varepsilon_0) \mathcal{A}_{\varepsilon_0}(I) \text{ und}$$

$$OPT(I) < q(\langle I \rangle) = \frac{1}{\varepsilon_0}$$

Also auch

$$\mathsf{OPT}(\mathit{I}) - \mathcal{A}_{\epsilon_0}(\mathit{I}) \leq \epsilon_0 \cdot \mathcal{A}_{\epsilon_0}(\mathit{I}) \leq \epsilon_0 \cdot \mathsf{OPT}(\mathit{I}) < 1$$

- Da OPT(I) \in \mathbb{N} , ist OPT(I) $= \mathcal{A}_{\varepsilon_0}(I)$
- Widerspruch zu $\mathcal{P} \neq \mathcal{N}\mathcal{P}$.

Problem KNAPSACK

Gegeben: Eine endliche Menge M,

eine Gewichtsfunktion $w: M \to \mathbb{N}_0$,

eine Kostenfunktion $c:M\to\mathbb{N}_0,\ W\in\mathbb{N}.$

Aufgabe: Gib eine Teilmenge M' von M an, so dass

 $\sum_{i \in M'} w_i \leq W$ und $\sum_{i \in M'} c_i$ maximal ist.

Ein pseudopolynomialer, optimaler Algorithmus für KNAPSACK

Bezeichne, für $r \in \mathbb{N}_0$

$$w_r^j := \min_{M' \subseteq \{1,\dots,j\}} \left\{ \sum_{i \in M'} w_i \mid \sum_{i \in M'} c_i = r \right\}$$

- Initialisierung

 Für $1 \le j \le n$ setze $w_0^j := 0$ ansonsten setze $c := \sum_{i=1}^n c_i$
- **Berechung** Solange $w_r^j \le W$ berechne für $2 \le j \le n$ und $1 \le r \le c$ den Wert

$$w_r^j = \min \left\{ w_{r-c_j}^{j-1} + w^j, w_r^{j-1} \right.$$

Ausgabe

$$c^* := \max_{1 < i < n} \left\{ r \mid w_r^j \le W \right\}$$

und die entsprechende Menge $M' \subseteq M$ mit $c^* = \sum_{i \in M'} c_i$.

Ein pseudopolynomialer, optimaler Algorithmus für KNAPSACK

Bezeichne, für
$$r \in \mathbb{N}_0$$

$$w_r^j := \min_{M' \subseteq \{1,\ldots,j\}} \left\{ \sum_{i \in M'} w_i \mid \sum_{i \in M'} c_i = r \right\}$$

Initialisierung

Für
$$1 \le j \le n$$
 setze $w_0^j := 0$ ansonsten setze $c := \sum_{i=1}^n c_i$

Berechung

Solange $w_r^j \leq W$ berechne für $2 \leq j \leq n$ und $1 \leq r \leq c$ den Wert

$$w_r^j = \min \left\{ w_{r-c_i}^{j-1} + w^j, w_r^{j-1} \right.$$

Ausgabe

$$c^* := \max_{1 \le i \le n} \left\{ r \mid w_r^j \le W \right\}$$

und die entsprechende Menge $M' \subseteq M$ mit $c^* = \sum_{i \in M'} c_i$.

Laufzeit: in $\mathcal{O}(n \cdot c)$. **Lösung:** optimal.

₅₃ ⇒Optimaler pseudopolynomialer Algorithmus.

- Bezeichne \mathcal{A} obigen pseudopolynomialen Algorithmus mit Laufzeit $\mathcal{O}(n \cdot c)$ für KNAPSACK.
- Sei k beliebig aber fest.
- Betrachte das skalierte Problem Π_k zu mit $c_i':=\left\lfloor \frac{c_i}{k} \right\rfloor$ für alle $i\in M.$
- Dann liefert \mathcal{A} für jedes $I_k \in \Pi_k$ eine Menge $M' \subseteq M$ mit $\sum_{i \in M'} c'_i = \mathsf{OPT}(I_k)$.
- Setze nun $c_{\max} := \max_{i \in M} c_i$.
- lacksquare Zu arepsilon>0 sei $\mathcal{A}_arepsilon$ Algorithmus \mathcal{A} angewendet auf I_k , wobei

$$k := \frac{c_{\max}}{\left(\frac{1}{\varepsilon} + 1\right) \cdot n}$$

Satz:

