
Clustering with Qualitative Information

Moses Charikar∗

Princeton University
Venkatesan Guruswami†

University of Washington
Anthony Wirth‡

Princeton University

Abstract

We consider the problem of clustering a collection of el-
ements based on pairwise judgments of similarity and dis-
similarity. Bansal, Blum and Chawla [1] cast the problem
thus: given a graph G whose edges are labeled “+” (sim-
ilar) or “−” (dissimilar), partition the vertices into clus-
ters so that the number of pairs correctly (resp. incorrectly)
classified with respect to the input labeling is maximized
(resp. minimized). Complete graphs, where the classifier la-
bels every edge, and general graphs, where some edges are
not labeled, are both worth studying. We answer several
questions left open in [1] and provide a sound overview of
clustering with qualitative information.

We give a factor 4 approximation for minimization on
complete graphs, and a factor O(log n) approximation for
general graphs. For the maximization version, a PTAS for
complete graphs is shown in [1]; we give a factor 0.7664
approximation for general graphs, noting that a PTAS is
unlikely by proving APX-hardness. We also prove the APX-
hardness of minimization on complete graphs.

1. Introduction

The problem of grouping a corpus of data into clus-
ters that contain similar items arises in numerous contexts
and disciplines. Deservedly, it has been studied extensively
in the algorithms and combinatorial optimization literature.
Much of this literature works with the following abstraction
of the problem: the input is represented as a table of dis-
tances between pairs of items where the distance between x
and y represents how different x and y are. The goal is to
find a clustering of the data that optimizes some function of
the distances between items within or across clusters under

∗Email: moses@cs.princeton.edu. Supported by NSF ITR
grant CCR-0205594, DOE Early Career Principal Investigator award DE-
FG02-02ER25540, NSF CAREER award CCR-0237113 and an Alfred
P. Sloan Fellowship

†Email: venkat@cs.washington.edu.
‡Email: awirth@cs.princeton.edu. Supported by a Gordon

Wu Fellowship and NSF ITR grant CCR-0205594.

some global constraint, such as knowledge of the total num-
ber of clusters. Quintessential examples include k-center,
k-median, and k-sum clustering.

This clustering paper departs from the above distance
paradigm. All we have at our disposal is qualitative in-
formation from a classifier that labels pairs of elements as
similar or dissimilar. We are not provided with any quan-
titative information on how different pairs of elements are.
Our aim is to produce a partitioning into clusters that puts
similar objects in the same cluster and dissimilar objects in
different clusters, to the extent possible. If there exists a
clustering that is correct for every edge, then the problem
is trivially solved by identifying as clusters connected com-
ponents in the graph of similar pairs (see below). When
the classifier has made mistakes, interesting and non-trivial
questions arise; for instance, finding a clustering that differs
from the classifier’s verdicts on the fewest possible pairs.
Bansal, Blum, and Chawla initiated the study of these kinds
of clustering problems [1].

The obvious graph-theoretic formulation of the problem
is the following: given a graph G = (V, E) with each edge
labeled either “+” (similar) or “−” (dissimilar), find a par-
titioning of the vertices into clusters that agrees as much as
possible with the edge labels. The maximization version,
denoted MAXAGREE in this paper, seeks to maximize the
number of agreements: the number of + edges inside clus-
ters plus the number of − edges across clusters. The min-
imization version, denoted MINDISAGREE, aims to mini-
mize the number of disagreements: the number of − edges
within clusters plus the number of + edges between clus-
ters. An intriguing feature of this clustering problem is that,
unlike most clustering formulations, we do not need to spec-
ify the number of clusters k as a parameter. We only have
a single objective, and whether the optimal solution uses
few or many clusters is automatically dictated by the edge
labels.

If the classifier can be used to label every pair of ele-
ments as + or −, then G will be a complete graph. So
that we can capture situations where the classifier might
be unable to tell if certain pairs of elements are similar or
dissimilar, we do not insist on complete graphs. One up-
shot of the clustering will be to deduce the missing labels

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03)

0272-5428/03 $17.00 © 2003 IEEE

from the existing ones. Also, in some cases the classifier
might provide confidence information on each of its labels.
This can be captured by weights on the edges and one can
then consider natural weighted versions of MAXAGREE and
MINDISAGREE.

Previous Work Bansal et al. mainly focused on the case
when G is the complete graph and presented results for both
the maximization and minimization versions [1]. They es-
tablished that the problems are NP-hard and therefore stud-
ied approximation algorithms with provable performance
guarantees. They gave a polynomial time approximation
scheme (henceforth, PTAS) for MAXAGREE on complete
graphs. For the minimization version, they gave an approx-
imation algorithm with performance ratio a constant. The
constant is a rather large one, so it should be viewed as a
qualitative result, demonstrating that a constant factor ap-
proximation can be achieved.

Recently, both Demaine and Immorlica [3], and Emanuel
and Fiat [4], independently from each other and from
this paper, announced results on clustering with qualita-
tive information. Both papers focus on MINDISAGREE

in general graphs. The authors of [3] present a factor
O(log n) algorithm for general graphs, based on region
growing, and demonstrate an approximation-preserving re-
duction from (weighted) minimum multicut. They also pro-
vide an O(r3) approximation algorithm for Kr,r-minor-free
graphs. In [4], both reductions to and from minimum multi-
cut are presented; in particular the authors show a reduction
from unweighted multicut to unweighted MINDISAGREE.

Our Results In this paper, we present several results on
clustering problems of this nature, and answer several ques-
tions left open by the work of Bansal et al. [1]. As a conse-
quence, our results provide a better overview of the approx-
imability of the various variants of clustering with qualita-
tive information.

