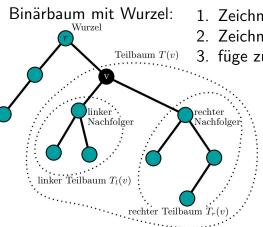


Algorithmen zur Visualisierung von Graphen

Teile & Herrsche-Algorithmen: Bäume und serienparallele Graphen

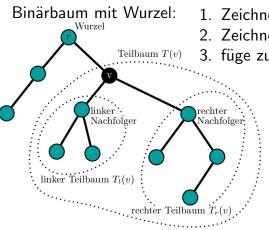
Vorlesung im Wintersemester 2010/2011 Robert Görke 19.01.2011

Gut bei induktiv oder rekursiv definierten Familien von Graphen

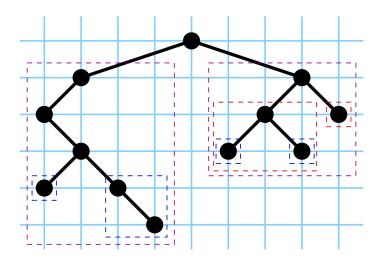

Gut bei induktiv oder rekursiv definierten Familien von Graphen

Binärbaum mit Wurzel:

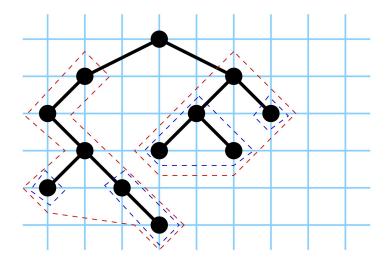
- 1. Zeichne linken Teilbaum
- Zeichne rechten Teilbaum
- 3. füge zusammen + Wurzel

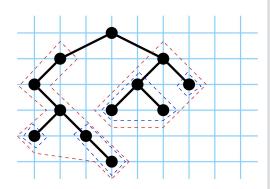

Gut bei induktiv oder rekursiv definierten Familien von Graphen

- 1. Zeichne linken Teilbaum
- 2. Zeichne rechten Teilbaum
- 3. füge zusammen + Wurzel

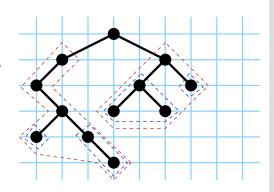


Gut bei induktiv oder rekursiv definierten Familien von Graphen


- 1. Zeichne linken Teilbaum
- 2. Zeichne rechten Teilbaum
- 3. füge zusammen + Wurzel
 - \gg tiefe(v): Abstand zur Wurzel
 - Durchlaufreihenfolgen
 - ≫ preorder
 - ≫ inorder
 - ≫ postorder



2 Phasen:


- postorder (bottom-up):
 Konturen und x-Offsets zum Vorgänger einsammeln
- 2. preorder (top-down): absolute Koordinaten ausrechnen

2 Phasen:

- postorder (bottom-up):
 Konturen und x-Offsets zum Vorgänger einsammeln
- 2. preorder (top-down): absolute Koordinaten ausrechnen

Kontur: verkettet Liste von Knoten (-Koordinaten)

Phase 1:

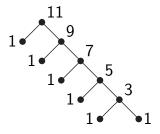
- 1. Bearbeite $T_{\ell}(v)$ und $T_{r}(v)$
- 2. Laufe parallel linke Kontur von $T_r(v)$ und rechte Kontur von $T_\ell(v)$ ab
- 3. Bestimmt daraus d_v , den horizontalen Minimalabstand von v_ℓ und v_r
- 4. $\mathsf{x}\text{-Offset}(v_\ell) = -\lceil \frac{d_v}{2} \rceil$, $\mathsf{x}\text{-Offset}(v_r) = \lceil \frac{d_v}{2} \rceil$
- 5. Baue linke Kontur von T_v aus: v, linke Kontur von $T_\ell(v)$ und evtl. überhängendes Teilstück von linker Kontur von $T_r(v)$
- 6. Rechte Kontur analog

