

Theoretische Grundlagen der Informatik

Komplexitätsklassen

INSTITUT FÜR THEORETISCHE INFORMATIK

Thema dieses Kapitels

Fragestellung bisher:

- Ist eine Sprache L entscheidbar oder nicht?
- Ist eine Funktion berechenbar oder nicht?
- Benutzung von deterministischen Turing-Maschinen.

In diesem Kapitel:

- Wie effizient kann ein Problem gelöst werden?
- Betrachtung von nichtdeterministischen Turing-Maschinen.

Frage (P vs. NP):

Gibt es einen wesentlichen Effizienzgewinn beim Übergang der deterministischen Turing-Maschine zur nichtdeterministischen Turing-Maschine?

Kapitel

- Sprachen
- Probleme
- Zeitkomplexität

Wie sieht ein Problem aus?

Beispiel: Traveling Salesman Problem (TSP)

Gegeben sei ein vollständiger Graph G = (V, E, c), d.h.

- $V := \{1, ..., n\}$
- $E := \{\{u, v\} \mid u, v \in V, u \neq v\}$
- $c: E \to \mathbb{Z}^+$.

Wir betrachten folgende Problemvarianten

- Optimierungsproblem:
 - Gesucht ist eine Tour (Rundreise), die alle Elemente aus *V* enthält und minimale Gesamtlänge unter allen solchen Touren hat.
- Optimalwertproblem:
 Gesucht ist die L\u00e4nge einer minimalen Tour.
- Entscheidungsproblem:

Gegeben sei zusätzlich auch ein Parameter $k \in \mathbb{Z}^+$. Die Frage ist nun: Gibt es eine Tour, deren Länge höchstens k ist?

Wie sieht ein Problem aus?

Wir betrachten folgende Problemvarianten

- Optimierungsproblem:
 Gesucht ist eine Tour (Rundreise), die alle Elemente aus V enthält und minimale Gesamtlänge unter allen solchen Touren hat.
- Optimalwertproblem:
 Gesucht ist die Länge einer minimalen Tour.
 - **Entscheidungsproblem:** Gegeben sei zusätzlich auch ein Parameter $k \in \mathbb{Z}^+$. Die Frage ist nun: Gibt es eine Tour, deren Länge höchstens k ist?

Bemerkung:

- Mit einer Lösung des Optimierungsproblems kann man leicht auch das Optimalwertproblem und das Entscheidungsproblem lösen.
- Mit einer Lösung des Optimalwertproblems kann man leicht auch das Entscheidungsproblem lösen.

Definition: Problem

Ein **Problem** Π ist gegeben durch:

- eine allgemeine Beschreibung aller vorkommenden Parameter;
- eine genaue Beschreibung der Eigenschaften, die die Lösung haben soll.

Ein **Problembeispiel** I (Instanz) von Π erhalten wir, indem wir die Parameter von Π festlegen.

Definition: Kodierungsschema

- Wir interessieren uns für die Laufzeit von Algorithmen.
- Diese wird in der Größe des Problems gemessen.

Die Größe eines Problems ist abhängig von der Beschreibung oder Kodierung der Problembeispiele

- Ein Kodierungsschema s ordnet jedem Problembeispiel eines Problems eine Zeichenkette oder Kodierung über einem Alphabet Σ zu.
- Die Inputlänge eines Problembeispiels ist die Anzahl des Symbole seiner Kodierung.

Kodierungsschema

Es gibt verschiedene Kodierungsschemata für ein bestimmtes Problem.

Beispiel:

- Zahlen können dezimal, binär, unär, usw. kodiert werden.
- Die Inputlänge von 5127 beträgt dann 4 für dezimal, 13 für binär und 5127 für unär.

Wir werden uns auf vernünftige Schemata festlegen:

- Die Kodierung eines Problembeispiels sollte keine überflüssigen Informationen enthalten.
- **2** Zahlen sollen binär (oder k-är für $k \neq 1$) kodiert sein.

Kodierungsschema

Dies bedeutet, die Kodierungslänge

- einer ganzen Zahl n ist $\lfloor \log_k |n| + 1 \rfloor + 1 =: \langle n \rangle$ (eine 1 benötigt man für das Vorzeichen);
- einer rationalen Zahl $r = \frac{p}{q}$ ist $\langle r \rangle = \langle p \rangle + \langle q \rangle$;
- eines Vektors $X=(x_1,\ldots,x_n)$ ist $\langle X\rangle:=\sum_{i=1}^n\langle x_i\rangle;$
- einer Matrix $A \in \mathbb{Q}^{m \times n}$ ist $\langle A \rangle := \sum_{i=1}^m \sum_{j=1}^n \langle a_{ij} \rangle$.
- eines Graphen G=(V,E) kann zum Beispiel durch die Kodierung seiner *Adjazenzmatrix*, die eines gewichteten Graphen durch die Kodierung der *Gewichtsmatrix* beschrieben werden.

Äquivalenz von Kodierungsschemata

Zwei Kodierungsschemata s_1 , s_2 heißen **äquivalent** bezüglich eines Problems Π , falls es Polynome p_1 , p_2 gibt, so dass gilt:

$$(|s_1(I)| = n \Rightarrow |s_2(I)| \le p_2(n)) \text{ und } (|s_2(I)| = m \Rightarrow |s_1(I)| \le p_1(m))$$

für alle Problembeispiele I von Π .

Entscheidungsprobleme

- Ein Entscheidungsproblem Π können wir als Klasse von Problembeispielen D_{Π} auffassen.
- Eine Teilmenge dieser Klasse ist $J_{\Pi} \subseteq D_{\Pi}$, die Klasse der **Ja-Beispiele**, d.h. die Problembeispiele deren Antwort Ja ist.
- Der Rest der Klasse $N_{\Pi} \subseteq D_{\Pi}$ ist die Klasse der **Nein-Beispiele**.

Korrespondenz von Entscheidungsproblemen und Sprachen

Ein Problem Π und ein Kodierungsschema $s\colon D_\Pi\to \Sigma^*$ zerlegen Σ^* in drei Klassen:

- Wörter aus Σ^* , die *nicht* Kodierung eines Beispiels aus D_{Π} sind,
- Wörter aus Σ^* , die Kodierung eines Beispiels $I \in N_{\Pi}$ sind,
- Wörter aus Σ^* , die Kodierung eines Beispiels $I \in J_{\Pi}$ sind.

Die dritte Klasse ist die Sprache, die zu Π im Kodierungsschema s korrespondiert.

Die zu einem Problem Π und einem Kodierungsschema s zugehörige Sprache ist

$$L[\Pi,s]:=egin{cases} x\in\Sigma^* & \Sigma \text{ ist das Alphabet zu } s \text{ und } x \text{ ist Kodierung eines Ja-Beispiels } I ext{ von } \Pi \text{ unter } s, ext{ d.h. } I\in J_\Pi \end{cases}$$

- Wir betrachten im folgenden deterministische Turing-Maschinen mit zwei Endzuständen q_J , q_N , wobei q_J akzeptierender Endzustand ist.
- Dann wird die Sprache $L_{\mathcal{M}}$ akzeptiert von der Turing-Maschine $\mathcal{M},$ falls

$$L_{\mathcal{M}} = \{x \in \Sigma^* \mid \mathcal{M} \text{ akzeptiert } x\}$$
.

Eine deterministische Turing-Maschine $\mathcal M$ löst ein Entscheidungsproblem Π unter einem Kodierungsschema s, falls $\mathcal M$ bei jeder Eingabe über dem Eingabe-Alphabet in einem Endzustand endet und $L_{\mathcal M}=L[\Pi,s]$ ist.

Zeitkomplexität

Für eine deterministische Turing-Maschine \mathcal{M} , die für alle Eingaben über dem Eingabe-Alphabet Σ hält, ist die **Zeitkomplexitätsfunktion** $T_{\mathcal{M}} \colon \mathbb{Z}^+ \to \mathbb{Z}^+$ definiert durch

$$T_{\mathcal{M}}(n) = \max \left\{ m \right\}$$

 $T_{\mathcal{M}}(n) = \max \left\{ m \; \middle| \begin{array}{l} \text{es gibt eine Eingabe } x \in \Sigma^* \; \text{mit } |x| = n, \text{ so} \\ \text{dass die Berechnung von } \mathcal{M} \; \text{bei Eingabe } x \\ m \; \text{Berechnungsschritte (Übergänge) benötigt,} \\ \text{bis ein Endzustand erreicht wird} \end{array} \right\}$

Die Klasse $\mathcal P$

Die Klasse \mathcal{P} ist die Menge aller Sprachen L (Probleme), für die eine deterministische Turing-Maschine existiert, deren Zeitkomplexitätsfunktion polynomial ist, d.h. es existiert ein Polynom p mit

$$T_{\mathcal{M}}(n) \leq p(n)$$
.

Schwierigkeit von Entscheidungs und Optimierungsproblem

Satz:

Falls es einen Algorithmus $\mathcal A$ gibt, der das Entscheidungsproblem des TSP in polynomialer Zeit löst, so gibt es auch einen Algorithmus, der das Optimierungsproblem in polynomialer Zeit löst.

Schwierigkeit von Entscheidungs und Optimierungsproblem

Satz:

Falls es einen Algorithmus \mathcal{A} gibt, der das Entscheidungsproblem des TSP in polynomialer Zeit löst, so gibt es auch einen Algorithmus, der das Optimierungsproblem in polynomialer Zeit löst.

Beweis: Algorithmus, der das Optimierungsproblem löst.

Input:
$$G = (V, E), c_{ij} = c(\{i, j\}) \text{ für } i, j \in V := \{1, ..., n\},$$

Algorithmus $\hat{\mathcal{A}}$

Output: d_{ij} (1 $\leq i, j \leq n$), so dass alle bis auf n der d_{ij} -Werte den

Wert $\left(\max_{i,j} c_{ij}\right) + 1$ haben. Die restlichen $n d_{ij}$ -Werte

haben den Wert c_{ij} und geben genau die Kanten einer

optimalen Tour an.

Algorithmus OPT-TOUR (als Beweis)

- berechne $m := \max_{1 \le i,j \le n} c_{ij}$; setze L(ow) := 0 und H(igh) := $n \cdot m$;
- solange H L > 1 gilt, führe aus:

- falls A(n, c, L) = "nein" ist, setze OPT := H; sonst setze OPT := L;
- für $i = 1 \dots n$ führe aus
- für $j = 1 \dots n$ führe aus
- setze $R := c_{ij}$; $c_{ij} := m + 1$; falls $\mathcal{A}(n, c, OPT) = \text{nein ist, setze } c_{ij} := R$;
- setze $d_{ii} = c_{ii}$;

Bemerkungen zum Algorithmus

Die Schleife in Schritt 2 bricht ab, und danach ist die Differenz H-L gleich 1 oder 0, denn:

- Solange H − L > 1, ändert sich bei jedem Schleifendurchlauf einer der Werte H, L:
 - Für H L > 1 gilt, dass $L \neq \left\lceil \frac{1}{2}(H + L) \right\rceil + 1$ und $H \neq \left\lceil \frac{1}{2}(H + L) \right\rceil$ ist.
- Die Differenz verkleinert sich also mit jedem Durchlauf
- Da H und L ganzzahlig sind, tritt der Fall $H L \le 1$ ein.
- Nach Abbruch der Schleife gilt $H-L\geq 0$:
 - Eine Differenz zwischen H und L von 0 kann genau durch Erhöhen von L bei einer aktuellen Differenz von 2 bzw. 3 erreicht werden
 - Eine Differenz zwischen H und L von 0 minimal ist (bei einer Differenz von weniger als 2 wird die Schleife nicht mehr betreten).

