Übungsblatt 3 – Lösungsvorschläge

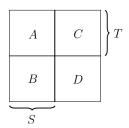
Vorlesung Algorithmentechnik im WS 09/10

Problem 1: Kreuzende Schnitte – Schnitte in Graphen [vgl. Kapitel 3 im Skript]

Zwei Schnitte $(S, V \setminus S)$ und $(T, V \setminus T)$ in einem (ungerichteten) Graphen G = (V, E) kreuzen sich, wenn keine der Mengen $A := S \cap T$, $B := S \setminus T$, $C := T \setminus S$ und $D := V \setminus (S \cup T)$ leer ist. Sei $c : E \to \mathbb{R}_0^+$ eine Kantengewichtsfunktion auf G.

(a) Seien $(S, V \setminus S)$ und $(T, V \setminus T)$ zwei sich kreuzende s-t-Schnitte mit $s \in S$ und $t \in T$. Zeigen Sie: Es gilt $s \in B$ und $t \in C$.

Lösung.



Per Definition gilt $s,t\notin D$. Außerdem gilt $t\notin S$, da sonst $(S,V\setminus S)$ kein s-t-Schnitt wäre. Analog gilt $s\notin T$ und insgesamt $s,t\notin A$. Damit bleibt nur noch $s\in B$ und $t\in C$.

(b) Seien $(S, V \setminus S)$ und $(T, V \setminus T)$ zwei sich kreuzende minimale s-t-Schnitte mit $s \in S$ und $t \in T$. Zeigen Sie: $(B, V \setminus B)$ und $(C, V \setminus C)$ sind zwei kreuzungsfreie minimale s-t-Schnitte.

Lösung.

Sei $\lambda := c(S, V \setminus S) = c(T, V \setminus T)$. Mit $s \in B$ und $t \in C$ (vgl. (a)) sind $(B, V \setminus B)$ und $(C, V \setminus C)$ zwei kreuzungsfreie s-t-Schnitte, und es gilt $c(B, V \setminus B) \ge \lambda$ und $c(C, V \setminus C) \ge \lambda$.

$$c(B, V \setminus B) = c(B, D) + c(B, C) + c(B, A)$$

$$\geq c(B, D) + c(B, C) + c(A, D) + c(A, C)$$

$$= c(S, V \setminus S) = \lambda$$

$$\Rightarrow c(B, A) \geq c(A, D) + c(A, C)$$
(1)

$$c(C, V \setminus C) = c(C, D) + c(C, B) + c(C, A)$$

$$\geq c(C, D) + c(C, B) + c(A, D) + c(A, B)$$

$$= c(T, V \setminus T) = \lambda$$

$$\Rightarrow c(C, A) \geq c(A, D) + c(A, B)$$
(2)

Mit (2) eingesetzt in (1) gilt $c(B,A) \ge c(A,D) + c(A,C) \ge 2c(A,D) + c(A,B)$. Damit muss c(A,D) = 0 gelten. Mit (1) und (2) gilt dann $c(B,A) \ge c(A,C)$ und $c(C,A) \ge c(A,B)$. Damit gilt c(B,A) = c(A,C) und insgesamt ergibt sich $c(B,V \setminus B) = c(C,V \setminus C) = \lambda$.

Die Grundidee des Algorithmus von Goldberg und Tarjan basiert auf Präflüssen und Push- und Re-LABEL-Operationen. Algorithmen, die dieses Grundkonzept nutzen, nennt man daher auch *Preflow-Push*- oder *Push-Relabel*-Algorithmen.

Gegeben sei nun ein Flussnetzwerk (D; s, t; c) bzw. dessen Erweiterung (D'; s.t; c') und ein darin mit einem Push-Relabel-Algorithmus berechneter maximaler Fluss (d.h. die Abbildungen f, r_f, e und dist stehen bezüglich des fertig berechneten Flusses zur Verfügung).

Entwickeln Sie einen möglichst schnellen Algorithmus um die Knotenpartition eines zugehörigen minimalen s-t-Schnitts (S, T) zu berechnen. Geben Sie Ihren Algorithmus in Pseudocode an. Begünden Sie die Laufzeit und die Korrektheit Ihres Algorithmus (Hinweis: Es gibt einen Algorithmus in O(|V|)).

Lösung.

Der Schlüssel liegt in den Eigenschaften der Abbildung $dist: V \to \mathbb{N}_0 \cup \{\infty\}$.

- Behauptung: Es gibt einen Wert $\hat{d} \in \mathbb{N}_0$ mit $0 < \hat{d} < |V|$ und $dist(v) \neq \hat{d} \quad \forall v \in V$. Beweis: Mit dist(s) = |V| und dist(t) = 0 bleiben noch |V| - 2 Knoten zu prüfen. Diese können aber keine |V| - 1 verschiedenen Werte für \hat{d} abdecken. Es gibt also mindestens einen Wert $0 < \hat{d} < |V|$ mit $dist(v) \neq \hat{d} \quad \forall v \in V$.
- Behauptung: Die Partition (S,T) mit $S:=\{u\in V\,|\,dist(u)>\hat{d}\}$ und $T:=\{v\in V\,|\,dist(v)<\hat{d}\}$ induziert einen zugehörigen minimalen s-t-Schnitt. Beweis: Mit dist(s)=|V| und dist(t)=0 gilt $s\in S$ und $t\in T$. Nach Definition 4.4 ist (S,T) also ein s-t-Schnitt.