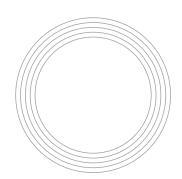
Phase 2:

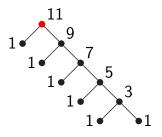
- 1. Setze y-Koordinate y(v) = -tiefe(v)
- 2. Setze x(v)=0 für Wurzel und rekursiv die x-Koordinate $x(v_\ell)$ und $x(v_r)$ der Nachfolger von v auf x(v)+x-Offset $(x(v_\ell))$ bzw. x(v)+x-Offset $(x(v_r))$

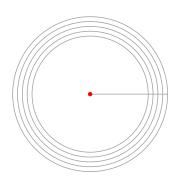

Erinnerung: HV-Bäume

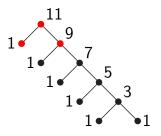
- >> Kinder horizontal rechts oder vertikal unten
- → Greedy Algorithmus
- erschöpfender Algorithmus
- ≫ Dominierung von (Teil-) Layouts
- >> Optimierungsfunktionen
- >> beserer Greedy Algorithmus
- ≫ Stockmeyer Merge
- Notizen von Eades im Web
- ≫ rechtslastige HV-Bäume (Skript)

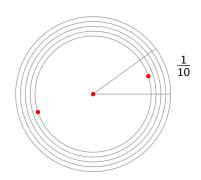

Radiale Baumlayouts

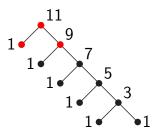


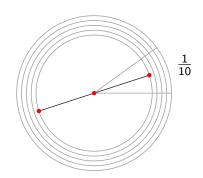


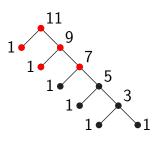


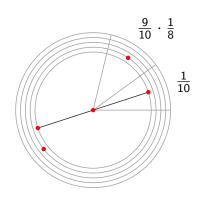


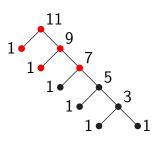


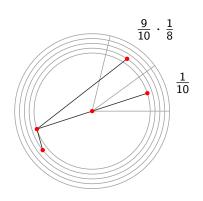


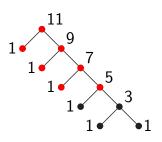


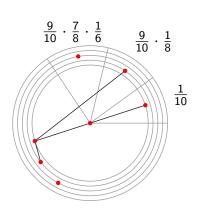


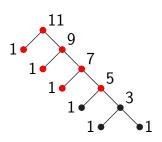


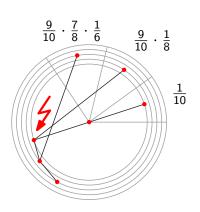


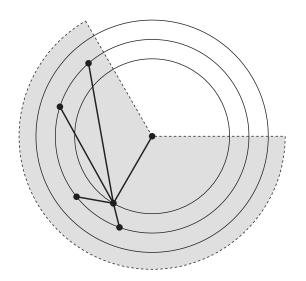




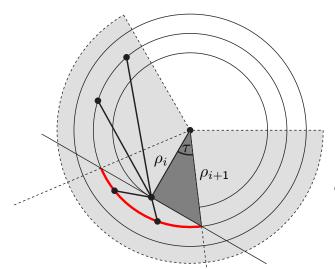




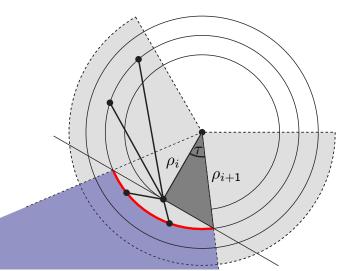




Verlassen des Kreisringsektors



Verlassen des Kreisringsektors



$$\cos au = rac{
ho_i}{
ho_{i+1}}$$

Verlassen des Kreisringsektors

$$\cos\tau = \tfrac{\rho_i}{\rho_{i+1}}$$