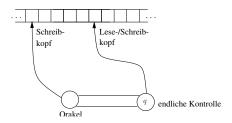
Laufzeit des Algorithmus

- In 2. wird $\mathcal{A}(n, c, k)$ etwa $\log(n \cdot m)$ -mal aufgerufen
- In 4. wird $\mathcal{A}(n, c, OPT)$ etwa n^2 -mal aufgerufen.
- Es finden also $\mathcal{O}(n^2 + \log(nm))$ Aufrufe von \mathcal{A} statt.
- Die Inputlänge ist $\mathcal{O}(n^2 \cdot \log(\max c_{ij}))$.
- **Da** \mathcal{A} polynomial ist, ist dies also auch OPT-TOUR.

Kapitel

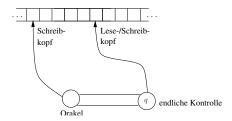
- Nichtdeterministische Turingmaschinen
- Die Klasse NP

- Bei der nichtdeterministischen Turing-Maschine wird die Übergangsfunktion δ zu einer Relation erweitert.
- Dies ermöglicht Wahlmöglichkeiten und ε -Übergänge (vergleiche endliche Automaten).
- Wir betrachten ein äquivalentes Modell einer nichtdeterministischen Turing-Maschine (NTM), die auf einem Orakel basiert
- Dies kommt der Intuition n\u00e4her.



Nichtdeterministische Turingmaschinen (NTM)

- werden analog zur DTM durch das Oktupel $(Q, \Sigma, \sqcup, \Gamma, s, \delta, q_J, q_N)$ beschrieben.
- haben zusätzlich zu der endlichen Kontrolle mit dem Lese-/Schreibkopf ein Orakelmodul mit einem eigenen Schreibkopf
- NTMs haben genau zwei Endzustände q_J und q_N , wobei q_J der akzeptierende Endzustand ist.



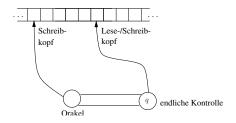
Berechnung bei einer nichtdeterministischen Turing-Maschine

1. Stufe:

- Das Orakelmodul weist seinen Schreibkopf an, Schritt für Schritt entweder ein Symbol zu schreiben und nach links zu gehen oder anzuhalten.
- Falls der Schreibkopf anhält, wird das Orakelmodul inaktiv, und die endliche Zustandskontrolle wird aktiv.

2. Stufe:

- Ab jetzt genau wie bei DTM.
- Das Orakelmodul und sein Schreibkopf sind nicht weiter beteiligt.



- Eine nichtdeterministische Turing-Maschine \mathcal{M} akzeptiert ein Wort $x \in \Sigma^*$ genau dann, wenn es eine Berechnung gibt, die in q_J endet.
- \mathcal{M} akzeptiert die Sprache $L\subseteq \Sigma^*$ genau dann, wenn sie gerade die Wörter aus L akzeptiert.

Übertragung auf Entscheidungsprobleme Π

Die Eingabe ist ein Wort aus Σ^* , zum Beispiel eine Kodierung eines Problembeispiels $I \in \mathcal{D}_{\Pi}$.

- 1. Stufe: Es wird ein Orakel aus Γ^* berechnet, zum Beispiel ein Lösungsbeispiel für I, also ein Indikator, ob $I \in J_{\Pi}$ oder $I \in N_{\Pi}$ gilt.
- 1. Stufe: Hier wird nun dieser Lösungsvorschlag überprüft, d.h. es wird geprüft ob $I \in J_{\Pi}$.

Beispiel TSP

- 1. Stufe: Es wird zum Beispiel eine Permutation σ auf der Knotenmenge V vorgeschlagen. D.h. $(\sigma(1), \ldots, \sigma(n)), G = (V, E), c$ und k bilden die Eingabe.
- 1. Stufe: Es wird nun überprüft, ob $\sigma(V)$ eine Tour in G enthält, deren Länge bezüglich c nicht größer als k ist.

Bemerkungen zur NTM

- **Das** Orakel kann ein beliebiges Wort aus Γ^* sein.
- Darum muss in der Überprüfungsphase (2.Stufe) zunächst geprüft werden, ob das Orakel ein zulässiges Lösungsbeispiel ist.
- Ist dies nicht der Fall, so kann die Berechnung zu diesem Zeitpunkt mit der Antwort "Nein" beendet werden.
- Jede NTM $\mathcal M$ hat zu einer gegebenen Eingabe x eine unendliche Anzahl möglicher Berechnungen, eine zu jedem Orakel aus Γ^* .
- Endet mindestens eine in q_J , so wird x akzeptiert.

Zeitkomplexität für NTM

- Die **Zeit**, die eine nichtdeterministische Turing-Maschine \mathcal{M} benötigt, um ein Wort $x \in L_{\mathcal{M}}$ zu akzeptieren, ist definiert als die minimale Anzahl von Schritten, die \mathcal{M} in den Zustand q_J überführt.
- Die **Zeitkomplexitätsfunktion** $T_{\mathcal{M}} \colon \mathbb{Z}^+ \to \mathbb{Z}^+$ einer nichtdeterministischen Turing-Maschine \mathcal{M} ist definiert durch

$$T_{\mathcal{M}}(n) := \max \left(\left\{ 1 \right\} \cup \left\{ m \;\middle|\; \begin{array}{l} \text{es gibt ein } x \in L_{\mathcal{M}} \text{ mit } |x| = n, \text{ so} \\ \text{dass die Zeit, die } \mathcal{M} \text{ benötigt,} \\ \text{um } x \text{ zu akzeptieren, } m \text{ ist} \end{array} \right\} \right)$$

Zeitkomplexität für NTM

- Die **Zeit**, die eine nichtdeterministische Turing-Maschine \mathcal{M} benötigt, um ein Wort $x \in L_{\mathcal{M}}$ zu akzeptieren, ist definiert als die minimale Anzahl von Schritten, die \mathcal{M} in den Zustand q_J überführt.
- Die **Zeitkomplexitätsfunktion** $T_{\mathcal{M}} \colon \mathbb{Z}^+ \to \mathbb{Z}^+$ einer nichtdeterministischen Turing-Maschine \mathcal{M} ist definiert durch

$$T_{\mathcal{M}}(n) := \max \left(\left\{ 1 \right\} \cup \left\{ m \left| \begin{array}{c} \text{es gibt ein } x \in L_{\mathcal{M}} \text{ mit } |x| = n, \text{ so} \\ \text{dass die Zeit, die } \mathcal{M} \text{ benötigt,} \\ \text{um } x \text{ zu akzeptieren, } m \text{ ist} \end{array} \right\}
ight)$$

Bemerkung 1

- Zur Berechnung von $T_{\mathcal{M}}(n)$ wird für jedes $x \in L_{\mathcal{M}}$ mit |x| = n die kürzeste akzeptierende Berechnung betrachtet.
- Anschließend wir von diesen kürzesten die längste bestimmt.
- Somit ergibt sich eine worst-case Abschätzung.

Zeitkomplexität für NTM

- Die **Zeit**, die eine nichtdeterministische Turing-Maschine \mathcal{M} benötigt, um ein Wort $x \in L_{\mathcal{M}}$ zu akzeptieren, ist definiert als die minimale Anzahl von Schritten, die \mathcal{M} in den Zustand q_J überführt.
- Die **Zeitkomplexitätsfunktion** $T_{\mathcal{M}} \colon \mathbb{Z}^+ \to \mathbb{Z}^+$ einer nichtdeterministischen Turing-Maschine \mathcal{M} ist definiert durch

$$T_{\mathcal{M}}(n) := \max \left(\left\{ 1 \right\} \cup \left\{ m \left| \begin{array}{c} \text{es gibt ein } x \in L_{\mathcal{M}} \text{ mit } |x| = n, \text{ so} \\ \text{dass die Zeit, die } \mathcal{M} \text{ benötigt,} \\ \text{um } x \text{ zu akzeptieren, } m \text{ ist} \end{array} \right\}
ight)$$

Bemerkung 2

- Die Zeitkomplexität h\u00e4ngt nur von der Anzahl der Schritte ab, die bei einer akzeptierenden Berechnung auftreten.
- Hierbei umfasst die Anzahl der Schritte auch die Schritte der Orakelphase.
- Per Konvention ist $T_{\mathcal{M}}(n) = 1$, falls es keine Eingabe x der Länge n gibt, die von \mathcal{M} akzeptiert wird.

Die Klasse NP

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L, für die es eine nichtdeterministische Turing-Maschine gibt, deren Zeitkomplexitätsfunktion polynomial beschränkt ist.

 $(\mathcal{NP} \text{ steht für nichtdeterministisch polynomial.})$

Die Klasse NP

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L, für die es eine nichtdeterministische Turing-Maschine gibt, deren Zeitkomplexitätsfunktion polynomial beschränkt ist.

 $(\mathcal{NP}$ steht für nichtdeterministisch polynomial.)

Bemerkungen

- Alle Sprachen in \mathcal{NP} sind entscheidbar.
- Informell ausgedrückt: Π gehört zu \mathcal{NP} , falls Π folgende Eigenschaft hat: Ist die Antwort bei Eingabe eines Beispiels I von Π Ja, dann kann die Korrektheit der Antwort in polynomialer Zeit überprüft werden.

Die Klasse NP

Die Klasse \mathcal{NP} ist die Menge aller Sprachen L, für die es eine nichtdeterministische Turing-Maschine gibt, deren Zeitkomplexitätsfunktion polynomial beschränkt ist.

 $(\mathcal{NP}$ steht für nichtdeterministisch polynomial.)

Beispiel: TSP $\in \mathcal{NP}$:

Denn zu gegebenem G=(V,E), c, k und einer festen Permutation σ auf V kann man in $O(|V|\cdot \log C)$, wobei C die größte vorkommende Zahl ist, überprüft werden, ob

$$\sum_{i=1}^{n-1} c(\{\sigma(i), \sigma(i+1)\}) + c(\{\sigma(n), \sigma(1)\}) \le k$$

gilt.