Zeige nun für alle Kanten (u,v) mit $u \in S, v \in T$, dass (u,v) saturiert, also keine Residualkante ist. Dann folgt aus Lemma 4.5 (Schnitt-Lemma), dass (S,T) ein **minimaler** s-t-Schnitt ist. [Denn der Wert w(f) des maximalen Flusses ist unabhängig von der Wahl des s-t-Schnittes (vgl. Definition 4.3). Einen s-t-Schnitt mit kleinerem Gewicht als w(f) kann es also nicht geben. Unter der Voraussetzung saturierter Kanten (u,v) mit $u \in S, v \in T$ gilt jedoch $w(f) = \sum_{\substack{(u,v) \in E \\ u \in S, v \in T}} f(u,v) - \sum_{\substack{(v,u) \in E \\ u \in S, v \in T}} f(v,u) = \sum_{\substack{(u,v) \in E \\ u \in S, v \in T}} f(u,v) - 0 = \sum_{\substack{(u,v) \in E \\ u \in S, v \in T}} c(u,v) = c(S,T)$. Damit ist (S,T) minimal.]

Angenommen es gäbe eine nicht saturierte Kante (u, v) mit $u \in S, v \in V$. Dann gilt $(u, v) \in E_f$ und $dist(u) \leq dist(v) + 1$ (nach Definition 4.18). Es gilt aber auch $dist(v) < \hat{d} < dist(u)$ und somit $dist(v) \leq dist(u) - 2$. Daraus folgt $dist(u) \leq dist(u) - 1$, was einen Widerspruch darstellt. Damit sind alle Kanten (u, v) mit $u \in S, v \in T$ saturiert.

Obige Ausfürungen gelten als Korrektheitsbeweis. Anhand des folgenden Pseudocodes lässt sich die Laufzeit ablesen. Diese ergibt sich zu 3 O(|V|) = O(|V|).

Algorithmus 1: GETPARTITION

```
Eingabe: Knotenmenge V des Netzwerks, Abbildung dist
   Ausgabe: Partition (S, T) eines minimalen s-t-Schnitts
 1 A[1, \ldots, |V| - 1] \leftarrow \text{FALSE}
                                                                               // initialisiere Array der
                                                                       // |V|-1 möglichen Werte für \hat{d}
 2 S \leftarrow \{s\}, T \leftarrow \{t\}
 3 für alle Knoten\ v \in V \setminus \{s,t\} tue
                                                                                                        // O(|V|)
 4 A[dist(v)] \leftarrow \text{TRUE}
 5 Suche Index \hat{d} mit A[\hat{d}] = \text{FALSE}
                                                                                                        // O(|V|)
 6 für alle Knoten\ v \in V \setminus \{s,t\} tue
                                                                                                        // O(|V|)
        if dist(v) > \hat{d} then
            S \leftarrow S \cup \{v\}
                                                                                                          // O(1)
        else
 9
           T \leftarrow T \cup \{v\}
                                                                                                          // O(1)
10
11 Return (S,T)
```

Bemerkung: Die Partition (S,T) mit $S := \{u \in V \mid dist(u) \geq |V|\}$ und $T := \{v \in V \mid dist(v) < |V|\}$ induziert im Allgemeinen **KEINEN** minimalen *s-t*-Schnitt! (siehe Gegenbeispiel auf der Vorlesungshomepage; verfügbar ab 08.12.09)

Problem 3: Gomory-Hu-Bäume – Schnitte in Graphen [vgl. Kapitel 3 im Skript]

Gegeben sei ein ungerichteter, nicht-negativ gewichteter, zusammenhängender Graph G = (V, E). Ein zu G gehöriger Gomory-Hu-Baum ist ein ungerichteter, nicht-negativ gewichteter, zusammenhängender Baum T(G) über der Knotenmenge V so, dass gilt:

- (a) jede Kante $\{u,v\}$ in T(G) induziert einen minimalen u-v-Schnitt in G, indem T(G) beim Entfernen von $\{u,v\}$ in zwei Teilbäume zerfällt, deren Knotenmengen gerade die beiden Seiten des Schnitts darstellen.
- (b) das Gewicht einer Kante $\{u, v\}$ in T(G) entspricht dem Gewicht des durch $\{u, v\}$ induzierten minimalen u-v-Schnitts in G.

Bemerkung: Die Kantemenge eines Gomory-Hu-Baumes T(G) muss **keine** Teilmenge der Kantenmenge des zugrundeliegenden Graphen G sein. Zu jedem ungerichteten, nicht-negativ gewichteten, zusammenhängenden Graphen existiert mindestens ein Gomory-Hu-Baum.

Zeigen Sie: Für zwei beliebige Knoten $s, t \in V$ induziert eine auf dem s-t-Pfad in T(G) minimal gewichtete Kante einen minimalen s-t-Schnitt in G.