 $\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) \leq 1 + \varepsilon \text{ für alle } I \in \mathcal{D}_{\Pi} \text{ und die Laufzeit von } \mathcal{A}_{\varepsilon} \text{ ist in } \mathcal{O}(n^3 \cdot \tfrac{1}{\varepsilon}) \\ \text{ für alle } \varepsilon > 0, \text{ d.h. } \{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\} \text{ ist ein FPAS für KNAPSACK.}$

Satz:

 $\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) \leq 1 + \varepsilon$ für alle $I \in \mathcal{D}_{\Pi}$ und die Laufzeit von $\mathcal{A}_{\varepsilon}$ ist in $\mathcal{O}(n^3 \cdot \frac{1}{\varepsilon})$ für alle $\varepsilon > 0$, d.h. $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ ist ein FPAS für KNAPSACK.

Beweis:

Die Laufzeit von A_{ε} ist in $\mathcal{O}(n \cdot \sum_{i=1}^{n} c_{i}^{\prime})$ und

$$\sum_{i=1}^n c_i' < \sum_{i=1}^n \frac{c_i}{k} \le n \cdot \frac{c_{\max}}{k} = \left(\frac{1}{\varepsilon} + 1\right) n^2.$$

Also ist die Laufzeit von $\mathcal{A}_{\varepsilon}$ in $\mathcal{O}(n^3 \cdot \frac{1}{\varepsilon})$ für alle $\varepsilon > 0$.

Für die Abschätzung von $\mathcal{R}_{\mathcal{A}_{\varepsilon}}$ betrachte M' mit $\mathsf{OPT}(\mathit{I}) = \sum_{\mathit{i} \in \mathit{M}'} \mathit{c}_{\mathit{i}}.$ Es gilt

$$\mathsf{OPT}(I_k) \geq \sum_{i \in M'} \left\lfloor \frac{c_i}{k} \right\rfloor \geq \sum_{i \in M'} \left(\frac{c_i}{k} - 1 \right).$$

Also ist

$$OPT(I) - k \cdot OPT(I_k) \le k \cdot n.$$

Da $\frac{1}{k}\mathcal{A}_{\varepsilon}(I) \geq \mathsf{OPT}(I_k)$ ist, folgt

$$OPT(I) - A_{\varepsilon}(I) \le k \cdot n$$

und wegen $\mathsf{OPT}(I) \geq c_{\mathsf{max}}$ (wir setzen wieder o.B.d.A. $W \geq w_i$ für alle $i \in M$ voraus) folgt

$$\mathcal{R}_{\mathcal{A}_{\varepsilon}}(I) = \frac{\mathsf{OPT}(I)}{\mathcal{A}_{\varepsilon}(I)} \le \frac{\mathcal{A}_{\varepsilon}(I) + kn}{\mathcal{A}_{\varepsilon}(I)} = 1 + \frac{kn}{\mathcal{A}_{\varepsilon}(I)} \le 1 + \frac{kn}{\mathsf{OPT}(I) - kn}$$

$$\le 1 + \frac{kn}{c_{\mathsf{max}} - kn} = 1 + \frac{1}{\frac{1}{\varepsilon} + 1 - 1} = 1 + \varepsilon .$$

Ein allgemeineres Resultat

Mit einem ähnlichen Beweis kann man zeigen:

Satz:

Sei Π ein Optimierungsproblem für das gilt:

- OPT(I) ∈ \mathbb{N} für alle I ∈ D_{Π}
- es existiert ein Polynom q mit $\mathsf{OPT}(I) \leq q(\langle I \rangle + \mathsf{max} \#(I))$ (max #(I) ist die größte in I vorkommende Zahl)

Falls Π ein FPAS hat, so hat es einen pseudopolynomialen optimalen Algorithmus.