Kapitel

■ NP-vollständige Probleme

Große Frage der Theoretischen Informatik

- Trivialerweise gilt: $\mathcal{P} \subseteq \mathcal{NP}$.
- Frage: Gilt $\mathcal{P} \subset \mathcal{NP}$ oder $\mathcal{P} = \mathcal{NP}$?
- Die Vermutung ist, dass $P \neq NP$ gilt.
- \blacksquare Dazu betrachten wir Probleme, die zu den schwersten Problemen in \mathcal{NP} gehören.
- Dabei ist am schwersten im folgenden Sinne gemeint:
- Wenn ein solches Problem trotzdem in \mathcal{P} liegt, so kann man folgern, dass alle Probleme aus \mathcal{NP} in \mathcal{P} liegen, d.h. $\mathcal{P} = \mathcal{NP}$.
- Diese Probleme sind also Kandidaten, um \mathcal{P} und \mathcal{NP} zu trennen.
- Es wird sich zeigen, dass alle diese schwersten Probleme im wesentlichen gleich schwer sind.

NP-Vollständigkeit

Eine **polynomiale Transformation** einer Sprache $L_1 \subseteq \Sigma_1^*$ in eine Sprache $L_2 \subseteq \Sigma_2^*$ ist eine Funktion $f \colon \Sigma_1^* \to \Sigma_2^*$ mit den Eigenschaften:

- es existiert eine polynomiale deterministische Turing-Maschine, die f berechnet;
- für alle $x \in \Sigma_1^*$ gilt: $x \in L_1 \Leftrightarrow f(x) \in L_2$.

Wir schreiben dann $L_1 \propto L_2$ (L_1 ist polynomial transformierbar in L_2).

Eine Sprache L heißt \mathcal{NP} -vollständig , falls gilt:

- $L \in \mathcal{NP}$ und
- für alle $L' \in \mathcal{NP}$ gilt $L' \propto L$.

NP-Vollständigkeit

Wir formulieren nun die Begriffe polynomial transformierbar und \mathcal{NP} -vollständig für Entscheidungsprobleme.

Ein Entscheidungsproblem Π_1 ist **polynomial transformierbar** in das Entscheidungsproblem Π_2 , wenn eine Funktion $f\colon D_{\Pi_1}\to D_{\Pi_2}$ existiert mit folgenden Eigenschaften:

- f ist durch einen polynomialen Algorithmus berechenbar;

Wir schreiben dann $\Pi_1 \propto \Pi_2$.

Ein Entscheidungsproblem Π heißt \mathcal{NP} -vollständig, falls gilt:

- $\Pi \in \mathcal{NP}$ und
- für alle $\Pi' \in \mathcal{NP}$ gilt $\Pi' \propto \Pi$.

Transitivität der poly. Transformation

Eine **polynomiale Transformation** einer Sprache $L_1 \subseteq \Sigma_1^*$ in eine Sprache $L_2 \subseteq \Sigma_2^*$ ist eine Funktion $f \colon \Sigma_1^* \to \Sigma_2^*$ mit den Eigenschaften:

- es existiert eine polynomiale deterministische Turing-Maschine, die f berechnet:
- für alle $x \in \Sigma_1^*$ gilt: $x \in L_1 \Leftrightarrow f(x) \in L_2$.

Wir schreiben dann $L_1 \propto L_2$ (L_1 ist polynomial transformierbar in L_2).

Lemma. \propto ist transitiv, d.h. aus $L_1 \propto L_2$ und $L_2 \propto L_3$ folgt $L_1 \propto L_3$.

Beweis. Die Hintereinanderausführung zweier polynomialer Transformationen ist wieder eine polynomiale Transformation.

Korollar

Korollar. Falls L_1 , $L_2 \in \mathcal{NP}$, $L_1 \propto L_2$ und $L_1 \mathcal{NP}$ -vollständig, dann ist auch $L_2 \mathcal{NP}$ -vollständig.

Bedeutung.

Um also zu zeigen, dass ein Entscheidungsproblem Π \mathcal{NP} -vollständig ist, gehen wir folgendermaßen vor. Wir beweisen:

- $\Pi \in \mathcal{NP}$
- lacksquare für ein bekanntes \mathcal{NP} -vollständiges Problem Π' gilt: $\Pi' \propto \Pi$.

Problem.

- Wir wissen noch für kein einziges Problem, dass es \mathcal{NP} -vollständig ist.
- Das erste \mathcal{NP} -vollständige Problem ist das Erfüllbarkeitsproblem SAT (satisfiability).

Das Problem SAT (satisfiability)

Sei $U = \{u_1, \dots, u_m\}$ eine Menge von booleschen Variablen Es heißen $u_i, \overline{u_i}$ Literale.

Eine Wahrheitsbelegung für U ist eine Funktion $t: U \to \{wahr, falsch\}$. Eine **Klause**l ist ein Boole'scher Ausdruck der Form

$$y_1 \lor \ldots \lor y_s \quad \text{mit} \quad y_i \in \underbrace{\{u_1, \ldots, u_m\} \cup \{\overline{u_1}, \ldots, \overline{u_m}\}}_{\text{Literalmenge}} \cup \{\text{wahr, falsch}\}$$

Problem SAT

Gegeben: Menge *U* von Variablen, Menge *C* von Klauseln über *U*. **Frage:** Existiert eine Wahrheitsbelegung von *U*, so dass *C* erfüllt wird, d.h. dass alle Klauseln aus *C* den Wahrheitswert wahr annehmen?

Beispiel: $U=\{u_1,u_2\}$ mit $C=\{u_1\vee\overline{u_2},\ \overline{u_1}\vee u_2\}$ ist Ja-Beispiel von SAT. Mit der Wahrheitsbelegung $t(u_1)=t(u_2)=$ wahr wird C erfüllt.

Weitere Beispiele für SAT-Instanzen

Lösbar:

$$U = \{a, b, c, d, e\}, C = \{c \lor \overline{d}, \overline{a} \lor b \lor \overline{c} \lor d \lor e, \overline{c} \lor d\}$$

Nicht lösbar:

$$U = \{a, b, c\}, C = \{a \lor b, \overline{a}, \overline{b} \lor c, \overline{c}\}$$

Der Satz von Cook (Steven Cook, 1971)

SAT ist \mathcal{NP} -vollständig.

Der Satz von Cook (Steven Cook, 1971)

SAT ist \mathcal{NP} -vollständig.

Beweis:

- SAT ∈ \mathcal{NP} ist erfüllt: Für ein Beispiel I von SAT (mit n Klauseln und m Variablen) und einer Wahrheitsbelegung t kann in $O(m \cdot n)$ überprüft werden, ob t alle Klauseln erfüllt, d.h. ob I ein Ja−Beispiel ist.
- Wir müssen zeigen, dass für jede Sprache $L \in \mathcal{NP}$ gilt: $L \propto L_{SAT}$, wobei $L_{SAT} = L[SAT, s]$ für ein geeignetes Kodierungsschema s ist.

Wir müssen zeigen, dass für jede Sprache $L \in \mathcal{NP}$ gilt: $L \propto L_{\text{SAT}}$, wobei $L_{\text{SAT}} = L[\text{SAT}, s]$ für ein geeignetes Kodierungsschema s ist.

■ Dazu muss für alle Sprachen $L \in \mathcal{NP}$ eine polynomiale Transformation f_L angegeben werden, für die gilt, dass für alle $x \in \Sigma^*$ (Σ Alphabet zu L) gilt

$$x \in L \iff f_L(x) \in L_{SAT}$$
.

- Wir benutzen, dass es eine NDTM \mathcal{M} zu L gibt, die L in polynomialer Laufzeit erkennt.
- \mathcal{M} sei gegeben durch $(Q, \Sigma, \sqcup, \Gamma, q_0, \delta, q_J, q_N)$ und akzeptiere die Sprache $L = L_{\mathcal{M}}$ in der Laufzeit $T_{\mathcal{M}} \leq p(n)$, wobei p ein Polynom ist. O.B.d.A. gilt $p(n) \geq n$.

- Sei x eine Instanz und n := |x|
- Bei einer akzeptierenden Berechnung von \mathcal{M} für $x \in \Sigma^*$ ist die Anzahl der Berechnungsschritte. beschränkt durch p(n).
- An einer so beschränkten Berechnung können höchstens die Zellen -p(n) bis p(n)+1 des Bandes beteiligt sein.

Der Zustand der deterministischen Stufe ist zu jedem Zeitpunkt eindeutig festgelegt durch:

- den jeweiligen Bandinhalt dieser -p(n) bis p(n) + 1 Plätze,
- den Zustand der endlichen Kontrolle
- und der Position des Lese-/Schreibkopfs.

Im folgenden beschreiben wir eine Berechnung vollständig durch Variablen

Beweis: Konstruktion der Variablen

Bezeichne

- die Zustände aus Q durch $q_0, q_1 = q_J, q_2 = q_N, q_3, \dots, q_r$
- die Symbole aus Γ durch $s_0 = \sqcup, s_1, \ldots, s_\ell$ mit $|\Gamma| = \ell + 1$.

	i Typen von Variablen in d Gültigkeitsbereich	dem zugehörigen Problem SAT Bedeutung
Q[i, k]	$0 \le i \le p(n) \\ 0 \le k \le r$	zum Zeitpunkt i der Über–prüfungsphase ist ${\mathcal M}$ in Zustand q_k
H[i,j]	$0 \le i \le p(n) \\ -p(n) \le j \le p(n) + 1$	zum Zeitpunkt <i>i</i> der Über– prüfungsphase ist der Lese–/ Schreibkopf an Position <i>j</i> des Bandes
S[i,j,k]	$0 \le i \le p(n) -p(n) \le j \le p(n) + 1 0 \le k \le \ell$	zum Zeitpunkt i der Über- prüfungsphase ist der Bandinhalt an Position j das Symbol s_k

Beweis: Konstruktion der Variablen

Variable	Gültigkeitsbereich	Bedeutung
Q[i, k]	$0 \le i \le p(n) \\ 0 \le k \le r$	zum Zeitpunkt i der Über–prüfungsphase ist ${\cal M}$ in Zustand q_k
H[i,j]	$0 \le i \le p(n) \\ -p(n) \le j \le p(n) + 1$	zum Zeitpunkt <i>i</i> der Über– prüfungsphase ist der Lese–/ Schreibkopf an Position <i>j</i> des Bandes
S[i,j,k]	$0 \le i \le p(n)$ $-p(n) \le j \le p(n) + 1$ $0 \le k \le \ell$	zum Zeitpunkt i der Über- prüfungsphase ist der Bandinhalt an Position j das Symbol s_k

- Eine Berechnung von \mathcal{M} induziert in kanonischer Weise eine Wahrheitsbelegung dieser Variablen.
- Wir benutzen folgende Konvention:
- Falls \mathcal{M} vor dem Zeitpunkt p(n) stoppt, bleibt \mathcal{M} in allen folgenden Zuständen in demselben Zustand und der Bandinhalt unverändert.

