

Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner

Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2010/2011

Hier Aufkleber mit Name und Matrikelnr. anbrir	ıgen
Vorname:	_
Nachname:	
Matrikelnummer:	_

Beachten Sie:

- Bringen Sie den Aufkleber mit Ihrem Namen und Ihrer Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes Aufgabenblatt mit Ihrem Namen und Ihrer Matrikelnummer.
- Schreiben Sie die Lösungen auf die Aufgabenblätter und Rückseiten. Zusätzliches Papier erhalten Sie bei Bedarf von der Aufsicht.
- \bullet Zum Bestehen der Klausur sind ${\bf 20}$ der möglichen ${\bf 60}$ Punkte hinreichend.
- Es sind keine Hilfsmittel zugelassen.

Aufgabe	Mögliche Punkte			Er	Erreichte Punkte			
	a	b	c	Σ	a	b	c	Σ
1	4	-	-	4		-	-	
2	4	-	-	4		-	-	
3	3	-	-	3		-	-	
4	4	-	-	4		-	-	
5	3	4	-	7			-	
6	6	-	-	6		-	-	
7	4	2	-	6			-	
8	1	2	3	6				
9	3	-	-	3		-	-	
10	2	5	-	7			-	
11	10x1		10					
Σ				60				

Aufgabe 1: (4 Punkte)

Beweisen Sie, dass die Sprache $L=\{w_1w_2\mid w_1\in\{a,b\}^k,\ w_2=c^j,\ k< j,\ k,j\in\mathbb{N}_{>0}\}$ über dem Alphabet $\Sigma=\{a,b,c\}$ nicht regulär ist.

Aufgabe 2: (4 Punkte)

Gegeben sei das Alphabet $\Sigma = \{a, b, c, d\}$. Definitionen:

- Es sei L die Sprache aller Wörter über Σ in denen a nie neben b, b nie neben c und c nie neben d steht, wobei gilt:
- In einem Wort $w = w_1 \dots w_n$ steht Zeichen x neben Zeichen y, wenn es ein $i \in \{1, \dots, n-1\}$ gibt, so dass $x = w_i$ und $y = w_{i+1}$ oder $y = w_i$ und $x = w_{i+1}$.

Entwerfen Sie eine Grammatik, die die Sprache L erzeugt.

Aufgabe 3: (3 Punkte)

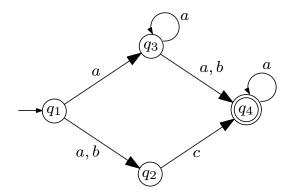
Gegeben sei die Grammatik $G=(\Sigma,V,S,R)$ mit Terminalalphabet $\Sigma=\{0,1\},$ Variablen $V=\{S,A,B\}$ und Produktionen

$$\begin{split} R = \{ & S \rightarrow & 0B|1A, \\ & A \rightarrow & 0|0S|1AA \\ & B \rightarrow & 1|1S|0BB \ \} \;. \end{split}$$

Welche Sprache erzeugt G?

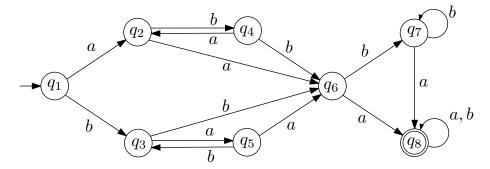
Aufgabe 4: (4 Punkte)

Konstruieren Sie zu folgendem NEA über dem Alphabet $\Sigma = \{a,b,c\}$ einen DEA, der dieselbe Sprache akzeptiert und zeichnen Sie das entsprechende Zustandsübergangsdiagramm.



Aufgabe 5: (3+4 Punkte)

Gegeben ist folgender endlicher Automat \mathcal{A} über dem Alphabet $\Sigma = \{a, b\}$.



- (a) Geben Sie einen regulären Ausdruck für die Sprache an, die \mathcal{A} akzeptiert. Hinweis: Hier ist nicht verlangt, dass sie das Verfahren aus der Vorlesung benutzen.
- (b) Konstruieren Sie den Minimalautomaten zu \mathcal{A} . Sie dürfen benutzen, dass der Minimalautomat aus 5 Zuständen besteht.

