

Theoretische Grundlagen der Informatik

Vorlesung am 7.12.1010

INSTITUT FÜR THEORETISCHE INFORMATIK

Kapitel

Komplementsprachen

Die Klassen NPI, co-P und co-NP

- Die Klasse \mathcal{NPC} (\mathcal{NP} -complete) sei die Klasse der \mathcal{NP} -vollständigen Sprachen/Probleme.
- Die Klasse \mathcal{NPI} (\mathcal{NP} -intermediate) ist definiert durch $\mathcal{NPI} := \mathcal{NP} \setminus (\mathcal{P} \cup \mathcal{NPC})$.

Klasse der Komplementsprachen

- Die Klasse **co** $-\mathcal{P}$ ist die Klasse aller Sprachen $\Sigma^* \backslash L$ für $L \subseteq \Sigma^*$ und $L \in \mathcal{P}$.
- Die Klasse **co** − \mathcal{NP} ist die Klasse aller Sprachen $\Sigma^* \setminus L$ für $L \subseteq \Sigma^*$ und $L \in \mathcal{NP}$.

Die Klassen NPI, co-P und co-NP

- Die Klasse \mathcal{NPC} (\mathcal{NP} -complete) sei die Klasse der \mathcal{NP} -vollständigen Sprachen/Probleme.
- Die Klasse \mathcal{NPI} (\mathcal{NP} -intermediate) ist definiert durch $\mathcal{NPI} := \mathcal{NP} \setminus (\mathcal{P} \cup \mathcal{NPC})$.

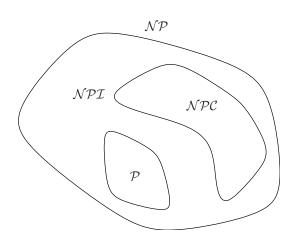
Klasse der Komplementsprachen

- Die Klasse **co** $-\mathcal{P}$ ist die Klasse aller Sprachen $\Sigma^* \backslash L$ für $L \subseteq \Sigma^*$ und $L \in \mathcal{P}$.
- Die Klasse **co** − \mathcal{NP} ist die Klasse aller Sprachen $\Sigma^* \setminus L$ für $L \subseteq \Sigma^*$ und $L \in \mathcal{NP}$.

Satz (Ladner (1975)):

Falls $\mathcal{P} \neq \mathcal{NP}$, so folgt $\mathcal{NPI} \neq \emptyset$.

Vermutete Situation



Offensichtlich: P = co - P.

Frage: Gilt auch $\mathcal{NP} = co - \mathcal{NP}$?

- Natürlich folgt aus $\mathcal{NP} \neq \text{co} \mathcal{NP}$, dass $\mathcal{P} \neq \mathcal{NP}$ gilt.
- Aber was folgt aus $\mathcal{NP} = co \mathcal{NP}$?
- Vermutlich ist $\mathcal{NP} \neq \text{co} \mathcal{NP}$ (Verschärfung der $\mathcal{P} \neq \mathcal{NP}$ -Vermutung).

Das TSP-Komplement-Problem

Problem co-TSP

Gegeben: Graph $G = (V, E), c: E \to \mathbb{Z}^+$ und ein Parameter K.

Aufgabe: Gibt es *keine* Tour der Länge $\leq K$?

- Bemerkung: Für ein vernünftiges Kodierungsschema von TSP ist es leicht nachzuweisen, ob ein gegebener String eine gültige TSP-Instanz repräsentiert.
- co–TSP in co $-\mathcal{NP}$, denn TSP in \mathcal{NP} .
- Frage: Ist co–TSP in \mathcal{NP} ?
- Vermutung: Nein.

Lemma

Satz (Lemma):

Falls $L \mathcal{NP}$ -vollständig ist und $L \in \text{co} - \mathcal{NP}$, so ist $\mathcal{NP} = \text{co} - \mathcal{NP}$.