Beweis: Konstruktion der Variablen

Variable	Gültigkeitsbereich	Bedeutung
Q[i, k]	$0 \le i \le p(n) \\ 0 \le k \le r$	zum Zeitpunkt i der Über– prüfungsphase ist ${\mathcal M}$ in Zustand q_k
H[i,j]	$0 \le i \le p(n) \\ -p(n) \le j \le p(n) + 1$	zum Zeitpunkt <i>i</i> der Über- prüfungsphase ist der Lese-/ Schreibkopf an Position <i>j</i> des Bandes
S[i,j,k]	$0 \le i \le p(n)$ $-p(n) \le j \le p(n) + 1$ $0 \le k \le \ell$	zum Zeitpunkt i der Über- prüfungsphase ist der Bandinhalt an Position j das Symbol s_k

Der Bandinhalt zum Zeitpunkt 0 der Überprüfungsphase sei

- Eingabe x auf Platz 1 bis n
- Orakel w auf Platz −1 bis −|w|
- ansonsten Blanks.

■ Eine beliebige Wahrheitsbelegung muss nicht notwendigerweise eine Berechnung induzieren (zum Beispiel $Q[i, k] = Q[i, \ell]$ für $k \neq \ell$).

Also konstruiere Transformation f_L die Klauseln einführt, so dass äquivalent ist:

- Für Eingabe x gibt es eine akzeptierende Berechnung, deren Überprüfungsphase höchstens p(n) Zeit benötigt, und deren Orakel höchstens Länge p(n) hat.
- **E**s gibt eine erfüllende Belegung für die SAT-Instanz $f_L(x)$.

Also konstruiere Transformation f_L die Klauseln einführt, so dass äquivalent ist:

- Für Eingabe x gibt es eine akzeptierende Berechnung, deren Überprüfungsphase höchstens p(n) Zeit benötigt, und deren Orakel höchstens Länge p(n) hat.
- **E**s gibt eine erfüllende Belegung für die SAT-Instanz $f_L(x)$.

Damit können wir dann schließen:

- $x \in L \Leftrightarrow$ es existiert eine akzeptierende Berechnung von \mathcal{M} bei Eingabe x
 - \Leftrightarrow es existiert eine akzeptierende Berechnung von $\mathcal M$ bei Eingabe x mit höchstens p(n) Schritten in der Überprüfungsphase und einem Orakel w der Länge |w| = p(n)
 - \Leftrightarrow es existiert eine erfüllende Wahrheitsbelegung für die Klauselmenge $f_l(x)$

Konvention:

■ Die Bewegungsrichtung des Kopfes sei $d \in \{-1, 0, 1\}$.

Beweis: Konstruktion der Klauseln - Übersicht

Klausel- gruppe	Einschränkung / Bedeutung
G_1	Zum Zeitpunkt i ist ${\cal M}$ in genau einem Zustand.
G_2	Zum Zeitpunkt i hat der Lese-/Schreibkopf genau eine Position.
G_3	Zum Zeitpunkt i enthält jede Bandstelle genau ein Symbol aus Γ .
G_4	Festlegung der Anfangskonfiguration zum Zeitpunkt 0: \mathcal{M} ist im Zustand q_0 , der Lese-/Schreibkopf steht an Position 1 des Bandes; in den Zellen 1 bis n steht das Wort $x=s_{k_1}\dots s_{k_n}$
G_5	Bis zum Zeitpunkt $p(n)$ hat ${\mathcal M}$ den Zustand q_J erreicht.
G_6	Zu jedem Zeitpunkt i folgt die Konfiguration von $\mathcal M$ zum Zeitpunkt $i+1$ aus einer einzigen Anwendung von δ aus der Konfiguration von $\mathcal M$ zum Zeitpunkt i .

Klauselgruppe 1:

Zum Zeitpunkt i ist \mathcal{M} in genau einem Zustand.

Konstruktion:

lacktriangle Zu jedem Zeitpunkt i ist \mathcal{M} in mindestens einem Zustand

$$Q[i, 0] \lor ... \lor Q[i, r]$$
 für $0 \le i \le p(n)$

lacksquare Zu jedem Zeitpunkt i ist ${\mathcal M}$ in nicht mehr als einem Zustand

$$\overline{Q[i,j]} \vee \overline{Q[i,j']}$$
 für $0 \le i \le p(n)$, $0 \le j < j' \le r$

40

Klauselgruppe 2:

Zum Zeitpunkt *i* hat der Lese-/Schreibkopf genau eine Position Konstruktion:

Zum Zeitpunkt i hat der Lese-/Schreibkopf mindestens eine Position

$$H[i, -p(n)] \lor ... \lor H[i, p(n) + 1]$$
 für $0 \le i \le p(n)$

Zum Zeitpunkt i hat der Lese-/Schreibkopf höchstens eine Position

$$\overline{H[i,j]} \vee \overline{H[i,j']}$$
 für $0 \le i \le p(n) und - p(n) \le j < j' \le p(n) + 1$

Klauselgruppe 3:

Zum Zeitpunkt i enthält jede Bandstelle genau ein Symbol

Konstruktion:

Zum Zeitpunkt i enthält jede Bandstelle mindestens ein Symbol

$$S[i,j,0] \vee S[i,j,1] \vee \ldots \vee S[i,j,\ell]$$
 für
$$\begin{cases} 0 \le i \le p(n) \\ -p(n) \le j \le p(n) + 1 \end{cases}$$

Zum Zeitpunkt i enthält jede Bandstelle höchstens ein Symbol

$$\overline{S[i,j,k]} \vee \overline{S[i,j,k']} \quad \text{für } \begin{cases} 0 \le i \le p(n) \\ -p(n) \le j \le p(n) + 1 \\ 0 \le k < k' \le \ell \end{cases}$$

Klauselgruppe 4:

Festlegung der Anfangskonfiguration zum Zeitpunkt 0

Konstruktion:

• \mathcal{M} ist im Zustand q_0

der Lese-/Schreibkopf steht an Position 1 des Bandes

• in den Zellen 1 bis n steht das Wort $x = s_{k_1} \dots s_{k_n}$

$$\begin{cases} S[0,0,0], S[0,1,k_1],\ldots,S[0,n,k_n] & \text{, für Eingabe } x=s_{k_1}\ldots s_{k_n} \\ S[0,n+1,0],\ldots,S[0,p(n)+1,0] & \text{, alle anderen Positionen} \end{cases}$$

Klauselgruppe 5:

Bis zum Zeitpunkt p(n) hat M den Zustand q_J erreicht.

Konstruktion:

Q[p(n), 1]

Klauselgruppe 6:

Zu jedem Zeitpunkt i folgt die Konfiguration von $\mathcal M$ zum Zeitpunkt i+1 aus einer einzigen Anwendung von δ aus der Konfiguration von $\mathcal M$ zum Zeitpunkt i.

Wir unterteilen Klauselgruppe G_6 in zwei Teilgruppen $G_{6,1}$, $G_{6,2}$.

- $G_{6,1}$: Falls \mathcal{M} zum Zeitpunkt i an der Position j das Symbol s_k hat und der Lese-/Schreibkopf nicht an der Position j steht, dann hat \mathcal{M} auch zum Zeitpunkt i+1 an Position j das Symbol s_k für $0 \le i < p(n)$.
- $G_{6,2}$: Der Wechsel von einer Konfiguration zur nächsten entspricht tatsächlich δ .

Klauselgruppe 6,1:

Falls \mathcal{M} zum Zeitpunkt i an der Position j das Symbol s_k hat und der Lese-/Schreibkopf nicht an der Position j steht, dann hat \mathcal{M} auch zum Zeitpunkt i+1 an Position j das Symbol s_k für $0 \le i < p(n)$.

Konstruktion:

$$\left(\left(S[i,j,k]\wedge\overline{H[i,j]}\right)\Longrightarrow S[i+1,j,k]\right)$$

Dies ergibt die Klausel

$$\left(\overline{S[i,j,k]} \vee H[i,j] \vee S[i+1,j,k]\right)$$

Klauselgruppe 6,2:

Der Wechsel von einer Konfiguration zur nächsten entspricht tatsächlich δ .

- Sei $\delta(q_k, s_m) = (q_k, s_u, d)$.
- Œ sei q_k aus $Q \setminus \{q_J, q_N\}$ sonst gilt $q_\kappa = q_k$, $s_\mu = s_m$ und d = 0.

$$\begin{split} (H[i,j] \wedge Q[i,k] \wedge S[i,j,m]) &\Rightarrow H[i+1,j+d] \\ \text{und } (H[i,j] \wedge Q[i,k] \wedge S[i,j,m]) &\Rightarrow Q[i+1,\kappa] \\ \text{und } (H[i,j] \wedge Q[i,k] \wedge S[i,j,m]) &\Rightarrow S[i+1,j,\mu] \end{split}$$

Dies ergibt folgende Klauseln

$$\frac{\overline{H[i,j]} \vee \overline{Q[i,k]} \vee \overline{S[i,j,m]} \vee H[i+1,j+d]}{\overline{H[i,j]} \vee \overline{Q[i,k]} \vee \overline{S[i,j,m]} \vee Q[i+1,\kappa]}$$

$$\overline{H[i,j]} \vee \overline{Q[i,k]} \vee \overline{S[i,j,m]} \vee S[i+1,j,\mu]$$

für
$$0 \le i < p(n), -p(n) \le j \le p(n) + 1, 0 \le k \le r, 0 \le m \le \ell$$

Konstruktion der Klauseln - Zwischenergebnis

■ Durch f_L wird nun ein Input (\mathcal{M}, x) auf die Klauselmenge

$$G := G_1 \wedge G_2 \wedge \ldots \wedge G_6$$

abgebildet.

- Wenn $x \in L$, dann ist G erfüllbar.
- Eine erfüllende Wahrheitsbelegung der Variablen aus G induziert eine akzeptierende Berechnung von \mathcal{M} für die Eingabe $x \in L$.

Polynomialität - Klauselgruppe 1:

Zum Zeitpunkt i ist \mathcal{M} in genau einem Zustand.