Aufgabe 6: (6 Punkte)

Problem SUBSET 3-INTERVALL (S-3INT)

Gegeben: Endliche Menge M, Gewichtsfunktion $w: M \to \mathbb{N}_{>0}$, Zahl $k \in \mathbb{N}_{>0}$. Frage: Gibt es eine Teilmenge $M' \subseteq M$, so dass $\sum_{m \in M'} w(m) \in [k, k+3]$ gilt?

Zeigen Sie, dass das Problem SUBSET 3-INTERVALL NP-vollständig ist. Benutzen Sie dazu, dass das Problem SUBSET SUM NP-vollständig ist:

Problem SUBSET SUM (S-SUM)

Gegeben: Endliche Menge M, Gewichtsfunktion $w: M \to \mathbb{N}_{>0}$, Zahl $k \in \mathbb{N}_{>0}$. Frage: Gibt es eine Teilmenge $M' \subseteq M$, so dass $\sum_{m \in M'} w(m) = k$ gilt?

Aufgabe 7: (4+2 Punkte)

(a) Sei L eine nicht entscheidbare Sprache über dem Alphabet $\Sigma = \{0,1\}$ und sei $(01)^k \notin L$ für jedes $k \in \mathbb{N}_{>0}$. Zeigen Sie: Die Sprache

$$L' = \{ w_1 \# w_2 \mid (w_1 \in L \land w_2 \not\in L) \text{ oder } (w_1 \not\in L \land w_2 \in L) \}$$

über dem Alphabet $\Sigma' = \{0,1,\#\}$ ist nicht entscheidbar.

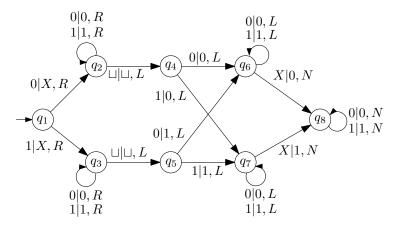
(b) Sei $\mathcal{A} = (Q = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{Y, Z\}, \delta, s, Z, \{f\})$ der Kellerautomat mit Zustandsmenge Q, Eingabealphabet Σ , STACK-Alphabet Γ , Anfangszustand s, Stack-Initialisierung Z, akzeptierendem Endzustand F und der folgenden Übergangsrelation δ :

$$\begin{array}{cccc} (s,a,Z) & \mapsto & (s,YZ) \\ (s,a,Y) & \mapsto & (s,YY) \\ (s,b,Y) & \mapsto & (s,\epsilon) \\ (s,\epsilon,Z) & \mapsto & (f,Z) \end{array}$$

Sei L die Sprache, die \mathcal{A} durch akzeptierenden Endzustand erkennt. Formen Sie \mathcal{A} in einen Kellerautomaten \mathcal{A}' um, der L durch leeren Stack erkennt.

Aufgabe 8: (1+2+3 Punkte)

Gegeben sei die folgende Turingmaschine M mit Eingabealphabet $\{0,1\}$ und Bandalphabet $\{0,1,\sqcup,X\}$ wobei \sqcup das Blanksymbol ist.



- (a) Ist die Turingmaschine M deterministisch?
- (b) Rechnen Sie das Verhalten der Turingmaschine M bei Eingabe des Wortes 0101 durch. Geben Sie dazu alle auftretenden Konfigurationen an.
- (c) Was berechnet die Turingmaschine M für eine Eingabe der Länge mindestens 2?

Aufgabe 9: (3 Punkte)

Gegeben sei die Grammatik $G=(\Sigma,V,S,R)$ mit Terminalen $\Sigma=\{a,b,c,d,x,f\}$, Nichtterminalen $V=\{S,A,B,C\}$ und Produktionen

$$\begin{split} R = \{ & S \rightarrow & ABx|BCd|A \\ & A \rightarrow & AAf|a|CC \\ & B \rightarrow & b \\ & C \rightarrow & c \ \} \; . \end{split}$$

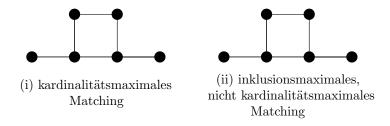
Berechnen Sie durch ein systematisches Verfahren eine Grammatik G' in Chomsky-Normalform, die die gleiche Sprache wie G erzeugt.