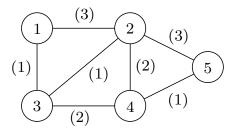
Lösung.

Sei $\{u,v\}$ eine minimal gewichtete Kante auf dem s-t-Pfad p in T(G) mit $c(\{u,v\}) = \lambda$ und $(U,V\setminus U)$ sei der durch $\{u,v\}$ in G induzierte minimale u-v-Schnitt mit $u,s\in U$. Dann ist $(U,V\setminus U)$ auch ein s-t-Schnitt.

Zeige, jeder s-t-Schnitt in G teilt ein in T(G) adjazentes Knotenpaar auf dem Pfad p. Annahme: Sei $(S, V \setminus S)$ mit $s \in S$ ein s-t-Schnitt, der **kein** in T(G) adjazentes Knotenpaar auf dem Pfad $p = (s, p_1 \dots, p_k, t)$ teilt. So gilt mit $s \in S$ auch $p_1 \in S$ und somit $p_2 \in S$ usw. Schließlich gilt für den gesamten Pfad $p \subset S$ und damit ist $(S, V \setminus S)$ im Widerspruch zur Annahme kein s-t-Schnitt! Sein nun $(S, V \setminus S)$ mit $s \in S$ ein s-t-Schnitt in G mit $c(S, V \setminus S) < \lambda$, so teilt, wie eben gezeigt, dieser Schnitt $(S, V \setminus S)$ mindestens ein in T(G) adjazentes Knotenpaar $\{p_i, p_{i+1}\}$ auf p und ist somit auch ein p_i - p_{i+1} -Schnitt in G. Damit gilt $c(S, V \setminus S) \geq c(\{p_i, p_{i+1}\}) \geq c(\{u, v\}) = \lambda$, was einen Widerspruch zur Annahme $c(S, V \setminus S) < \lambda$ darstellt. Der durch die minimal gewichtete Kante $\{u, v\}$ induzierte s-t-Schnitt $(U, V \setminus U)$ mit $c(U, V \setminus U) = \lambda$ ist also minimal.

Problem 4: Algorithmus von Stoer & Wagner – Schnitte in Graphen [vgl. Kapitel 3.2 im Skript]

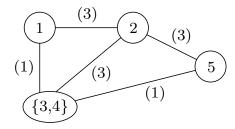
(a) Wenden Sie auf den unten abgebildeten Graphen (Kantengewichte in Klammern) den Algorithmus von Stoer & Wagner an. Geben Sie nach jeder Phase die Knoten s und t, den Schnitt der Phase und dessen Gewicht an und zeichnen Sie den nach dem Verschmelzen resultierenden Graphen (mit Kantengewichten). Verwenden Sie in Phase i den Knoten als Startknoten, der Knoten i des Originalgraphen enthält. Geben Sie zum Schluss den minimalen Schnitt S_{min} an.

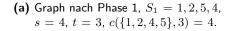


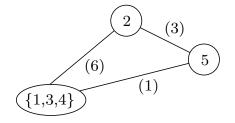
(b) Liefert der Algorithmus von Stoer & Wagner auch für negative Kantengewichte einen global minimalen, nichttrivialen Schnitt? Begründen Sie Ihre Antwort.

Lösung.

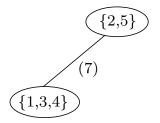
Ein minimaler Schnitt S_{min} ist der Schnitt der Phase 1: $c(S_{min}) = c(\{1, 2, 4, 5\}, 3) = 4$.





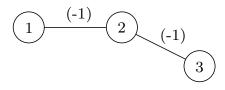


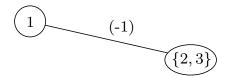
(b) Graph nach Phase 2, $S_2=2,5,\{3,4\}$, $s=\{3,4\}$, t=1, $c(\{2,3,4,5\},1)=4$.



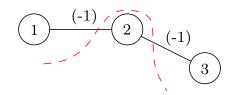
- (c) Graph nach Phase 3, $S_3 = \{1, 3, 4\}, 2$, s = 2, t = 5, $c(\{1, 2, 3, 4\}, 5) = 4$.
- (d) Nach Phase 4, $s=\{1,3,4\}$, $t=\{2,5\}$, $c(\{1,3,4\},\{2,5\})=7$.

Für negative Kanten liefert der Algorithmus von Stoer & Wagner im Allgemeinen **KEINEN** global minimalen, nichttrivialen Schnitt, wie untenstehendes Gegenbeispiel zeigt: Hier berechnet der Algorithmus von Stoer & Wagner einen minimalen Schnitt mit Gewicht -1, der tatsächliche minimale Schnitt hat aber Gewicht -2.





- (a) Graph vor Phase 1.
- **(b)** Graph nach Phase 1, $S_1 = 1, 2$, s = 2, t = 3, $c(\{1,2\},3) = -1$.



- (c) Nach Phase 2, $S_2=1$, s=1, $t=\{2,3\}$, $c(1,\{2,3\})=-1$.
- (d) ABER: Tatsächlich minimaler Schnitt ist $(\{1,3\},2)$ mit Gewicht -2.