Konstruktion:

lacktriangle Zu jedem Zeitpunkt i ist \mathcal{M} in mindestens einem Zustand

$$Q[i, 0] \lor ... \lor Q[i, r]$$
 für $0 \le i \le p(n)$

lacktriangle Zu jedem Zeitpunkt i ist ${\mathcal M}$ in nicht mehr als einem Zustand

$$\overline{Q[i,j]} \vee \overline{Q[i,j']}$$
 für $0 \le i \le p(n), \ 0 \le j < j' \le r$

Abschätzung:

,

$$(p(n) + 1)(r + 1) + (p(n) + 1)\frac{1}{2}(r(r + 1))$$

Polynomialität - Klauselgruppe 2:

Zum Zeitpunkt *i* hat der Lese-/Schreibkopf genau eine Position Konstruktion:

Zum Zeitpunkt i hat der Lese-/Schreibkopf mindestens eine Position

$$H[i, -p(n)] \lor ... \lor H[i, p(n) + 1]$$
 für $0 \le i \le p(n)$

Zum Zeitpunkt i hat der Lese-/Schreibkopf höchstens eine Position

$$\overline{H[i,j]} \vee \overline{H[i,j']}$$
 für $0 \le i \le p(n)$ und $-p(n) \le j < j' \le p(n) + 1$

$$(p(n)+1)(2p(n)+1)+(p(n)+1)\frac{1}{2}(2p(n)\cdot(2p(n)+1))$$

Polynomialität - Klauselgruppe 3:

Zum Zeitpunkt i enthält jede Bandstelle genau ein Symbol

Konstruktion:

Zum Zeitpunkt i enthält jede Bandstelle mindestens ein Symbol

$$S[i,j,0] \vee S[i,j,1] \vee \ldots \vee S[i,j,\ell]$$
 für
$$\begin{cases} 0 \le i \le p(n) \\ -p(n) \le j \le p(n) + 1 \end{cases}$$

Zum Zeitpunkt i enthält jede Bandstelle höchstens ein Symbol

$$\overline{S[i,j,k]} \vee \overline{S[i,j,k']} \quad \text{für } \begin{cases} 0 \le i \le p(n) \\ -p(n) \le j \le p(n) + 1 \\ 0 \le k < k' \le \ell \end{cases}$$

$$(p(n)+1)(2p(n)+1)(\ell+1)+(p(n)+1)(2p(n)+1)\frac{1}{2}(\ell(\ell+1))$$

Polynomialität - Klauselgruppe 4:

Festlegung der Anfangskonfiguration zum Zeitpunkt 0

• \mathcal{M} ist im Zustand q_0

der Lese-/Schreibkopf steht an Position 1 des Bandes

• in den Zellen 1 bis *n* steht das Wort $x = s_{k_1} \dots s_{k_n}$

$$\begin{cases} S[0,0,0], S[0,1,k_1], \dots, S[0,n,k_n] & \text{, für Eingabe } x = s_{k_1} \dots s_{k_n} \\ S[0,n+1,0], \dots, S[0,p(n)+1,0] & \text{, alle anderen Positionen} \end{cases}$$

$$2 + (n+1) + (p(n) + 2 - (n+1)) = p(n) + 4$$

Polynomialität - Klauselgruppe 5:

Bis zum Zeitpunkt p(n) hat $\mathcal M$ den Zustand q_J erreicht.

Konstruktion:

Q[p(n), 1]

Polynomialität - Klauselgruppe 6,1:

Falls \mathcal{M} zum Zeitpunkt i an der Position j das Symbol s_k hat und der Lese-/Schreibkopf nicht an der Position j steht, dann hat \mathcal{M} auch zum Zeitpunkt i+1 an Position j das Symbol s_k für $0 \le i < p(n)$.

Konstruktion:

$$\left(\left(S[i,j,k]\wedge\overline{H[i,j]}\right)\Longrightarrow S[i+1,j,k]\right)$$

Dies ergibt die Klausel

$$\left(\overline{S[i,j,k]} \vee H[i,j] \vee S[i+1,j,k]\right)$$

$$p(n)(\ell+1)(2p(n)+2)\cdot 3$$

Polynomialität - Klauselgruppe 6,2:

Der Wechsel von einer Konfiguration zur nächsten entspricht tatsächlich δ .

- Sei $\delta(q_k, s_m) = (q_\kappa, s_\mu, d)$.
- lacktriangle CE sei q_k aus $Qackslash \{q_J,q_N\}$ sonst gilt $q_\kappa=q_k$, $s_\mu=s_m$ und d=0.

$$\begin{split} & \overline{H[i,j]} \vee \overline{Q[i,k]} \vee \overline{S[i,j,m]} \vee H[i+1,j+d] \\ & \overline{H[i,j]} \vee \overline{Q[i,k]} \vee \overline{S[i,j,m]} \vee Q[i+1,\kappa] \\ & \overline{H[i,j]} \vee \overline{Q[i,k]} \vee \overline{S[i,j,m]} \vee S[i+1,j,\mu] \end{split}$$

für
$$0 \le i < p(n), \ -p(n) \le j \le p(n) + 1, \ 0 \le k \le r, \ 0 \le m \le \ell$$

$$p(n)(p(n) + 2)(r + 1)(\ell + 1) \cdot 3 \cdot 4$$

- $G_1: (p(n)+1)(r+1)+(p(n)+1)\frac{1}{2}(r(r+1))$
- G_2 : $(p(n) + 1)(2p(n) + 1) + (p(n) + 1)\frac{1}{2}(2p(n) \cdot (2p(n) + 1))$
- G_3 : $(p(n) + 1)(2p(n) + 1)(\ell + 1) + (p(n) + 1)(2p(n) + 1)\frac{1}{2}(\ell(\ell + 1))$
- G_4 : 2 + (n+1) + (p(n) + 2 (n+1)) = p(n) + 4
- *G*₅: 1
- G_6 : $\underbrace{p(n)(\ell+1)(2p(n)+2)\cdot 3}_{G_{6,1}} + \underbrace{p(n)(p(n)+2)(r+1)(\ell+1)\cdot 3\cdot 4}_{G_{6,2}}$

- $G_1: (p(n)+1)(r+1)+(p(n)+1)\frac{1}{2}(r(r+1))$
- G_2 : $(p(n) + 1)(2p(n) + 1) + (p(n) + 1)\frac{1}{2}(2p(n) \cdot (2p(n) + 1))$
- G_3 : $(p(n) + 1)(2p(n) + 1)(\ell + 1) + (p(n) + 1)(2p(n) + 1)\frac{1}{2}(\ell(\ell + 1))$
- G_4 : 2 + (n+1) + (p(n) + 2 (n+1)) = p(n) + 4
- *G*₅: 1

•
$$G_6$$
: $\underbrace{\rho(n)(\ell+1)(2\rho(n)+2)\cdot 3}_{G_{6,1}} + \underbrace{\rho(n)(\rho(n)+2)(r+1)(\ell+1)\cdot 3\cdot 4}_{G_{6,2}}$

- lack r und ℓ sind Konstanten, die durch $\mathcal M$ (und damit durch ℓ) induziert werden
- p(n) ist ein Polynom in n

- $G_1: (p(n)+1)(r+1)+(p(n)+1)\frac{1}{2}(r(r+1))$
- G_2 : $(p(n) + 1)(2p(n) + 1) + (p(n) + 1)\frac{1}{2}(2p(n) \cdot (2p(n) + 1))$
- G_3 : $(p(n) + 1)(2p(n) + 1)(\ell + 1) + (p(n) + 1)(2p(n) + 1)\frac{1}{2}(\ell(\ell + 1))$
- G_4 : 2 + (n+1) + (p(n) + 2 (n+1)) = p(n) + 4
- *G*₅: 1

•
$$G_6$$
: $\underbrace{p(n)(\ell+1)(2p(n)+2)\cdot 3}_{G_{6,1}} + \underbrace{p(n)(p(n)+2)(r+1)(\ell+1)\cdot 3\cdot 4}_{G_{6,2}}$

- Also sind alle Größen polynomial in n.
- Die angegebene Funktion f_L ist damit eine polynomiale Transformation von L nach $L_{\rm SAT}$.

Das Problem 3-SAT

Problem 3-SAT

Gegeben: Menge *U* von Variablen

Menge C von Klauseln über U

jede Klausel enthält genau drei Literale

Frage: Existiert eine erfüllende Wahrheitsbelegung für C?

Das Problem 3-SAT

Problem 3-SAT

Gegeben: Menge *U* von Variablen

Menge C von Klauseln über U

jede Klausel enthält genau drei Literale

Frage: Existiert eine erfüllende Wahrheitsbelegung für C?

Satz:

Das Problem 3SAT ist \mathcal{NP} -vollständig.

3SAT $\in \mathcal{NP}$:

■ Für eine feste Wahrheitsbelegung t kann in polynomialer Zeit O(|C|) überprüft werden, ob t alle Klauseln aus C erfüllt.

SAT ∝ 3SAT:

- Wir geben eine polynomiale Transformation f von SAT zu 3SAT an.
- Gegeben sei eine SAT-Instanz I

Wir konstruieren eine 3SAT-Instanz f(I) indem wir jede Klausel c in I einzeln auf Klausel(n) f(c) in f(I) abbilden:

- Besteht die Klausel c = x aus **einem** Literal, so wird c auf $x \lor x \lor x$ abgebildet.
- Besteht die Klausel $c = x \lor y$ aus **zwei** Literalen, so wird c auf $x \lor y \lor x$ abgebildet.
- Besteht die Klausel c aus drei Literalen, so wird c auf sich selbst abgebildet.

Wir konstruieren eine 3SAT-Instanz f(I) indem wir jede Klausel c in I einzeln auf Klausel(n) f(c) in f(I) abbilden:

- Besteht die Klausel $c = x_1 \lor ... \lor x_k$ aus k > 3 Literalen, bilde c wie folgt ab:
 - Führe k-3 neue Variablen $y_{c,1}, \ldots, y_{c,k-3}$ ein.
 - Bilde c auf die folgenden k-2 Klauseln ab:

■ Diese Klauseln lassen sich in Zeit $\mathcal{O}(|C| \cdot |U|)$ konstruieren.

Noch zu zeigen:

• I ist erfüllbar $\Leftrightarrow f(I)$ ist erfüllbar

I ist erfüllbar $\Rightarrow f(I)$ ist erfüllbar

- Sei die SAT-Instanz / erfüllbar
- lacktriangle Wir setzen eine erfüllende Wahrheitsbelegung von I auf f(I) fort
- Wir untersuchen jede Klausel $c = x_1 \lor ... \lor x_k$ in I einzeln
- Es ist mindestens ein x_i wahr
- Fall $k \le 3$: Damit ist auch f(c) wahr.
- Fall k > 3. Falls $x_1 = \text{wahr oder } x_2 = \text{wahr ist, setze}$

$$y_{c,j} \equiv \mathtt{falsch}$$

sonst setze, für ein i > 2 mit $x_i = wahr$,

$$y_{c,j} = \begin{cases} \text{wahr} & \text{falls } 1 \leq j \leq i-2 \\ \text{falsch} & \text{falls } i-1 \leq j \leq k-3 \end{cases}$$

Diese Erweiterung erfüllt alle Klauseln in f(c)

I ist erfüllbar $\Leftarrow f(I)$ ist erfüllbar

- Wir zeigen: *I* ist nicht erfüllbar $\Rightarrow f(I)$ ist nicht erfüllbar.
- Sei also die SAT-Instanz / nicht erfüllbar.
- Wir betrachten eine beliebige Belegung der Variablen von f(I)
- Da *I* nicht erfüllbar ist, gibt es eine Klausel $c = x_1 \lor ... \lor x_k$ in *I* bei der alle Literale x_i auf falsch gesetzt sind.
- c wird abgebildet auf

$$\frac{x_1 \lor x_2 \lor y_{c,1}}{\overline{y_{c,1}} \lor x_3 \lor y_{c,2}}$$

$$\vdots$$

$$\overline{y_{c,k-4}} \lor x_{k-2} \lor y_{c,k-3}$$

$$\overline{y_{c,k-3}} \lor x_{k-1} \lor x_k$$

- Um f(c) zu erfüllen, müßten alle $y_{c,i}$ wahr sein
- Dann ist die letzte Klausel $\overline{y_{C_{k-3}}} \lor x_{k-1} \lor x_k$ nicht erfüllt.
- \blacksquare Also ist die 3SAT-Instanz f(I) nicht erfüllbar.