Lemma

Satz (Lemma):

Falls $L \mathcal{NP}$ -vollständig ist und $L \in co - \mathcal{NP}$, so ist $\mathcal{NP} = co - \mathcal{NP}$.

Beweis:

- Sei $L \in co \mathcal{NP}$.
- **Dann** existiert eine polynomiale nichtdet. Berechnung für L^c .
- Für alle $L' \in \mathcal{NP}$ gilt: $L' \propto L$
- Also existiert eine det. poly. Transformation L'^c ∝ L^c.
- Deshalb existiert eine poly. nichtdet. Berechnung für L'c
- Also $L' \in co \mathcal{NP}$.

Bemerkung

- Mit der Vermutung $\mathcal{NP} \neq \text{co} \mathcal{NP}$ folgt auch $\mathcal{NPC} \cap \text{co} \mathcal{NP} = \emptyset$.
- Wenn ein Problem in \mathcal{NP} und co $-\mathcal{NP}$ ist, vermutlich aber nicht in \mathcal{P} , so ist es in \mathcal{NPI} .

Das Problem Subgraphisomorphie

Problem Subgraphisomorphie

Gegeben: Graphen G = (V, E) und H = (V', E') mit |V'| < |V|

Frage: Gibt es eine Menge $U \subseteq V$ mit |U| = |V'| und

eine bijektive Abbildung Iso: $V' \rightarrow U$,

so dass für alle $x, y \in V'$ gilt:

 $\{x,y\} \in E' \Longleftrightarrow \{\mathsf{Iso}(x),\mathsf{Iso}(y)\} \in E$

Frage anschaulich: Ist *H* isomorph zu einem Subgraphen von *G*?

Das Problem Subgraphisomorphie

Problem Subgraphisomorphie

Gegeben: Graphen G = (V, E) und H = (V', E') mit |V'| < |V|

Frage: Gibt es eine Menge $U \subseteq V$ mit |U| = |V'| und

eine bijektive Abbildung Iso: $V' \rightarrow U$,

so dass für alle $x, y \in V'$ gilt:

 $\{x,y\} \in E' \Longleftrightarrow \{\mathsf{Iso}(x),\mathsf{Iso}(y)\} \in E$

Problem Subgraphisomorphie ist \mathcal{NP} -vollständig (ohne Beweis).

Das Problem Graphisomorphie

Problem Graphisomorphie

Gegeben: Graphen G = (V, E) und H = (V', E') mit |V| = |V'|.

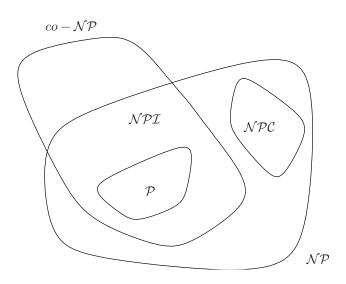
Frage: Existiert eine bijektive Abbildung Iso: $V' \rightarrow V$ mit

 $\{x,y\} \in E' \iff \{\mathsf{Iso}(x),\mathsf{Iso}(y)\} \in E$?

Frage anschaulich: Sind G und H isomorph?

lacktriangle Graphisomorphie ist ein Kandidat für ein Problem aus \mathcal{NPI}

• Graphisomorphie liegt in \mathcal{NP} und co $-\mathcal{NP}$.



Kapitel

Weitere Komplexitätsklassen über NP hinaus

Suchprobleme

Ein **Suchproblem** Π wird beschrieben durch

- die Menge der Problembeispiele / Instanzen D_{Π} und
- für $I \in D_{\Pi}$ die Menge $S_{\Pi}(I)$ aller Lösungen von I.

Die **Lösung** eines Suchproblems für eine Instanz D_{Π} ist

- lacktriangle ein beliebiges Element aus $\mathcal{S}_{\Pi}(\mathit{I})$ falls $\mathcal{S}_{\Pi}(\mathit{I})
 eq \emptyset$
- Ø sonst

Beispiel: TSP-Suchproblem

TSP-Suchproblem (Variante 1)

Gegeben: Graph G = (V, E) vollständig und gewichtet mit

Gewichtsfunktion $c \colon E \to \mathbb{Q}$.