COMPLETE GRAPHS Our main algorithmic result here is
a factor 4 approximation algorithm for MINDISAGREE on
complete graphs. This significantly improves on the perfor-
mance ratio achieved in [1]. The algorithm in [1] was com-
binatorial; in contrast our algorithm is based on a natural
linear programming relaxation, and rounding the fractional
solution (a semi-metric on the vertices) using the region-
growing approach. The completeness of the graph allows
us to to achieve a constant approximation using region-
growing, instead of the usual logarithmic factor. The inte-
grality gap of our LP formulation is 2 and we also show that
beating factor 3 would require significant departure from
our rounding strategy. To complement our algorithmic re-
sult, we also prove that MINDISAGREE on complete graphs
is APX-hard (i.e., is NP-hard to approximate within some
constant factor greater than 1) via a somewhat intricate re-
duction. The reduction used in [1] to prove NP-hardness
does not yield APX-hardness. In contrast, the maximiza-

tion version does admit a PTAS [1].

GENERAL GRAPHS Bansal et al. did not give any algo-
rithms for general graphs, but noted that MINDISAGREE

is APX-hard. They provided evidence that MAXAGREE

is unlikely to admit a PTAS (unlike the complete graph
case) by showing that a PTAS would imply a much bet-
ter algorithm for coloring 3-colorable graphs than is cur-
rently known. We give a factor O(log n) approximation al-
gorithm for MINDISAGREE—this follows from a straight-
forward modification of the Garg, Vazirani, Yannakakis
(henceforth GVY) algorithm for minimum multicut [7]. We
also note that MINDISAGREE is at least as hard to approx-
imate as multicut, so a constant factor approximation algo-
rithm would be a major breakthrough.

We prove that MAXAGREE is APX-hard and thereby
provide a concrete hardness result—in contrast to the above
evidence of hardness based on a relation to graph coloring.
On the algorithmic side, the naive 1/2-approximation algo-
rithm, namely choosing the better of placing all elements
in a single cluster and placing each of them in a separate
cluster, was the best known for MAXAGREE. We give a
factor 0.766 approximation algorithm based on rounding a
semidefinite programming relaxation. Moreover, if a clus-
tering that correctly classifies most—say a fraction (1−ε)—
of the edges exists, then our algorithm will also find one
with a similar property (we defer the quantitative statement
to the relevant technical section). Our interest in the latter
result is due in part to the fact that it brings out some of
the difficulty that must be overcome if one tries to prove a
super-constant factor inapproximability result for MINDIS-
AGREE. Such a result must focus on instances where an al-
most perfect clustering exists for both the yes and no cases
of the gap reduction.

Organization We present algorithms for general graphs in
Section 2. We then turn to complete graphs and describe
our factor 4 approximation algorithm for MINDISAGREE in
Section 3. Finally, we present the inapproximability results
that complement our algorithms in Section 4.

2. Algorithms for general graphs

In this section, we consider the problems MINDIS-
AGREE and MAXAGREE on general weighted graphs.

2.1. MINDISAGREE

We describe a natural LP relaxation for MINDISAGREE.
This is very similar to the LP used in the GVY minimum
multicut algorithm [7].

A partitioning into clusters can be represented by a set of
binary variables, one for each pair of vertices. If i and j are
in the same cluster xij is 1; if they are in different clusters

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03)

0272-5428/03 $17.00 © 2003 IEEE

minimize
∑

+(ij) wij · xij +
∑

−(ij) wij · (1 − xij)
such that xik ≤ xij + xjk for all i, j, k

xij ∈ {0, 1} for all i, j

Figure 1. Integer linear program for MINDIS-
AGREE in general weighted graphs

xij is 0. Since each cluster is an equivalence class, we know
that if xij = 0 and xjk = 0 then xik = 0. We can express
this fact using the triangle inequality,

xik ≤ xij + xjk.

The objective is to minimize the number of mistakes: the
number of positive edges for which xij is one and the num-
ber of negative edges for which xij is zero. The integer pro-
gram in Figure 1 summarizes the situation: +(ij) indicates
that the edge between i and j has a positive label, similarly
for −(ij). The LP relaxation is obtained by replacing the
integer requirements in Figure 1 with 0 ≤ xij ≤ 1 for all
i, j.

Let the value of the optimal LP solution be denoted by
OPTLP. A fairly straightforward application of the GVY
region growing procedure yields a solution of cost at most
O(log n)OPTLP. We briefly describe the algorithm and out-
line the analysis.

We will refer to xij as the distance between i and j,
which is consistent with the fact that xij is a semi-metric
in the range [0, 1]. Intuitively, points that are close should
be placed in the same cluster and points that are far should
be placed in different clusters. Let Bx(i, r) denote the set
of points within distance r from i. For a set of vertices S,
let δ(S) be the set of edges from S to S.

Algorithm 1

1. C ← ∅. /* Collection of clusters */
2. While there exist i, j in the graph such that xij > 2/3:

(a) Let S = Bx(i, r) for some r < 1/3.
/* See proof for value of r */

(b) C ← C ∪ {S}.
(c) Remove S and δ(S) from the current graph.

3. Return C.

Theorem 1 Algorithm 1 achieves a O(log n) approxima-
tion for MINDISAGREE on general graphs.

Proof: The GVY region growing procedure suggests the
choice of radius r in step 2(a) of the algorithm. Set V +

x (i, r)
to be

OPTLP

n
+

∑
+(uv)∈Bx(i,r)

wijxij+
∑

+(uv)∈δ(Bx(i,r))

wij(r−xiu).

This is the contribution to the LP solution from positive
edges that have at least one endpoint in Bx(i, r), plus an
additional amount OPTLP/n. Let W+

x (i, r) denote the
sum of weights of positive edges in δ(Bx(i, r)). We pick
r < 1/3 such that the ratio W+

x (i, r)/V +
x (i, r) is mini-

mized. The analysis technique in [7] can be used to show
that there exists a radius r < 1/3 such that W+

x (i, r) ≤
(3 log n)V +

x (i, r). This implies that the total weight of pos-
itive edges with end points in different clusters is at most
O(log n)OPTLP.