Das Problem 2SAT

Problem 2SAT

Gegeben: Menge *U* von Variablen

Menge C von Klauseln über U

wobei jede Klausel genau zwei Literale enthält

Frage: Existiert eine erfüllende Wahrheitsbelegung für *C*?

Das Problem 2SAT liegt in \mathcal{P} .

Beweis: Übung

Das Problem MAX2SAT

Problem MAX2SAT

Gegeben: Menge *U* von Variablen

Menge C von Klauseln über U

wobei jede Klausel genau zwei Literale enthält

 $\mathsf{Zahl}\; K \in \mathbb{N}$

Frage: Existiert eine Wahrheitsbelegung, die mindestens

K Klauseln erfüllt?

Das Problem MAX2SAT ist \mathcal{NP} -vollständig.

Beweis: Übung

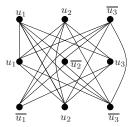
Das Problem CLIQUE

Eine **Clique** in einem Graphen G = (V, E) ist eine Menge $V' \subseteq V$ so, dass für alle $i, j \in V'$, $i \neq j$, gilt: $\{i, j\} \in E$.

Problem CLIQUE

Gegeben: Graph G = (V, E) und ein Parameter $K \leq |V|$

Frage: Gibt es in G eine Clique der Größe mindestens K?



Satz:

Das Problem CLIQUE ist \mathcal{NP} -vollständig.

 $\begin{array}{l} \mathsf{CLIQUE} \in \mathcal{NP} \\ \mathsf{Beweis} \colon \mathsf{\ddot{U}bung}. \end{array}$

3SAT ∝ CLIQUE

Sei $C = \{c_1, \ldots, c_n\}$ eine 3SAT-Instanz mit $c_i = x_{i1} \lor x_{i2} \lor x_{i3}$ und $x_{ij} \in \{u_1, \ldots, u_m, \overline{u_1}, \ldots, \overline{u_m}\}.$

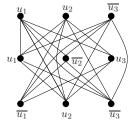
Wir transformieren C in eine CLIQUE-Instanz (G = (V, E), K)

- V enthält 3n Knoten v_{ij} für $1 \le i \le n$, $1 \le j \le 3$
- lacksquare v_{ij} und $v_{k\ell}$ sind durch Kanten aus E verbunden genau dann, wenn:
 - $i \neq k$ (Literale sind in verschiedenen Klauseln)
 - $x_{ij} \neq \overline{x_{kl}}$ (Literale sind gleichzeitig erfüllbar)
- Wir setzen K := n

- V enthält 3n Knoten v_{ij} für $1 \le i \le n$, $1 \le j \le 3$
- $lack v_{ii}$ und $v_{k\ell}$ sind durch Kanten aus E verbunden genau dann, wenn:
 - i $\neq k$ (Literale sind in verschiedenen Klauseln) x_{ii} $\neq \overline{x_{kl}}$ (Literale sind gleichzeitig erfüllbar)

Beispiel: Sei $C = \{u_1 \lor u_2 \lor \overline{u_3}, u_1 \lor \overline{u_2} \lor u_3, \overline{u_1} \lor u_2 \lor \overline{u_3}\}.$

Knotennummer	V ₁₁	<i>V</i> ₁₂	<i>V</i> ₁₃	<i>V</i> ₂₁	V_{22}	V ₂₃	<i>V</i> ₃₁	V ₃₂	V ₃₃
Literal	<i>U</i> ₁	U_2	$\overline{U_3}$	U_1	$\overline{u_2}$	U_3	$\overline{u_1}$	U_2	$\overline{u_3}$



■ Die Transformation kann in polynomieller Zeit berechnet werden.

Noch zu zeigen:

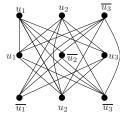
■ 3SAT-Instanz C ist erfüllbar \Leftrightarrow CLIQUE-Instanz (G, K) ist erfüllbar

3SAT-Instanz C ist erfüllbar \Rightarrow CLIQUE-Instanz (G, K) ist erfüllbar

- Wähle eine beliebige erfüllende Wahrheitsbelegung von C
- Wähle in jeder Klausel ein wahres Literal
- lacktriangle Die entsprechenden Knoten in G bilden eine Clique der Größe n

Beispiel: Sei $C = \{u_1 \lor u_2 \lor \overline{u_3}, u_1 \lor \overline{u_2} \lor u_3, \overline{u_1} \lor u_2 \lor \overline{u_3}\}.$

Knotennummer	V ₁₁	<i>V</i> ₁₂	<i>V</i> ₁₃	<i>V</i> ₂₁	V_{22}	V ₂₃	<i>V</i> 31	<i>V</i> ₃₂	v_{33}
Literal	<i>U</i> ₁	U_2	$\overline{U_3}$	U_1	$\overline{U_2}$	Из	$\overline{u_1}$	U_2	$\overline{u_3}$.



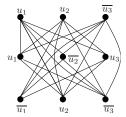
3SAT-Instanz C ist erfüllbar \leftarrow CLIQUE-Instanz (G, K) ist erfüllbar

- Wähle eine Clique V' der Größe n in G
- Die entsprechenden Literale sind
 - gleichzeitig erfüllbar
 - decken alle Klauseln ab

und induzieren deswegen eine erfüllende Wahrheitsbelegung von \mathcal{C} .

Beispiel: Sei $C = \{u_1 \lor u_2 \lor \overline{u_3}, u_1 \lor \overline{u_2} \lor u_3, \overline{u_1} \lor u_2 \lor \overline{u_3}\}.$

Knotennummer	V ₁₁	<i>V</i> ₁₂	<i>V</i> ₁₃	<i>V</i> ₂₁	V_{22}	V ₂₃	<i>V</i> 31	V ₃₂	<i>V</i> 33
Literal	<i>U</i> ₁	U_2	$\overline{U_3}$	<i>U</i> ₁	$\overline{u_2}$	U_3	$\overline{u_1}$	U_2	$\overline{U_3}$.



Das Problem COLOR

Problem COLOR

Gegeben: Graph G = (V, E) und ein Parameter $K \in \mathbb{N}$.

Frage: Gibt es eine Knotenfärbung von *G* mit höchstens

K Farben, so dass je zwei adjazente Knoten

verschiedene Farben besitzen?

3COLOR bezeichnet das Problem COLOR mit festem Parameter k = 3.

Satz:

Das Problem 3COLOR ist \mathcal{NP} -vollständig.

Beweis: NP-Vollständigkeit von 3COLOR

$3COLOR \in \mathcal{NP}$

Es kann in Zeit $\mathcal{O}(|E|)$ überprüft werden, ob eine Färbung von Graph G=(V,E) mit drei Farben zulässig ist.

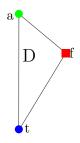
Beweis: NP-Vollständigkeit von 3COLOR

3SAT ∝ 3COLOR

- Sei *I* eine 3SAT-Instanz mit Variablen $U = \{u_1, \ldots, u_m\}$ und Klauseln $\{c_1, \ldots, c_n\}$
- Wir konstruieren in Polynomialzeit eine 3COLOR-Instanz G
- Es soll gelten: I ist erfüllbar ⇔ G ist 3-färbbar

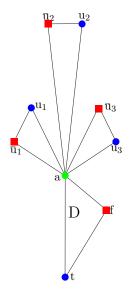
Der Graph G enthält

- Ein 'Hauptdreieck' aus Knoten {t,f,a} und Kanten {{t,f}, {f,a}, {t,a}}
- Interpretation: t,f,a sind die drei Farben mit denen G gefärbt wird
- Interpretation: t: wahr,f: falsch



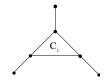
Der Graph G enthält

- lacksquare Für jede Variable $u\in U$ ein Dreieck D_u mit Eckknoten u,\overline{u},a
- Interpretation: Falls u mit t gefärbt ist, muss \overline{u} mit f gefärbt sein



Der Graph G enthält

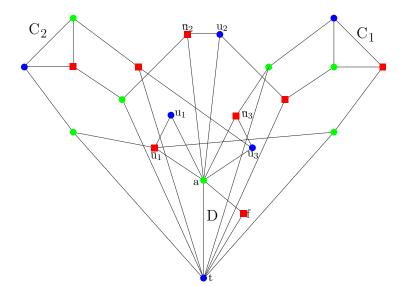
- für jede Klausel $c_j = x \lor y \lor z$ eine Komponente C_j wie folgt
- C_j besteht aus sechs Knoten: einem "inneren Dreieck" und drei "Satelliten"



- Jeder der drei Satelliten wird mit einem der Literale x, y, z verbunden
- Alle drei Satelliten werden mit dem Eckknoten t in D verbunden.

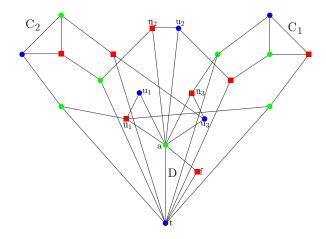
Beispielgraph zur Reduktion

$$c_1 = \bar{u}_1 \vee u_2 \vee \bar{u}_3, c_2 = \bar{u}_1 \vee \bar{u}_2 \vee u_3$$



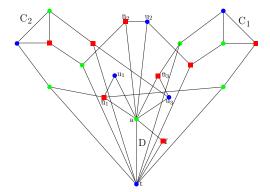
Polynomialität der Reduktion

- Die Knotenanzahl von G liegt in $\mathcal{O}(n+m)$.
- Deswegen ist die Transformation polynomial.



