Gradfolgen Gradfolgen

Algorithmische Methoden der Netzwerkanalyse

21.10.2008

2/8

- Was sind Netzwerke und wo treten sie auf?
- Welche Aufgabe hat Netzwerkanalyse?

Warum ist es für Euch interessant? Was erwartet Ihr?

Definition: Multimenge

Ein Menge E zusammen mit einer $Vielfachheit \#_E \colon E \to \mathbb{N}_0$ ihrer Elemente heißt Multimenge. Die Kardinalit

$$|E| = \sum_{e \in E} \#_E(e) .$$

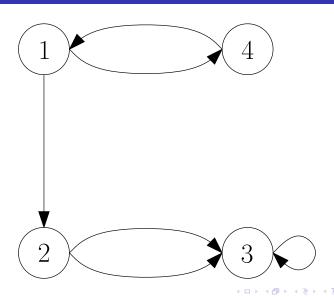
Kurzschreibweise:

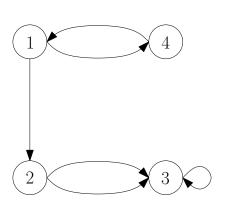
- #e für #_E(e)
- $e \in_k E$ falls $e \in E$ und #e = k

Definition: Multigraph

Ein (gerichteter) Multigraph ist ein Paar G = (V, E) aus einer endlichen Menge V von Knoten und einer Multimenge $E \subseteq V \times V$ von Kanten. Kanten in $\{(v, v) \mid v \in V\}$ nennen wir Schleifen, und ein Multigraph ist schlicht, wenn er keine Schleifen hat. Kanten $e \in_k E$ mit k > 1 heißen Multikanten.

Universität Karlsruhe (TH) Faculty of Informatics



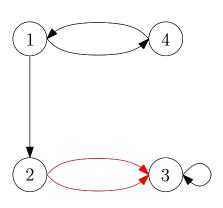


•
$$V = \{1, 2, 3, 4\}$$

• $E = \{(1, 2), (1, 4), (2, 3), (3, 3), (4, 1)\}$

$$(3,3), (4,1)$$

mit $\#(2,3) = 2$ und
 $\#e = 1$ für $e \in E \setminus \{(2,3)\}$

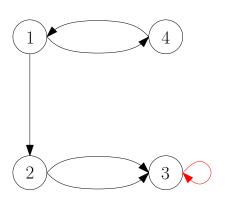


•
$$V = \{1, 2, 3, 4\}$$

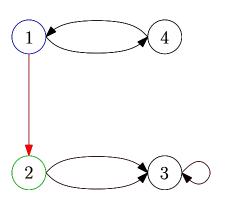
•
$$E = \{(1,2), (1,4), (2,3), (3,3), (4,1)\}$$

mit $\#(2,3) = 2$ und
 $\#e = 1$ für $e \in E \setminus \{(2,3)\}$

• (2,3) ist eine Multikante



- $V = \{1, 2, 3, 4\}$
- $E = \{(1,2), (1,4), (2,3), (3,3), (4,1)\}$ mit #(2,3) = 2 und #e = 1 für $e \in E \setminus \{(2,3)\}$
- (2,3) ist eine Multikante
- (3,3) ist eine Schleife



•
$$V = \{1, 2, 3, 4\}$$

- $E = \{(1,2), (1,4), (2,3), (3,3), (4,1)\}$ mit #(2,3) = 2 und #e = 1 für $e \in E \setminus \{(2,3)\}$
- (2,3) ist eine Multikante
- (3,3) ist eine Schleife
- 1 ist Vorgänger von 2, 2 ist Nachfolger von 1 und 1 ist adjazent zu 2
- (1,2) ist inzident zu 1 (bzw. 2)

Definition: Knotengrad

Sind $\vec{G} = (V, \vec{E})$ ein Multigraph und $v \in V$, so heißen

- $d^-_{\vec{G}}(v) = d^-(v) = \sum_{(u,v) \in \vec{E}} \#(u,v)$ Eingangsgrad
- $d^+_{\vec{G}}(v) = d^+(v) = \sum_{(v,w) \in \vec{E}} \#(v,w)$ Ausgangsgrad
- $d_{\vec{G}}(v) = d(v) = d^-(v) + d^+(v)$ Knotengrad (oder kurz Grad)

von v.

Definition: Knotengrad

Sind $\vec{G} = (V, \vec{E})$ ein Multigraph und $v \in V$, so heißen

•
$$d^-_{\vec{G}}(v) = d^-(v) = \sum_{(u,v) \in \vec{E}} \#(u,v)$$
 Eingangsgrad

•
$$d^+_{\vec{G}}(v) = d^+(v) = \sum_{(v,w) \in \vec{E}} \#(v,w)$$
 Ausgangsgrad

•
$$d_{\vec{G}}(v) = d(v) = d^{-}(v) + d^{+}(v)$$
 Knotengrad (oder kurz Grad)

von v.

Ist $\overline{G}=(V,\overline{E})$ ein ungerichteter Multigraph, so definieren wir den (ungerichteten) Grad von v als

$$d_{\overline{G}}(v) = d(v) = \sum_{\substack{\{v,w\} \in \overline{E} \\ v \neq w}} \#\{v,w\} + 2 \cdot \#\{v,v\}$$

Definition: Gradfolgen

Gegeben sei ein gerichteter oder ungerichteter Multigraph G=(V,E) mit Knotenmenge $V=\{v_1,\ldots,v_n\}$. Die Folge

$$D(G) = ((d^{-}(v_1), d^{+}(v_1)), \dots, (d^{-}(v_n), d^{+}(v_n)))$$

des gerichteten bzw.

$$D(G) = (d(v_1), \ldots, d(v_n))$$

des ungerichteten Multigraphen G heißt dessen Gradfolge.