Now we account for the negative edges. For any two
points i, j in the same cluster, xij ≤ 2/3. Hence any neg-
ative edge ij that ends up inside a cluster in our solution
contributes wij · (1−xij) to the LP, which is at least wij/3.
On the other hand, we pay wij for this edge. This implies
that the total weight of negative edges with end points in the
same cluster is at most O(log n)OPTLP.

The O(log n) approximation ratio we obtain from our LP
is the best possible. Our LP formulation has integrality gap
Ω(log n), as shown by examples similar to the expander gap
examples for minimum multicut.

We expect that a procedure such as this one, for learn-
ing distances from similarity judgment information, to have
further applications in situations where no natural distance
function exists.

2.2. MAXAGREE

Obtaining a 1/2 approximation for MAXAGREE is triv-
ial, as observed by Bansal et al. [1] for the complete graph.
If the total weight of positive edges is greater than the total
weight of negative edges, place all vertices in one cluster.
Otherwise, put each of them in an individual cluster.

A linear program with poor integrality gap

Consider an LP relaxation for MAXAGREE similar to the
LP used for MINDISAGREE. The constraints are exactly
the same, but the objective is

maximize
∑
+(ij)

wij · (1 − xij) +
∑
−(ij)

wij · xij

Theorem 2 The integrality gap of the LP relaxation for
MAXAGREE is no better than 2/3 + ε for any ε > 0.

Proof: Our gap instance consists of two sets A and B of
n vertices each. The graph is in fact complete, with every
edge having a positive or negative label. The edges between
A and B are positive; those with end points within the same
set are negative. Thus there are n2 positive edges and n(n−
1) negative edges. The LP solution assigns xij = 1/2 for
positive edges ij and xij = 1 for negative edges ij, and so
OPTLP is n(n − 1) + n2/2. On the other hand, the value

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03)

0272-5428/03 $17.00 © 2003 IEEE

max
∑

+(ij) wij(vi · vj) +
∑

−(ij) wij(1 − vi · vj)
s.t. vi · vi = 1 for all i

vi · vj ≥ 0 for all i, j

Figure 2. SDP for maximizing agreements

of OPT for this instance is n2—we leave the proof to the
reader. Hence the integrality gap is 2n/(3n − 2), which
approaches 2/3 as n increases.

Rounding a semidefinite program

We next consider a semidefinite program (SDP) for MAX-
AGREE. To motivate the SDP, consider any clustering solu-
tion. Choose a collection of orthogonal unit vectors, one for
each cluster in the solution. Every vertex i in the cluster is
assigned the unit vector vi corresponding to the cluster it is
in. If vertices i and j are in the same cluster, then vi ·vj = 1,
if not, vi · vj = 0. The agreement of the clustering solution
can now be expressed in terms of the dot products vi · vj .
With this vector solution in mind, we consider the SDP re-
laxation for MAXAGREE in Figure 2.

Consider the following general approach for rounding
this SDP: Pick t random hyperplanes, dividing the set of
vertices into 2t clusters. We refer to this scheme as Ht.
Our rounding scheme takes the better of the two solutions
returned by H2 and H3, denoted by Best(H2, H3).

Theorem 3 The expected agreement of the solution re-
turned by Best(H2, H3) is at least 0.7664 OPTSDP.

Proof: In order to analyze Best(H2, H3), we consider a
slightly different scheme: pick H2 with probability 1 − α
and pick H3 with probability α, denoted by Comb(H2, H3).
Clearly the approximation ratio of Comb(H2, H3) is a
lower bound on the approximation ratio of Best(H2, H3).

We perform an edge by edge analysis: For each edge ij,
we measure the expected contribution to the solution pro-
duced relative to its SDP contribution. The edge weights are
common to both OPT and the approximation and so can be
ignored. Consider an edge ij such that the angle between
vi and vj is θ ∈ [0, π/2]. The probability that vi and vj are
not separated by Ht is (1 − θ/π)t.

If ij is a positive edge, the contribution to the SDP solu-
tion is vi · vj = cos(θ). On the other hand, the contribution
to the agreement of Comb(H2, H3) is

(1 − α)(1 − θ/π)2 + α(1 − θ/π)3.

If ij is a negative edge, the contribution to the SDP solution
is 1−vi·vj = 1−cos(θ). On the other hand, the contribution
to the agreement of Comb(H2, H3) is

1 − (1 − α)(1 − θ/π)2 − α(1 − θ/π)3.

Thus the approximation ratio can be bounded by

min
θ∈[0,π/2]

{
(1 − α)(1 − θ/π)2 + α(1 − θ/π)3

cos(θ)
,

1 − (1 − α)(1 − θ/π)2 − α(1 − θ/π)3

1 − cos(θ)

}

For α ≤ 0.1316, the minimum of the two expressions is
3/4 + α/8. In fact the minimum value of the second ex-
pression is 3/4 + α/8 for all α ∈ [0, 1] and is achieved
when θ = π/2. The upper bound on α is obtained by min-
imizing the first expression. Setting α = 0.1316 yields a
0.7664 approximation.

The following simple example shows that the best ap-
proximation factor we can hope to achieve using this SDP
is at most 2(

√
2 − 1) ≈ 0.8284. Consequently, significant

improvements to our approximation ratio may not be possi-
ble.

Consider an instance on three vertices 1, 2, 3. Edges
(1, 2) and (2, 3) are positive, but (1, 3) is negative. The
SDP solution consists of the vectors v1 = (1, 0), v2 =
(1/

√
2, 1/

√
2), v3 = (0, 1), with objective value 1 +

2/
√

2 = 1 +
√

2. On the other hand, OPT = 2, so the
integrality gap is 2/(1 +

√
2) ≈ 0.82843.