Aufgabe: Gib eine optimale Tour zu *G* bezüglich *c* an.

Bemerkung: $\mathcal{S}_{\Pi}(\mathcal{G})$ ist die Menge aller optimalen Touren zu \mathcal{G} .

TSP-Suchproblem (Variante 2)

Gegeben: Graph G = (V, E) vollständig und gewichtet mit

Gewichtsfunktion $c \colon E \to \mathbb{Q}$, Parameter $k \in \mathbb{Q}$.

Aufgabe: Gib eine Tour zu G bezüglich c mit

Maximallänge k an, falls eine existiert.

Beispiel: Hamilton-Kreis Suchproblem

Gegeben ist ein Graph G = (V, E).

Ein Hamilton–Kreis in G ist eine Permutation π auf V, so dass

$$\{\pi(n),\pi(1)\}\in E \text{ und } \{\pi(i),\pi(i+1)\}\in E \text{ für } 1\leq i\leq n-1 \text{ ist.}$$

Hamilton-Kreis Suchproblem

Gegeben: Ein ungerichteter, ungewichteter Graph G = (V, E). **Aufgabe:** Gib einen Hamilton-Kreis in G an, falls einer existiert.

Bemerkung: $S_{\Pi}(G)$ ist die Menge aller Hamilton-Kreise in G.

Aufzählungsprobleme

Ein **Aufzählungsproblem** Π ist gegeben durch

- die Menge der Problembeispiele D_{Π} und
- für $I \in D_{\Pi}$ die Menge $S_{\Pi}(I)$ aller Lösungen von I.

Die **Lösung** der Instanz I eines Aufzählungsproblem Π besteht in der Angabe der Kardinalität von $S_{\Pi}(I)$, d.h. von $|S_{\Pi}(I)|$.

Beispiel: Hamilton-Kreis Aufzählungsproblem

Hamilton-Kreis Aufzählungsproblem

Gegeben: Ein ungerichteter, ungewichteter Graph G = (V, E).

Aufgabe: Wieviele Hamilton–Kreise gibt es in *G*?

Reduzierbarkeit für Suchprobleme

Zu einem Suchproblem Π sei R_{Π} folgende Relation:

$$R_{\Pi} := \{(x, s) \mid x \in D_{\Pi}, s \in S_{\Pi}(x)\}$$

Eine Funktion $f: \Sigma^* \to \Sigma^*$ realisiert eine Relation R, wenn für alle $x \in \Sigma^*$ gilt:

$$f(x) = \begin{cases} \varepsilon & \exists y \in \Sigma^* \setminus \{\varepsilon\} : (x, y) \in R \\ y & \text{sonst, mit beliebigem } y : (x, y) \in R \end{cases}$$

Ein Algorithmus **löst** das durch R_{Π} beschriebene Suchproblem Π , wenn er eine Funktion berechnet, die R_{Π} realisiert.

Orakel-Turing-Maschine

Eine **Orakel-Turing-Maschine** zum Orakel $G: \Sigma^* \to \Sigma^*$ ist eine deterministische Turing-Maschine mit

- einem ausgezeichnetem Orakelband
- zwei zusätzlichen Zuständen q_f und q_a.

Dabei ist

- q_f der Fragezustand
- q_a der Antwortzustand des Orakels.
- Die Arbeitsweise ist in allen Zuständen $q \neq q_f$ wie bei der normalen Turing-Maschine.

Orakel-TM: Verhalten im Fragezustand

Wenn der

- Zustand q_f angenommen wird,
- Kopf sich auf Position i des Orakelbandes befindet
- Inhalt des Orakelbandes auf Position 1, ..., i das Wort $y = y_1 ... y_i$ ist,

dann verhält sich die Orakel-TM wie folgt:

- falls $y \notin \Sigma^*$: Fehlermeldung und die Orakel-TM hält.
- In einem Schritt wird y auf dem Orakelband gelöscht
- G(y) wird auf Positionen 1, ..., |G(y)| des Orakelbandes geschrieben
- Der Kopf des Orakelbandes springt auf Position 1
- Folgezustand ist q_a .

