Algorithmische Methoden der Netzwerkanalyse

Marco Gaertler

Algorithmic Group Faculty of Informatics Universität Karlsruhe (TH) Research University · founded 1825

04. November, 2008

>> Teilgraphen, Wege und Zusammenhang

Zusammenhang

Definition: Zusammenhang

Ein Multigraph G = (V, E) heißt stark zusammenhängend, falls er für jedes Paar $u, v \in V$ sowohl einen (v, w)-Weg als auch einen (w, v)-Weg enthält. G heißt (schwach) zusammenhängend, wenn der symmetrische Multigraph stark zusammenhängend ist.

Mehrfacher Zusammenhang

Definition: Mehrfacher Zusammenhang

Ein ungerichteter Multigraph heißt k-fach (knoten)zusammenhängend, falls jeder durch Entfernung von höchstens k-1 beliebigen Knoten (und aller inzidenten Kanten) entstehender Multigraph zusammenhängend ist. Der Multigraph heißt k-fach k

Komponenten

Definition: Komponenten

Zu einem schlichten Multigraphen heißt ein inklusionsmaximaler zusammenhängender (stark, zushgd., *k*-fach zushgd., *k*-fach kantenzushgd.) Teilgraph (stark, zushgd., *k*-fach zushgd., *k*-fach kantenzushgd.) *Zusammenhangskomponente*.

Fragen

- >> Wie findet man (effizient) Zusammenhangskomponenten?
- Sibt es alternative Beschreibungen für Zusammenhangskomponenten?

Tiefensuche

$$DFS(p) \le DFS(q) \iff p \le q$$
 für alle $p, q \in V \cup E$
 $DFS(p) < DFS(q) \iff p \prec q$ für alle $p, q \in V \cup E$

Tiefensuche

Definition

Ist v_1, \ldots, v_n die Reihenfolge, in der die Knoten markiert werden, so heißt $DFS(v_i)$ die DFS-Nummer von v_i . Die DFS-Nummer DFS((v,w)) = DFS(v) einer Kante sei die DFS-Nummer des Knotens, von dem aus sie durchlaufen wird. Wir definieren eine Tiefensuch(halb)ordnung auf $V \cup E$ durch:

$$DFS(p) \leq DFS(q) \iff p \leq q$$
 für alle $p, q \in V \cup E$
 $DFS(p) < DFS(q) \iff p < q$ für alle $p, q \in V \cup E$.

Tiefensuche: Kantenklassifikation

Definition

Die Kanten werden während der Tiefensuche wie folge klassifiziert. Zum Zeitpunkt, da die Kante (v, w) markiert wird, wird sie zu einer

- >> Baumkante, falls w noch nicht markiert ist,
- \gg Rückswärtskante, falls w markiert ist, $w \leq v$ und $w \in S$,
- \gg Querkante, falls w markiert ist, $w \leq v$ und $w \notin S$, und
- \gg Vorwärtskänte, falls w markiert ist und $v \prec w$.