An alternative approach might be be to use the rounding
scheme used by Frieze and Jerrum [6] for MAX-k-CUT.
The basic idea is to pick k random unit vectors (spokes)
and assign each vector to the closest spoke. The analysis of
such a scheme is quite involved and the gap example above
suggests that pursuing this direction is unlikely to yield sig-
nificant improvements.

2.3. Almost satisfiable instances

Consider an instance for which the optimal SDP solu-
tion is (1 − ε)W , where W is the total weight of all the
edges. We show that in this case, it is possible to obtain
a clustering with agreement (1 − O(

√
ε log(1/ε)))W . Re-

call that the strong performance of our algorithm suggests
the difficulty in proving super-constant inapproximability
for MINDISAGREE.

Theorem 4 The expected agreement as a result of rounding
with Hlog(1/ε) is W (1 − O(

√
ε log(1/ε))).

Proof: It is convenient to define various parameters. Let
P denote the total weight of the positive edges and N the
total weight of the negative edges. We define ρ and ν as
follows:

ρ =

∑
+(ij) wij(1 − vi · vj)

P

ν =

∑
−(ij) wij(vi · vj)

N
.

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03)

0272-5428/03 $17.00 © 2003 IEEE

Since OPTSDP = (1 − ε)W , we observe that ε · W =
ρ · P + ν · N .

Lemma 1 P
√

ρ ≤ W
√

ε.

Proof: It is trivially true if ρ ≤ ε. Otherwise, by definition
Pρ ≤ Wε, so P

√
ρ ≤ Wε/

√
ρ < W

√
ε.

We prove that the rounding scheme Ht with t = log(1/ε)
satisfies the following two lemmas and thus are done.

Lemma 2 The expected contribution from the positive
edges is at least P − O(

√
ε log(1/ε))W .

Proof: Define εij to be 1− vi · vj , so the expected weight
of positive edges that are not cut in the solution is

∑
+(ij)

wij

[
1 − cos−1(1 − εij)/π)

]t
.

The function (1 − cos−1(x)/π)t is convex, so by applying
Jensen’s inequality, we obtain the lower bound

P
[
1 − cos−1(1 − ρ)/π

]t
.

As cos−1(1 − ρ) is O(
√

ρ), the contribution of the positive
edges, is at least P (1 − O(

√
ρ))t, which by Lemma 1 is

greater than or equal to P − O(
√

ε log(1/ε))W .

Lemma 3 The expected contribution from the negative
edges is at least N(1 − ε − ν).

Proof: Now redefine εij to be vi ·vj . The expected weight
of negative edges that are cut in the solution is

∑
−(ij)

wij

(
1 − [

1 − cos−1(εij)/π
]t

)
.

Again, convexity tells us that
[
1 − cos−1(εij)/π)

]t

is no greater than

εij

(
1 − cos−1(1)/π

)t
+ (1 − εij)

(
1 − cos−1(0)/π

)t
.

This is bounded above by εij + 1/2t. Since Nν =∑
−(ij) wijεij , the expected contribution of the negative

edges is at least N(1 − ν − ε), for t = log(1/ε).

3. MINDISAGREE in the complete graph

We present a factor four algorithm for minimizing dis-
agreements in the complete graph. In contrast to Bansal et
al. [1], who devised a combinatorial algorithm with factor
17433, our algorithm uses a linear programming formula-
tion of the problem.

minimize
∑

+(ij) xij +
∑

−(ij)(1 − xij)
such that xik ≤ xij + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i, j

Figure 3. Relaxed linear program for minimiz-
ing disagreements

3.1. The four approximation

Our approach bears some similarity to the algorithm for
MINDISAGREE in general graphs that we presented in Sec-
tion 2.1. Figure 3 shows the linear relaxation of the program
for the complete graph. Having solved this linear program,
in polynomial time, we are ready for our factor four approx-
imation algorithm.

We refer to xij not only as the distance between i and
j, but also as the length of edge ij. Algorithm 2, presented
below, clearly describes a partitioning. We analyze its per-
formance by comparing the number of mistakes incurred
with the LP costs of appropriate edges.

Algorithm 2

1. Let S = V and repeat the following steps until S is empty.
2. Select a vertex u arbitrarily from S.
3. Let T be the set of vertices at distance no greater than 1/2

from u, except u itself: Bx(u, 1/2)− {u}.
4. If the average distance of the vertices in T from u is not

less than 1/4, then make C = {u} a singleton cluster and
jump to step 6.

5. If the average distance is less than 1/4,
then make C = {u} ∪ T a cluster.

6. Let S = S − C and jump to step 2 (the start of the loop).

At each iteration of the loop, we relabel the vertices
(other than u) so that i < j if xui < xuj , breaking ties
arbitrarily. The triangle inequality tells us that for i < j,

xuj ≤ xui + xij and xij ≤ xui + xuj .

Observation 1 The LP cost of the positive edge ij, xij , is
at least xuj−xui. The LP cost of a negative edge ij, 1−xij ,
is at least max{0, 1 − xui − xuj}.

Associated with the new cluster, C, are the edges within C
and the edges between C and S − C. We show that the
mistakes in each iteration can be charged to the LP costs
of the edges associated with C. Let us now consider one
iteration at a time, starting with the case when a singleton
cluster is formed.

Singleton cluster

The edges associated with a singleton cluster are simply all
the edges adjacent to u: the positive ones are the mistakes.

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03)

0272-5428/03 $17.00 © 2003 IEEE

We know from our choice in step 4 that

∑
i∈T

xui ≥ |T |/4.

For i ∈ T , 1 − xui ≥ xui, so Observation 1 shows that
the LP cost of all edges from u to T is at least |T |/4. The
number of positive edge mistakes from u to T is thus at most
|T |; this is at most four times the LP cost of edges from u
to T .