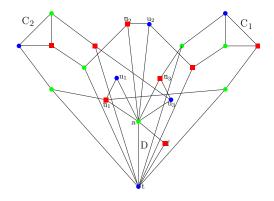
Instanz I erfüllbar ⇒ Instanz G erfüllbar

- Betrachte zulässige Wahrheitsbelegung für I
- Färbe wahre Literale mit t, falsche Literale mit f
- Im Klausel-Gadget:
 - Färbe Satelliten zu einem beliebigen wahren Literal mit f
 - Färbe die beiden anderen Satelliten mit a
 - Inneres Dreieck kann dann zulässig gefärbt werden



Instanz I erfüllbar ← Instanz G erfüllbar

- Betrachte Dreifärbung von G
- Färbung von Literal-Knoten induziert eine gültige Wahrheitsbelegung von I



Problem EXACT COVER

Gegeben: Eine endliche Menge X und eine Familie S von

Teilmengen von X.

Frage: Existiert eine Menge $S' \subseteq S$, so dass jedes Element

aus X in genau einer Menge aus S' liegt?

Problem EXACT COVER

Gegeben: Eine endliche Menge X und eine Familie S von

Teilmengen von X.

Frage: Existiert eine Menge $S' \subseteq S$, so dass jedes Element

aus X in genau einer Menge aus S' liegt?

Beispiel:

$$X = \{1,2,\ldots,7\}$$

$$S = \{\{1,2,3\},\{1,2,4\},\{2,3,4\},\{1,3,4\},\{1,5\},\{3,5\},\{1,3\},\{5,6,7\},\{4,5,6\},\{4,5,7\},\{4,6,7\},\{5,6\},\{5,7\},\{6,7\}\}\}$$

lst (X, S) eine Ja-Instanz?

Problem EXACT COVER

Gegeben: Eine endliche Menge X und eine Familie S von

Teilmengen von X.

Frage: Existiert eine Menge $S' \subseteq S$, so dass jedes Element

aus X in genau einer Menge aus S' liegt?

Beispiel:

$$X = \{1,2,...,7\}$$

$$S = \{\{1,2,3\},\{1,2,4\},\{2,3,4\},\{1,3,4\},\{1,5\},\{3,5\},\{1,3\},$$

$$\{5,6,7\},\{4,5,6\},\{4,5,7\},\{4,6,7\},\{5,6\},\{5,7\},\{6,7\}\}\}$$

$$S' = \{\{1,5\},\{2,3,4\},\{6,7\}\}$$
Ja

Problem EXACT COVER

Gegeben: Eine endliche Menge X und eine Familie S von

Teilmengen von X.

Frage: Existiert eine Menge $S' \subseteq S$, so dass jedes Element

aus X in genau einer Menge aus S' liegt?

Problem EXACT COVER ist \mathcal{NP} -vollständig.

Beweis: NP-Vollständigkeit von EXACT COVER

EXACT COVER $\in \mathcal{NP}$

■ Es kann in Polynomialzeit überprüft werden, ob eine Teilmenge $S' \subseteq S$ aus disjunkten Mengen besteht und X überdeckt.

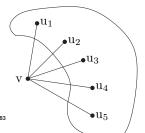
Beweis: NP-Vollständigkeit von EXACT COVER

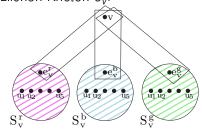
3COLOR ∝ EXACT COVER

- Sei G = (V, E) eine 3COLOR-Instanz
- Wir konstruieren in Polynomialzeit eine EXACT COVER-Instanz (X, S)
- lacktriangle Es soll gelten: G ist 3-färbbar $\Leftrightarrow (X,\mathcal{S})$ ist erfüllbar

Konstruktion von (X,S)

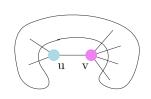
- Sei C = {r(ot), b(lau), g(rün)}
- Sei $N(v) := \{u \in V : \{u, v\} \in E\}$ die Nachbarschaft von v.
- Für jedes $v \in V$ enthalte X ein "Element" v und jeweils $3 \cdot |N(v)| + 3$ zusätzliche Flemente.
- **2** Zu jedem $v \in V$ gebe es in S drei disjunkte Mengen S_v^r, S_v^b, S_v^g mit jeweils |N(v)| + 1 Elementen.
- Außerdem enthalte S für jedes v drei zweielementige Mengen $\{v, e_v^r\}, \{v, e_v^b\} \text{ und } \{v, e_v^g\} \text{ mit } e_v^r \in S_v^r, e_v^b \in S_v^b \text{ und } e_v^g \in S_v^g.$
- **Interpretation:** S'_{ν} entspricht der "Farbe" r, enthält für jeden Knoten aus N(v) eine Kopie und einen zusätzlichen Knoten e_v^r

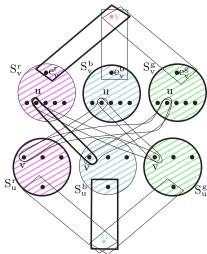




Konstruktion von (X,S)

■ Außerdem enthält S für jede Kante $\{u,v\} \in E$ und je zwei $c,c' \in C$, $c \neq c'$, die zweielementigen Mengen $\{u_v^c, v_u^{c'}\}$, $u_v^c \in S_v^c$ "Kopie" von u, $v_u^{c'} \in S_u^{c'}$ "Kopie" von v.





Konstruktion von (X,S)

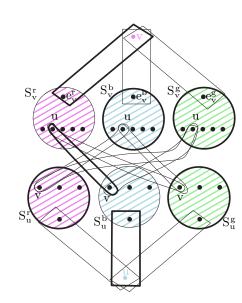
Die Konstruktion ist polynomial.

Noch zu zeigen:

lacktriangle G ist 3-färbbar $\Leftrightarrow (X, S)$ ist erfüllbar

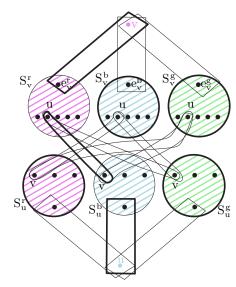
G dreifärbbar ⇒ (X,S) hat exakte Überdeckung

- Sei χ : V → C eine zulässige Dreifärbung.
- S' enthalte für jedes $v \in V$ die Mengen $\{v, e_v^{\chi(v)}\}$ und S_v^c mit $c \neq \chi(v)$.
- Diese Mengen überdecken alle Elemente exakt, außer den Elementen der Form $u_v^{\chi(v)}, v_u^{\chi(u)}$ für $\{u, v\} \in E$.
- Daher enthalte S' für jede Kante $\{u, v\} \in E$ die Menge $\{u_u^{\chi(v)}, v_u^{\chi(u)}\}.$
- Diese Menge existiert, da $\chi(u) \neq \chi(v)$, und damit überdeckt S' jedes Element aus X genau einmal.



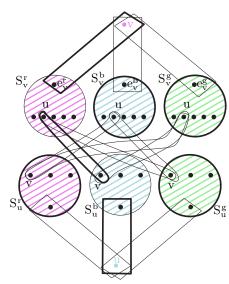
G dreifärbbar ← (X,S) hat exakte Überdeckung

- Sei also S' eine exakte Überdeckung.
- Jedes Element v muss von genau einer Menge der Form $\{v, e_v^c\}$ überdeckt sein.
- Dies induziert eine Färbung χ
 von G mit den Farben r, b und g.
- Wir müssen beweisen, dass diese Färbung zulässig ist
- Da für jedes v bereits $\{v, e_v^{\chi(v)}\} \in S'$, kann e_v^c mit $c \neq \chi(v)$ nur durch die Menge S_v^c überdeckt werden.



G dreifärbbar ← (X,S) hat exakte Überdeckung

- Da für jedes v bereits $\{v, e_v^{\chi(v)}\} \in S'$, kann e_v^c mit $c \neq \chi(v)$ nur durch die Menge S_v^c überdeckt werden.
- Da die Mengen der Form $\{v, e_v^{\chi(v)}\}$ und $S_v^c, c \neq \chi(v)$, alle Elemente außer den $u_v^{\chi(v)}$ mit $\{u, v\} \in E$ überdecken, müssen auch die Mengen $\{u_v^{\chi(v)}, v_u^{\chi(u)}\}$ für $\{u, v\} \in E$ in S' enthalten sein.
- Für diese gilt per Konstruktion $\chi(v) \neq \chi(u)$.



Das Problem SUBSET SUM

Problem SUBSET SUM

Gegeben: Eine endliche Menge M, eine Gewichtsfunktion

 $w: M \to \mathbb{N}_0 \text{ und } K \in \mathbb{N}_0$

Frage: Existiert eine Teilmenge $M' \subseteq M$ mit $\sum_{a \in M'} w(a) = K$?

Problem SUBSET SUM ist \mathcal{NP} -vollständig.

NP-Vollständigkeit von SUBSET SUM

SUBSET SUM $\in \mathcal{NP}$.

Es kann für eine gegebene Teilmenge $M'\subseteq M$ in Polynomialzeit der Wert $\sum_{a\in M'} w(a)$ ausgerechnet und mit K verglichen werden.

EXACT COVER ∝ SUBSET SUM

- Sei $(X = \{0, 1, \dots, m-1\}, S)$ EXACT COVER-Instanz.
- Nonstruiere SUBSET SUM Instanz (M, w, K)

$$M := S$$

$$\#x := |\{Y \in S : x \in Y\}|$$

$$p := \max_{x \in X} \#x + 1$$

$$w(Y) := \sum_{x \in Y} p^{x}$$

$$K := \sum_{x=0}^{m-1} p^{x}$$

Die Konstruktion benötigt nur Polynomialzeit.

$$M := \mathcal{S}$$

$$\#x := |\{Y \in \mathcal{S} : x \in Y\}|$$

$$p := \max_{x \in X} \#x + 1$$

$$w(Y) := \sum_{x \in Y} p^{x}$$

$$K := \sum_{x=0}^{m-1} p^{x}$$

Veranschaulichung:

- Wir stellen die Mengenzugehörigkeiten als Zahlen zur Basis p dar.
- Nodiere w(Y) für $Y \in \mathcal{S}$ als String aus Nullen und Einsen der Länge m, wobei an i-ter Stelle eine 1 steht genau dann, wenn $i \in Y$;
- entsprechend ist *K* ein String der Länge *m* aus Einsen

$$M := \mathcal{S}$$

$$\#x := |\{Y \in \mathcal{S} : x \in Y\}|$$

$$p := \max_{x \in X} \#x + 1$$

$$w(Y) := \sum_{x \in Y} p^{x}$$

$$K := \sum_{x \in Y} p^{x}$$

Veranschaulichung:

- Nomponentenweise Addition der zu Teilmenge Y_1, \ldots, Y_n von S gehörigen Strings $w(Y_1), \ldots, w(Y_n)$ ergibt einen String der Länge m, an dessen i-ter Stelle steht in wievielen der $Y_j (j = 1, \ldots, n)$ das Element i vorkommt.
- $\sum_{Y \in \mathcal{S}'} w(Y) = K$ bedeutet also, dass jedes $x \in X$ in genau einem $Y \in \mathcal{S}'$ vorkommt.

$$M := S$$

$$\#x := |\{Y \in S : x \in Y\}|$$

$$p := \max_{x \in X} \#x + 1$$

$$w(Y) := \sum_{x \in Y} p^{x}$$

$$K := \sum_{x=0}^{m-1} p^{x}$$

■ (X, S) lösbar $\Rightarrow (M, w, K)$ lösbar.