Bemerkung

Orakel-TM und Nichtdeterministische TM sind verschiedene Konzepte.

Turing-Reduktion

Turing-Reduktion

Seien R, R' Relationen über Σ^* . Eine **Turing-Reduktion** α_T von R auf R' ($R \propto_T R'$), ist eine Orakel-Turing-Maschine \mathcal{M} ,

- deren Orakel die Relation R' realisiert
- die selbst in polynomialer Zeit die Funktion f berechnet, die R realisiert.

Bemerkung:

- Falls R' in polynomialer Zeit realisierbar ist und $R \propto_T R'$, so ist auch R in polynomialer Zeit realisierbar.
- Falls $R \propto_T R'$ und $R' \propto_T R''$ so auch $R \propto_T R''$.

NP-schwer

Ein Suchproblem Π heißt \mathcal{NP} -schwer, falls es eine \mathcal{NP} -vollständige Sprache L gibt mit $L \propto_T \Pi$.

Bemerkung

 \blacksquare Ein Problem das \mathcal{NP} –schwer ist, muss nicht notwendigerweise in \mathcal{NP} sein.

Das TSP-Suchproblem ist NP-schwer

TSP-Suchproblem (Variante 1)

Gegeben: Graph G = (V, E) vollständig und gewichtet mit

Gewichtsfunktion $c \colon E \to \mathbb{Q}$.

Aufgabe: Gib eine optimale Tour zu G bezüglich c an.

TSP-Entscheidungsproblem

Gegeben: Graph G = (V, E) vollständig und gewichtet mit

Gewichtsfunktion $c \colon E \to \mathbb{Q}$, Parameter $k \in \mathbb{Q}$.

Aufgabe: Gibt es eine Tour der Länge höchstens *k*?

Satz:

Das TSP-Suchproblem ist NP-schwer.

Beweisskizze

- Bezeichne TSP_E das Entscheidungsproblem.
- Bezeichne TSP_S das Suchproblem.

Die zu TSP_E bzw, TSP_S gehörenden Relationen R_E und R_S sind gegeben durch

$$R_E := \{(x, J) \mid x \in J_{TSP_E}\}\$$

 $R_S := \{(x, y) \mid x \in D_{TSP_S}, y \in S_{TSP_S}(x)\}\$.

Beweisskizze

$$R_E := \{(x, J) \mid x \in J_{TSP_E}\}\$$

 $R_S := \{(x, y) \mid x \in D_{TSP_S}, y \in S_{TSP_S}(x)\}\$.

Wir zeigen $R_E \propto_T R_S$:

Dazu geben wir eine OTM (Orakel-Turing-Maschine) mit Orakel $\Omega: \Sigma^* \to \Sigma^*$ an. Ω realisiert R_S .

Die OTM arbeitet wie folgt für eine Eingabe w:

- Schreibe die Eingabe auf das Orakelband und gehe in Zustand q_f .
- Weise das Orakel an, in einem Schritt $\Omega(w)$ auf das Orakelband zu schreiben und anschließend in den Zustand q_a zu wechseln.
- Prüfe, ob $\Omega(w)$ eine Tour der Länge $\leq k$ kodiert. Falls ja, lösche das Band und schreibe J, andernfalls lösche das Band.

Die gegebene OTM realisiert R_E und hat polynomial beschränkte Laufzeit.

Verallgemeinerte NP-Schwere

• Wir nennen ein Problem \mathcal{NP} -schwer, wenn es mindestens so schwer ist, wie alle \mathcal{NP} -vollständigen Probleme.