The remaining edges connect vertices outside T to u.
Each positive mistake from u has distance, and thus LP
cost, greater than 1/2; the number of mistakes is thus at
most twice the LP cost of these edges.

Cluster with T

There are two kinds of mistakes in this case: negative edges
inside C and positive edges between C and S − C.

(i) Negative edge mistakes

If both i and j are within distance 3/8 of u, then the LP cost
of negative edge ij is at least 1/4, by Observation 1. This
accounts for the mistake within factor 4.

Each remaining negative edge mistake ij will be charged
to vertex j, the one that is further from u. So fix j and
assume xuj lies in the range (3/8, 1/2]. The total LP cost
of edges within C associated with j is at least

∑
i:i<j,+(ij)

(xuj − xui) +
∑

i:i<j,−(ij)

(1 − xui − xuj).

We let xvv = 0 for all v so that this summation is well-
defined. Denote by pj the number of positive edges ij for
which i is less than this fixed j. Similarly nj stands for the
number of such negative edges. The sum is then

pjxuj + nj(1 − xuj) −
∑
i:i<j

xui.

Since we are including T in C, we know that
∑

i∈T xui <
|T |/4. The set {i : i < j} − {u} is a subset of T , but
importantly the only terms missing have distance from u at
least 3/8. Therefore the average distance of the vertices in
this set from u is still less than 1/4 and including u certainly
preserves this property. Hence the LP cost is greater than

pjxuj + nj(1 − xuj) − pj + nj

4
. (1)

The number of mistakes associated with j is merely nj . The
LP cost is bounded below by a linear function (1) that lies
between pj/8+3nj/8, when xuj = 3/8, and pj/4+nj/4,
when xuj = 1/2. Hence the LP cost is at least nj/4 and
thus all the mistakes are accounted for within factor four.

Since this property holds for every j in the range (3/8, 1/2],
we conclude that the total number of negative edge mistakes
is accounted for by appropriate LP edge costs within factor
four.

(ii) Positive edge mistakes

Consider positive edges ij that cross the distance 1/2
boundary. That is xui ≤ 1/2, but xuj > 1/2 and +(ij).
In particular, if xuj ≥ 3/4, then xuj − xui ≥ 1/4 and so
each such positive edge pays for itself within factor four.

Again, we associate each remaining mistake edge with
the vertex that is further from u. So fix j and assume that
xuj is in the range (1/2, 3/4). The LP cost associated with
j is

pjxuj + nj(1 − xuj) −
∑

i∈T∪{u}
xui,

which is strictly greater than (1). This time, the linear
function lower bound ranges between pj/4 + nj/4, when
j = 1/2, and pj/2, when j = 3/4. The number of (pos-
itive) mistakes is pj so again we can pay for these within
factor 4 using the LP cost. This argument holds for all j
and thus for all positive edge mistakes.

Summary

Each choice of cluster leads to a ratio of at most four be-
tween mistakes and linear programming cost of associated
edges. Since in past iterations we never charged to edges
within S, and in future iterations we charge only to edges
within S − C, we have a factor four approximation algo-
rithm.

Theorem 5 Algorithm 2 achieves a 4 approximation for
MINDISAGREE on complete graphs.

3.2. Approximation limitations

Integrality gap

Any approximation technique that is based on the linear
program in Figure 3 is limited by its integrality gap. The
following star example shows this gap is at least two. Place
n vertices around a single center vertex so that the center is
joined to the others with positive edges, but the perimeter
vertices have negative edges between them. In an optimum
fractional solution the positive edges have length 1/2, the
negative edges have length 1, so OPTLP = n/2. An opti-
mal clustering places all the perimeter vertices in singleton
clusters, except for one, which is in a cluster with the center,
so OPT = n − 1. The gap, 2(n − 1)/n, has limit 2 as n
increases.

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03)

0272-5428/03 $17.00 © 2003 IEEE

Limitations of region growing

The approximation technique we used, based on GVY re-
gion growing, cannot achieve a factor better than three.
Our algorithm cuts a cluster C out of the set S, where
C is chosen according to the distance relation x. We al-
lowed ourselves two options for C: the singleton set {u} or
Bx(u, 1/2). If we restrict ourselves to clusters of the form
Bx(u, r), or {u}, then we are confounded by the following
star example.

Admittedly, this example is not an optimal fractional so-
lution to the linear program, but it is consistent with Obser-
vation 1, on which our technique is based. The positive and
negative labels are identical to the previous star, but now
every edge has fractional length 1/3. If our cluster radius
is less than 1/3 then we have a singleton cluster {u}, in
which case the gap ratio is 3. Alternatively, if the radius
is at least 1/3 then all the vertices are in one cluster and
the number of mistakes is n(n − 1)/2. Since the LP cost is
n(n−1)/6+n/3, the gap is 3(n−1)/(n+1), which tends to
3 as n increases. Therefore, no radius based approximation
algorithm can beat a factor of three.

Using fixed radii

Our factor four algorithm chose between a singleton and a
fixed radius of 1/2. A more general algorithm would select
the cluster radius based on the values of the x distance re-
lation. We saw that even if this option were available, we
could not achieve an approximation factor better than three.
We now show that in some sense our algorithm is the best
possible if the radius candidates—call them thresholds—are
specified in advance.

Theorem 6 Given a set of thresholds, of which k are
greater than 1/4, then our analysis techniques, which rely
on Observation 1, cannot show an approximation ratio bet-
ter than 3 + 1/k.

Proof: This proof concerns the analysis of a single itera-
tion of removing C from S, rather than a complete graph
example.

Imagine that there are n2 vertices at distance D =
k/(3k + 1)− ε from u, and that for each threshold distance
di in the range (D, 1 − D] there are n vertices at distance
di + ε. The edges those between the D-vertices and each
of the other groups are positive. There are also n vertices at
distance di − ε for each di greater than D; they have nega-
tive edges to the D-vertices. Finally, every edge between u
and some other vertex is positive. We ignore all other edges
as their costs are dominated by the edges adjacent to the
D-vertices.