Aufgabe 10: (2+5 Punkte)

Gegeben sei ein ungerichteter Graph G = (V, E).

- Zwei Kanten $e_1, e_2 \in E$ sind **adjazent**, wenn sie einen gleichen Endknoten haben.
- Ein Matching $E' \subseteq E$ von G ist eine Menge von Kanten die paarweise nicht adjazent sind.
- Ein kardinalitätsmaximales Matching E^* für G ist ein Matching mit maximal vielen Kanten, d.h. mit maximalem $|E^*|$.
- Ein inklusionsmaximales Matching E^{**} für G ist ein Matching, das nicht echte Teilmenge eines anderen Matchings ist, d.h. für das es kein Matching E'' für G gibt mit $E^{**} \subsetneq E''$.
- (a) Zeichnen Sie in
 - Graphen (i) ein kardinalitätsmaximales Matching
 - Graphen (ii) ein inklusionsmaximales Matching, das nicht kardinalitätsmaximal ist,

ein.



(b) Sei das folgende Maximierungsproblem MAXIMUM MATCHING gegeben:

Problem MAXIMUM MATCHING

Gegeben: Ein ungerichteter Graph G = (V, E), der mindestens eine Kante enthält.

Gesucht: Ein Matching E' möglichst großer Kardinalität in G, d.h. wir haben ein Maximie-

rungsproblem mit Zielfunktion |E'| und der Bedingung, dass E' ein Matching in

G ist.

Sei \mathcal{A} ein Algorithmus, der für einen Eingabegraphen G ein beliebiges inklusionsmaximales Matching zurückliefert. Zeigen Sie: \mathcal{A} ist 1-approximativ für Problem MAXIMUM MATCHING (d.h. \mathcal{A} hat eine relative Gütegarantie von 1+1=2).

Aufgabe 11:		(10 Punkte)
Kreuzen Sie für folgende Aussagen an, ob diese wahr oder falsch sind. Hinweis: Für jede richtige Antwort gibt es einen Punkt, für jede falsche zogen. Es wird keine negative Gesamtpunktzahl für diese Aufgabe geben.	Antwo	rt wird ein Punkt abge-
Die Sprache $L=\{(xyz)^i(abc)^i\mid i\in\mathbb{N}_{>0},\ i<27\}$ ist regulär. Für jeden Kellerautomaten $\mathcal K$ gilt: Die Sprache, die $\mathcal K$ durch akzeptierenden Endzustand erkennt, ist gleich der Sprache, die $\mathcal K$ durch leeren Stack erkennt.	Wahr Wahr	Falsch Falsch
Seien $L_1,\ L_2$ Sprachen vom Chomsky-Typ 2. Dann ist $L_1\cap L_2$ vom Chomsky Typ 2.	Wahr	Falsch
Sei K ein Kellerautomat, der nie ein Zeichen vom Stack löscht oder auf den Stack schreibt und durch Endzustand akzeptiert. Dann gibt es einen NEA, der die gleiche Sprache akzeptiert wie K .	Wahr	Falsch
Wenn es für jedes Wort $w \in L$ einer Sprache L einen DEA A_w gibt, der w akzeptiert, dann ist L regulär.	Wahr	Falsch
Es gibt ein Entscheidungsproblem $\Pi \in NP,$ für das es keine polynomiale Transformation $\Pi \propto SAT$ gibt.	Wahr	Falsch
Jede Sprache, die von einer Grammatik erzeugt wird, ist entscheidbar.	Wahr	Falsch
Sei Π ein Optimalwertproblem und $\mathcal A$ ein 4-Approximationsalgorithmus für Π . Dann liefert $\mathcal A$ mit Wahrscheinlichkeit $1/4$ die richtige Lösung für Π .	Wahr	Falsch
Das Problem 2-SAT liegt in NP.	Wahr	Falsch
Sei L eine Sprache, die von einer nichtdeterministischen Turingmaschine \mathcal{M} in Polynomialzeit akzeptiert wird. Dann folgt daraus, dass es eine deterministische Turing-Maschine gibt, die L entscheidet.	Wahr	Falsch