Darunter fallen auch

- \blacksquare Optimierungsprobleme, für die das zugehörige Entscheidungsproblem $\mathcal{NP}\text{--vollst"andig}$ ist.
- Entscheidungsprobleme Π , für die gilt, dass für alle Probleme $\Pi' \in \mathcal{NP}$ gilt $\Pi' \propto \Pi$, aber für die nicht klar ist, ob $\Pi \in \mathcal{NP}$.

Klar ist, dass ein \mathcal{NP} -vollständiges Problem auch \mathcal{NP} -schwer ist.

Das Problem INTEGER PROGRAMMING

Problem INTEGER PROGRAMMING

Gegeben: $a_{ij} \in \mathbb{N}_0, \, b_i, \, c_j \in \mathbb{N}_0, \, 1 \leq i \leq m, \, 1 \leq j \leq n, \, B \in \mathbb{N}_0.$

Frage: Existieren $x_1, \ldots, x_n \in \mathbb{N}_0$, so dass

$$\sum_{j=1}^{n} c_j \cdot x_j = B \text{ und}$$

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i \text{ für } 1 \le i \le m?$$

$$A \cdot \bar{x} < \bar{b}$$

Das Problem INTEGER PROGRAMMING

Problem INTEGER PROGRAMMING

Gegeben: $a_{ij} \in \mathbb{N}_0, \, b_i, \, c_j \in \mathbb{N}_0, \, 1 \leq i \leq m, \, 1 \leq j \leq n, \, B \in \mathbb{N}_0.$

Frage: Existieren $x_1, \ldots, x_n \in \mathbb{N}_0$, so dass

$$\sum_{j=1}^{n} c_j \cdot x_j = B \text{ und}$$

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \leq b_i \text{ für } 1 \leq i \leq m?$$

$$A \cdot \bar{x} \leq \bar{b}$$

Problem INTEGER PROGRAMMING ist \mathcal{NP} -schwer.

Beweis

$$\exists x_1,\ldots,x_n \in \mathbb{N}_0$$
, dass $\sum\limits_{j=1}^n c_j \cdot x_j = B$ und $\underbrace{\sum\limits_{j=1}^n a_{ij} \cdot x_j \leq b_i}_{A:\bar{\lambda} \leq \bar{b}}$ für $1 \leq i \leq m$?

Beweis:

Zeigen: SUBSET SUM ∝ INTEGER PROGRAMMING.

Zu M, $w: M \to \mathbb{N}_0$ und $K \in \mathbb{N}_0$ Beispiel für SUBSET SUM wähle m = n := |M|, o.B.d.A. $M = \{1, \ldots, n\}$, $c_j := w(j)$, B := K, $b_i = 1$ und $A = (a_{ij})$ Einheitsmatrix. Dann gilt:

$$\exists M' \subseteq M \text{ mit } \sum_{j \in M'} w(j) = K$$

$$\exists x_1, \dots, x_n \in \mathbb{N}_0 \text{ mit } \sum_{j \in M} w(j) \cdot x_j = B \text{ und } x_j \leq 1 \text{ für } 1 \leq j \leq n.$$

$$_{27}M' = \{j \in M : x_j = 1\}$$

Bemerkungen

- INTEGER PROGRAMMING ∈ NP ist nicht so leicht zu zeigen. Siehe: Papadimitriou "On the complexity of integer programming", J.ACM, 28, 2, pp. 765-769, 1981.
- Wie der vorherige Beweis zeigt, ist INTEGER PROGRAMMING sogar schon \mathcal{NP} -schwer, falls a_{ij} , $b_i \in \{0, 1\}$ und $x_i \in \{0, 1\}$.
- Es kann sogar unter der Zusatzbedingung $c_{ij} \in \{0, 1\}$ \mathcal{NP} -Vollständigkeit gezeigt werden (ZERO-ONE PROGRAMMING).
- Für beliebige lineare Programme $(a_{ij}, c_j, b_i \in \mathbb{Q}; x_i \in \mathbb{R})$ existieren polynomiale Algorithmen.