Simple calculations show that no matter what size clus-
tering radius is used, the ratio between the number of edges

minimize
∑

+(ij) xij +
∑

−(ij)(1 − xij)

such that
∑m−1

j=1 xij ,ij+1 − xim,i1 ≥ 0
for all C(i1, . . . , im)

xij ≤ 1 for all −(i, j)
xij ≥ 0 for all i, j

Figure 4. NEPPC inequality linear program for
minimizing disagreements

cost and the total LP cost approaches 3+1/k, as n increases.

Note then that our factor four algorithm, which has one
threshold greater than 1/4, is the best we could hope for
with these techniques and just one threshold.

3.3. The connection to feedback edge sets

Using an alternative linear programming formulation,
we demonstrate the link between MINDISAGREE in com-
plete graphs and a feedback edge set problem.

Polygon inequalities are generalizations of triangle in-
equalities: the length of one edge in a polygon is at most
the sum of the lengths of the other edges in the polygon. A
full set of polygon inequalities is equivalent to a full set of
triangle inequalities. Our new formulation, however, con-
tains only one type of polygon inequality: the length of a
negative edge is at most the sum of the lengths of edges in a
positive path connecting its endpoints. More precisely, for
all i1, i2, . . . , im such that +(i1, i2), . . . ,+(im−1, im), but
−(i1, im),

m−1∑
j=1

xij ,ij+1 − xi1,im ≥ 0.

We call this type of polygon a negative edge with positive
path cycle (NEPPC), and denote it by C(i1, . . . , im). In [4]
this is called an erroneous cycle.

Theorem 7 The linear program with only NEPPC polygon
constraints, in Figure 4, is equivalent to the triangle in-
equality program in Figure 3, in the sense that their sets
of optimal solutions are the same.

Proof: (Sketch) The following simple observation is the
key to the proof.

Observation 2 In an optimal solution, a positive edge ei-
ther has length zero, or it is part of some tight NEPPC con-
straint. Likewise, an optimal negative edge either has length
one or is part of some tight NEPPC constraint.

Lemma 4 In any cycle of positive edges the polygon in-
equalities apply.

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03)

0272-5428/03 $17.00 © 2003 IEEE

minimize
∑

+(ij) xij +
∑

−(ij) x′
ij

such that
∑m−1

j=1 xij ,ij+1 + xim,i1 ≥ 1
for all C(i1, . . . , im)

xij ≥ 0 for all +(ij)
x′

ij ≥ 0 for all −(ij)

Figure 5. Positive coefficient NEPPC program
for minimizing disagreements

Proof: The principle is that if a positive path p is shorter
than the positive edge e joining its endpoints, then the tight
NEPPC that includes e, will break a polygon inequality
when e is replaced with p.

Lemma 4 and the principle of its proof can be used to show
that at optimality the NEPPC constraints ensure that all tri-
angle constraints are satisfied. The linear program in Fig-
ure 4 is a relaxation of the original in Figure 3. Therefore
the two formulations have the same set of optimal solutions.
[Theorem 7]

One can also prove an integral equivalent to Theorem 7:
any optimal {0, 1} solution to the NEPPC constraint LP is
an optimal solution to the MINDISAGREE problem, in a
complete graph.

If we replace each (1 − xij) term with x′
ij for each neg-

ative edge, we obtain the LP in Figure 5. The constraints
x′

ij ≤ 1 are unnecessary as each term has a positive coef-
ficient. Since the sum of the terms around any NEPPC is
at least 1, restricting the variables to {0, 1} leads to an in-
teresting situation. Around any cycle that contains exactly
one negative edge we must select at least one edge. That is,
we need a feedback edge set for the set of cycles with ex-
actly one negative edge. If the cycles of interest were those
with at least one negative edge, we would already have a
factor two approximation algorithm [5]. Perhaps this feed-
back edge set interpretation might lead to an algorithm with
approximation ratio better than four.

4. Hardness of approximation

4.1. MINDISAGREE in general graphs

We first show that minimum multicut reduces in an ap-
proximation preserving way to MINDISAGREE. Note that
Bansal et al. [1] make a similar observation, though they
use the all-pairs version of multicut, usually called multi-
way cut, for the reduction. Reducing from the more gen-
eral multicut problem, as other groups have also done inde-
pendently [3, 4], provides us with evidence of the difficulty
of approximating MINDISAGREE within any constant fac-
tor. In contrast, multiway cut has approximation algorithms

with performance ratio a very small constant, 1.3438 being
the current best [2, 11].

Theorem 8 Minimum multicut reduces in an approxima-
tion preserving way to MINDISAGREE.

Proof: Given a graph G with k pairs (si, ti) which have to
be separated, form an instance of Correlation Clustering H .
The positive edges are the edges of G with unit weight, and
for each i, 1 ≤ i ≤ k, we add a (negative) edge between si

and ti with weight −W for some large positive integer W ,
say W = n2. If (si, ti) happens to be an edge in G, then it
will be a (negative) edge of weight −(W −1) in H . We can
make the instance unweighted by replacing a negative edge
of weight −M by M parallel length two paths. Each path
has a fresh intermediate vertex, with one edge of weight
1 and the other of weight −1. Clearly, the minimum cost
clustering must have si and ti in different clusters for every
i. The cost of the solution is simply the number of positive
edges that lie between clusters, which is the same as the cost
of the multicut.

Since minimum multicut is known to be APX-hard [8], we
conclude that MINDISAGREE is also APX-hard. More-
over, an improvement over the O(log n) approximation ra-
tio, which we achieved in Section 2.1, would solve one of
the major open problems in the area of approximation al-
gorithms: Can minimum multicut be approximately solved
within a factor better than O(log n)?