Sei $S' \subseteq S$ exakte Überdeckung von (X, S). Dann gilt

$$\sum_{Y \in S'} w(Y) = \sum_{Y \in S'} \sum_{X \in Y} p^{X} = \sum_{X=0}^{m-1} p^{X} = K$$

da jedes $x \in X$ genau einmal überdeckt wird.

 $\mathcal{S}^{'}$ erfüllt also die Bedingung für SUBSET SUM.

$$M := S$$

$$\#x := |\{Y \in S : x \in Y\}|$$

$$p := \max_{x \in X} \#x + 1$$

$$w(Y) := \sum_{x \in Y} p^{x}$$

$$K := \sum_{x=0}^{m-1} p^{x}$$

■ (X, S) lösbar $\Leftarrow (M, w, K)$ lösbar.

Ist $S' \subseteq M = S$ eine geeignete Menge für SUBSET SUM, so gilt

$$\sum_{Y \in \mathcal{S}'} w(Y) = K = \sum_{x=0}^{m-1} p^x.$$

Also kommt jedes $x \in X$ in genau einem $Y \in S'$ vor. Damit ist S' eine exakte Überdeckung.

Das Problem PARTITION

Problem PARTITION

Gegeben: Eine endliche Menge *M* und eine Gewichtsfunktion

 $w:M\to\mathbb{N}_0.$

Frage: Existiert eine Teilmenge $M' \subseteq M$ mit

 $\sum_{a \in M'} w(a) = \sum_{a \in M \setminus M'} w(a)$?

Problem PARTITION ist \mathcal{NP} -vollständig.

PARTITION $\in \mathcal{NP}$.

Für eine Menge M' können in Polynomialzeit die Werte $\sum_{a\in M'} w(a)$ und $\sum_{a\in M\setminus M'} w(a)$ ausgerechnet und verglichen werden.

SUBSET SUM ∝ PARTITION.

- Sei (M, w, K) eine SUBSET SUM-Instanz
- Konstruiere PARTITION-Instanz (*M**, *w**)

$$\begin{array}{rcl} N & := & \displaystyle \sum_{a \in M} w(a) + 1 \\ M^* & := & \displaystyle M \cup \{b, c\} \\ w^*(a) & = & \displaystyle w(a) & \text{für } a \in M \\ w^*(b) & := & \displaystyle N - K \\ w^*(c) & := & \displaystyle K + 1 \end{array}$$

Die Konstruktion benötigt nur Polynomialzeit.

$$N := \sum_{a \in M} w(a) + 1$$
 $M^* := M \cup \{b, c\}$
 $w^*(a) = w(a) \quad \text{für } a \in M$
 $w^*(b) := N - K$
 $w^*(c) := K + 1$

(M, w, K) Ja-Instanz genau dann, wenn (M^*, w^*) Ja-Instanz:

$$\exists M^{'} \subseteq M^{*} \text{ mit } \sum_{a \in M^{'}} w^{*}(a) = \sum_{a \in M^{*} \setminus M^{'}} w^{*}(a) \iff \exists M^{''} \subseteq M \text{ mit } w(M^{''}) = K.$$

- Es können b und c nicht beide in M' bzw. $M^* \setminus M'$ enthalten sein
- o.B.d.A. $b \in M'$

$$N := \sum_{a \in M} w(a) + 1$$
 $M^* := M \cup \{b, c\}$
 $w^*(a) = w(a) \quad \text{für } a \in M$
 $w^*(b) := N - K$
 $w^*(c) := K + 1$

■ (M, w, K) Ja-Instanz genau dann, wenn (M*, w*) Ja-Instanz:

$$\exists M' \subseteq M^* \text{ mit } \sum_{a \in M'} w^*(a) = \sum_{a \in M^* \setminus M'} w^*(a) \iff \exists M'' \subseteq M \text{ mit } w(M'') = K.$$

- \Rightarrow
- Sei M', so dass $\sum_{a \in M'} w^*(a) = \sum_{a \in M^* \setminus M'} w^*(a)$
- Dann gilt w(M') = N, da $w(M^*) = 2N$
- Damit erfüllt $M^{''}:=M^{'}\setminus\{b\}$ die Bedingung für SUBSET SUM.

$$N := \sum_{a \in M} w(a) + 1$$
 $M^* := M \cup \{b, c\}$
 $w^*(a) = w(a)$ für $a \in M$
 $w^*(b) := N - K$
 $w^*(c) := K + 1$

■ (M, w, K) Ja-Instanz genau dann, wenn (M*, w*) Ja-Instanz:

$$\exists M^{'} \subseteq M^{*} \text{ mit } \sum_{a \in M^{'}} w^{*}(a) = \sum_{a \in M^{*} \setminus M^{'}} w^{*}(a) \Longleftrightarrow \exists M^{''} \subseteq M \text{ mit } w(M^{''}) = K.$$

 \leftarrow

- Sei M'', so dass w(M'') = K
- Dann erfüllt $M' := M'' \cup \{b\}$ die Bedingung für PARTITION.

Das Problem KNAPSACK

Problem KNAPSACK

Gegeben: Eine endliche Menge M,

eine Gewichtsfunktion $w: M \to \mathbb{N}_0$, eine Kostenfunktion $c: M \to \mathbb{N}_0$

W, $C \in \mathbb{N}_0$.

Frage: Existiert eine Teilmenge $M' \subseteq M$ mit $\sum_{a \in M'} w(a) \leq W$

und $\sum_{a \in M'} c(a) \geq C$?

Problem KNAPSACK ist \mathcal{NP} -vollständig.

Beweis: NP-Vollständigkeit von KNAPSACK

$\mathsf{KNAPSACK} \in \mathcal{NP}$.

- Für eine Menge M' kann in Polynomialzeit überprüft werden, ob
 - $\sum_{a \in M'} w(a) \leq W$ und

gilt.

Beweis: NP-Vollständigkeit von KNAPSACK

PARTITION KNAPSACK.

- Sei (M, w) eine PARTITION-Instanz
- Konstruiere KNAPSACK-Instanz (M, w', W, C)

$$w' := 2w$$

$$c := 2w$$

$$W = C := \sum_{a \in M} w(a)$$

- Die Konstruktion benötigt nur Polynomialzeit.
- Es ist (M, w) genau dann eine Ja-Instanz, wenn (M, w', W, C) eine Ja-Instanz ist (ohne Beweis)

Auswirkung auf die Frage \mathcal{P} = $\mathcal{N}\mathcal{P}$

- Wir haben gesehen, dass es für je zwei NP-vollständige Probleme eine polynomiale Transformation von einem zum anderen Problem gibt.
- \blacksquare Deshalb sind alle $\mathcal{NP}\text{--vollst}\ddot{\mathrm{a}}\mathrm{ndigen}$ Probleme im wesentlichen gleich schwer
- lacktriangle Dies hat Auswirkungen auf die Frage, ob $\mathcal{P}=\mathcal{N}\mathcal{P}$ ist.

Satz:

Sei $L \mathcal{NP}$ -vollständig, dann gilt:

- $L \notin \mathcal{P} \Longrightarrow$ für jede \mathcal{NP} -vollständigen Sprache L' gilt $L' \notin \mathcal{P}$

Auswirkung auf die Frage \mathcal{P} = $\mathcal{N}\mathcal{P}$

Beweis: $L \mathcal{NP}$ -vollständig, $L \in \mathcal{P} \Longrightarrow \mathcal{P} = \mathcal{NP}$

- Sei $L \in \mathcal{P}$ und $L \mathcal{NP}$ -vollständig.
- Dann existiert eine polynomiale deterministische TM M für L.
- Sei $L' \in \mathcal{NP}$
- Es gibt polynomiale Transformation $L' \propto L$
- Hintereinanderausführung von $L' \propto L$ und M liefert deterministische polynomielle TM-Berechnung für L'.
- Damit ist $L' \in \mathcal{P}$.

Auswirkung auf die Frage \mathcal{P} = $\mathcal{N}\mathcal{P}$

Beweis: $L \mathcal{NP}$ -vollständig, $L \notin \mathcal{P}$ \Longrightarrow für jede \mathcal{NP} -vollständigen Sprache L' gilt $L' \notin \mathcal{P}$

- Sei $L \notin \mathcal{P}$ und $L \mathcal{NP}$ -vollständig.
- lacksquare Angenommen für eine \mathcal{NP} -vollständige Sprache L' gilt: $L' \in \mathcal{P}$
- Dann folgt aus Teil 1 des Satzes P = NP.
- Dies ist aber ein Widerspruch zur Voraussetzung $L \notin \mathcal{P}$.

Zusammenfassung

- Die Klasse P ist die Klasse aller Entscheidungsprobleme/Sprachen die mit einer deterministischen Turingmaschine in polynomieller Zeit gelöst werden können
- Die Klasse NP ist die Klasse aller Entscheidungsprobleme/Sprachen die mit einer nicht-deterministischen Turingmaschine in polynomieller Zeit gelöst werden können
- Informell ausgedrückt: Π gehört zu \mathcal{NP} , falls Π folgende Eigenschaft hat: Ist die Antwort bei Eingabe eines Beispiels I von Π Ja, dann kann die Korrektheit der Antwort in polynomialer Zeit überprüft werden.

Zusammenfassung

- Eine **polynomiale Transformation** einer Sprache $L_1 \subseteq \Sigma_1^*$ in eine Sprache $L_2 \subseteq \Sigma_2^*$ ist eine Funktion $f \colon \Sigma_1^* \to \Sigma_2^*$ mit den Eigenschaften:
 - es existiert eine polynomiale deterministische Turing-Maschine, die f berechnet;
 - für alle $x \in \Sigma_1^*$ gilt: $x \in L_1 \Leftrightarrow f(x) \in L_2$.
- Eine Sprache L heißt \mathcal{NP} –vollständig, falls gilt:
 - $L \in \mathcal{NP}$ und
 - für alle $L' \in \mathcal{NP}$ gilt $L' \propto L$ (\mathcal{NP} -Schwere).
- **Bedeutung**: Unter der Annahme $\mathcal{P} \neq \mathcal{NP}$ gibt es kein polynomielles Lösungsverfahren für ein \mathcal{NP} -vollständges Problem.

Zusammenfassung

- \blacksquare Mit dem Satz von Cook haben wir direkt gezeigt, dass Problem SAT $\mathcal{NP}\text{-schwer}$ ist
- Bei allen anderen Problemen haben wir polynomielle Transformationen (Reduktionen) benutzt um die NP-Schwere nachzuweisen:

SAT \propto 3SAT \propto 3COLOR \propto EXACT COVER \propto SUBSET SUM \propto PARTITION \propto KNAPSACK