We also note the following fact concerning the perceived
difficulty of multicut which does not seem to have been ex-
plicitly pointed out in the literature. It is well known that
Min-2CNF-Deletion reduces to minimum multicut in an ap-
proximation preserving way; in fact the factor O(log n) ap-
proximation for Min-2CNF-deletion works by reducing it to
a multicut instance and then running the GVY algorithm on
the multicut instance. Recently, Khot [12] proved the NP-
hardness of approximating Min-2CNF-deletion within any
constant factor based on a conjecture about certain Unique
games. Therefore, under the same conjecture, it is NP-
hard to approximate minimum multicut, and therefore also
MINDISAGREE within any constant factor.

In the next section, we study the maximization version.
As a corollary of our hardness result for MAXAGREE, we
will also record an explicit constant factor hardness for
MINDISAGREE (Theorem 10).

4.2. MAXAGREE in general graphs

Bansal et al. [1] provided evidence for the APX-hardness
of MAXAGREE by showing that a PTAS for MAXAGREE

would lead to a polynomial time algorithm for O(nε) col-
oring a 3-colorable graph for every ε > 0. However, a con-
crete NP-hardness result for approximating MAXAGREE

remained open and is resolved here.

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03)

0272-5428/03 $17.00 © 2003 IEEE

Theorem 9 For every ε > 0, it is NP-hard to approxi-
mate the weighted version of MAXAGREE within a factor
of 79/80 + ε. Furthermore, it is NP-hard to approximate
the unweighted version of MAXAGREE within a factor of
115/116 + ε.

Proof: We reduce from MAX 3SAT, which is NP-hard to
approximate within a factor of (7/8+ ε) even on satisfiable
instances [10]. Let φ be an instance of MAX 3SAT with
variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm. We
also assume that for each i, xi and x̄i each appear in the
same number of clauses. This is a minor restriction and the
inapproximability result for MAX 3SAT stands.

Construct a graph G with integer edge weights from the
instance φ as follows. The vertices of G are a root vertex r,
variable vertices xi, x̄i for 1 ≤ i ≤ n, and clause vertices
c1j , c2j , c3j for each clause Cj , 1 ≤ j ≤ m. The edges and
their weights are defined as follows:

• The root r is connected to each cpj , p ∈ {1, 2, 3}, by
a weight 1 edge, and is connected to xi and x̄i by a
weight Bi edge, where Bi is the number of clauses in
which xi (and x̄i) appears.

• A weight −Bi edge connects xi and x̄i for each i =
1, 2, . . . , n.

• The vertices c1j , c2j , c3j corresponding to each clause
form a triangle with weight −1 edges.

• Finally, if the p’th variable in clause Cj is xi, for p =
1, 2, 3 (assuming some fixed ordering of variables in
each clause), then a weight −1 edge connects cpj with
xi.

We now prove that the optimum value of G as an instance
of MAXAGREE is 9m + OPTφ where OPTφ is the maxi-
mum number of clauses of φ that can be simultaneously
satisfied.

To that end, we show that any clustering can be modified
to a specific format, still maximizing the number of agree-
ments. Since the only positive edges incident to xi and x̄i

are the ones joining them to r, each of xi and x̄i can be as-
sumed to be either a singleton cluster or part of the cluster
containing r. If both xi and x̄i are in the cluster with r, then
we can make one of them, say xi, a singleton and the num-
ber of agreements will not decrease, since we will lose Bi

for the edge (r, xi), but will gain Bi for the edge (xi, x̄i).
Similarly, if both xi and x̄i are singletons, we can place xi

in the cluster containing r — we will gain a value of Bi for
the edge (r, xi) and might lose at most a value of Bi for the
edges connecting xi to the cpj’s for each clause Cj in which
xi occurs.

Once in this format, a clustering corresponds to a truth
assignment to the variables of φ in a natural way: variable
xi is true if it is in a singleton cluster, and false otherwise.

Now for each clause Cj , we can cluster the vertices cpj ,
p = 1, 2, 3, in the following way without decreasing the
number of agreements. If Cj is not satisfied by the above
assignment, which means all its literals are in the cluster
containing r, we place each cpj in a singleton cluster for p =
1, 2, 3. If Cj is satisfied, say because its first literal is set
true, then we place c1j in the cluster containing r, and c2j

and c3j in singleton clusters. This way, we correctly classify
all the negative weight edges incident upon the cpj’s, and
we correctly classify one of the three edges (r, cpj) for p =
1, 2, 3 for each satisfied clause Cj .

It is easily seen that the total weight of correctly clustered
edges equals

(n∑
i=1

2Bi

)
+ 6m + m∗ = 9m + m∗,

where m∗ is the number of clauses satisfied by the above
assignment. Therefore the optimum value of this instance
of MAXAGREE is 9m + OPTφ. The claimed result fol-
lows since distinguishing between the cases OPTφ = m
and OPTφ ≤ (7/8 + ε)m is NP-hard [10].

In order to obtain a result for unweighted (±1) graphs,
we replace each positive (resp. negative) edge of weight
Bi (resp. −Bi) by Bi length two paths whose edges have
weights 1, 1 (resp. 1,−1), as in the proof of Theorem 8.
Now, if a weight Bi (positive or negative) edge is cor-
rectly clustered, then all the 2Bi newly constructed edges
agree with the labeling; otherwise we get only Bi agree-
ments. Using this gadget, we conclude that there is a
115/116 + ε inapproximability factor for the unweighted
version of MAXAGREE; we omit the straightforward calcu-
lations.

Since the number of disagreements in an optimum clus-
tering is simply the total weight of edges minus the number
of agreements, the above reduction also establishes the fol-
lowing.

Theorem 10 For every ε > 0, it is NP-hard to approxi-
mate both the weighted and unweighted versions MINDIS-
AGREE within a factor of 29/28− ε.

4.3. MINDISAGREE in complete graphs

In addition to their constant factor approximation algo-
rithm, the authors of [1] also proved the NP-completeness
of MINDISAGREE on complete graphs. Their reduction
does not yield any hardness of approximation result, but
they do show that the maximization version admits a PTAS
on complete graphs.

Theorem 11 nicely completes the picture with respect to
the complexity of the problem on complete graphs, and also
complements our factor four approximation algorithm.

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03)

0272-5428/03 $17.00 © 2003 IEEE

Theorem 11 For some constant a > 1, it is NP-hard to
approximate MINDISAGREE on complete graphs within a
factor of a.

Proof: (Sketch) We show a reduction from “MAX 2-
colorable subgraph” on bounded-degree 3-uniform hy-
pergraphs. In this problem the input is a 3-uniform
hypergraph H = (V, S) in which each hyperedge in
S = {e1, e2, . . . , em} consists of three elements of V =
{v1, v2, . . . , vn} and each vertex is in at most B hyper-
edges. The objective is to find a 2-coloring that maxi-
mizes the number of hyperedges that are bichromatic. It
is NP-hard to distinguish whether a 2-coloring exists with
no monochromatic hyperedges, or at least a fraction γ of S
is monochromatic [9, 10].

The first step is to construct a graph G (whose elements
we call nodes, rather than vertices) from hypergraph H . For
each vi ∈ V we build a flower Fi with 4si nodes, where
si ≤ B is the number of hyperedges that contain vi. There
is an (internal) cycle of 2si nodes, together with 2si petal
nodes. Each petal has an edge to each of two consecutive
cycle nodes (see Section 9.4 of [13] for a similar reduction).
Label the petal nodes of Fi in order, with arbitrary starting
point, and refer to the odd ones as Oi and the even as Ei.
For each hyperedge ej , create two edges αj and βj in G.
For each vertex i in ej , create edges from both endpoints
of αj to the kth petal in Oi, where hyperedge ej is the kth
occurrence (k ≤ si) of vertex i. Likewise, connect the end-
points of βj to the even petals.

The total number of nodes in G is N =
∑n

i=1 4si +
4m = 16m. Since G is 4-regular, the number of edges
M equals 2N . We construct a complete graph KN with
positive labels on the edges of G and negative labels on the
other edges. Given a clustering, let the value of a single
cluster be the number of positive edges minus the number
of negative edges. The total value of a clustering is merely
the sum of the cluster values. The value of a node is the
value of the cluster it is in, divided by the number of nodes
in that cluster. For example, if a cluster is a singleton, its
value is zero. The nodes in an edge cluster have value 1/2;
those in a triangle have value 1. A diamond cluster is K4

with exactly one negative edge (that is, one edge is missing
in G) and its nodes have value 1.

We can show that if H is 2-colorable—there is a color-
ing with no monochromatic hyperedges—then there exists
a clustering of value N .

The complementary result is that if every 2-coloring of
H has γm monochromatic hyperedges, then every cluster-
ing has value at most (1 − δ)N , for some δ > 0. To prove
this, we show that the value of every node equals 1 if and
only if it lies in a triangle or diamond cluster. Otherwise
the value is at most 1 − ρ for ρ > 0. The argument con-
tinues by showing that there exists a coloring for which ev-
ery monochromatic hyperedge has at least one vertex whose

flower is not of full value—that is, some flower nodes have
value less than 1. It can be shown that with γm monochro-
matic edges the total cluster value is at most (1−ξ)N , where
ξ = 3ργ/(16B2) > 0. Since the number of disagreements
in a clustering is M = 2N minus its value, the result is
an N versus (1 + ξ)N gap for MINDISAGREE in complete
graphs.

References

[1] N. Bansal, A. Blum, and S. Chawla. Correlation clustering.
In Proc. of 43rd FOCS, pages 238–47, 2002.

[2] G. Calinescu, H. Karloff, and Y. Rabani. An improved ap-
proximation algorithm for multiway cut. JCSS, 60:564–74,
2000.

[3] E. Demaine and N. Immorlica. Correlation clustering with
partial information. In Proc. of 6th APPROX, 2003. To ap-
pear.

[4] D. Emanuel and A. Fiat. Correlation clustering—
minimizing disagreements on arbitrary weighted graphs. In
Proc. of 11th ESA, 2003. To appear.

[5] G. Even, J. Naor, B. Schieber, and L. Zosin. Approximat-
ing minimum subset feedback sets in undirected graphs with
applications. SIAM J Disc. Math., 25:255–67, 2000.

[6] A. Frieze and M. Jerrum. Improved approximation algo-
rithms for MAX k-CUT and MAX BISECTION. In E. Balas
and J. Clausen, editors, Proc. of 4th IPCO, volume 920 of
LNCS, pages 1–13. Springer, 1995.

[7] N. Garg, V. Vazirani, and M. Yannakakis. Approximate
max-flow min-(multi)cut theorems and their applications.
SIAM J Comp., 25:235–51, 1996.

[8] N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual ap-
proximation algorithms for integral flow and multicut in
trees. Algorithmica, 18:3–20, 1997.

[9] V. Guruswami. Inapproximability results for set splitting
and satisfiability with no mixed clauses. In K. Jansen and
S. Khuller, editors, Proc. of 3rd APPROX, volume 1913 of
LNCS, pages 155–66. Springer, 2000.

[10] J. Håstad. Some optimal inapproximability results. JACM,
48:798–859, 2001.

[11] D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young.
Rounding algorithms for a geometric embedding of mini-
mum multiway cut. In Proc. of 31st STOC, pages 668–78,
1999.

[12] S. Khot. On the power of unique 2-prover 1-round games.
In Proc. of 34th STOC, pages 767–75, 2002.

[13] C. Papadimitriou. Computational Complexity. Addison
Wesley Longman, 1994.

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03)

0272-5428/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

