A Linear Algorithm for Colouring Planar Graphs with

Five Colours

M. H. WILLIAMS

Department of Computer Science, Heriot-Watt University, 79 Grassmarket, Edinburgh EH1 2HJ

A linear algorithm for colouring planar graphs with at most five colours has recently been published. However, this
algorithm, which operates by recursive reduction of the graph, is unnecessarily complicated. An alternative method which

is much simpler is presented in this paper.

1. INTRODUCTION

Chiba, Nishizeki and Saito! recently put forward a linear
algorithm for colouring a planar graph which employs at
most five colours. However, their method is unnecessarily
complicated and a much simpler algorithm is presented
in this paper.

The nomenclature which is used here is the same as that
followed in Refs. 1 and 2. All graphs considered here are
assumed to be connected and have no multiple edge. The
number of vertices in a graph, G, is denoted by n. For
any vertex v, the set of all vertices adjacent to v is termed
the neighbourhood of v,N(v), and the number of vertices
in this set is termed the degree of v,d(v). The basic
operations used in the algorithm are deletion of a vertex
v which removes v from G, and identification or merging
of vertices u and v which removes u and adds to N(v) any
vertices from N(u) which are not already in N(v). When
a vertex is removed all edges incident upon that vertex are
discarded.

2. THE ALGORITHM

This algorithm is based on successively removing vertices
of degree less than six from the graph until at most 5
vertices remain. These vertices can then be coloured with
at most five colours. The vertices which had been
removed are then reinstated one by one and coloured
appropriately.

Two basic transformations are used in reducing the
graph, viz.
(1) if d(v) < 4 then remove v (type 1 reduction)
(2) if d(v) =5 then remove v and identify a pair of

non-adjacent vertices in N(v) (type 2 reduction).

In order to implement this, the graph G is represented
by an adjacency list L[v] for each veV while two queues,
0, and Q;, defined as

0, = {vld(v) < 4}
Qs = {vldv) = 5}

are used to contain all vertices available for reduction.

Both the adjacency lists and the queues are doubly linked,

as are the two copies of each edge (, v) in L[u] and L[v].

In addition a stack S is used to contain vertices

removed from the graph. Each element of S consists of

two fields:

(a) the vertex v removed, and

(b) either a pointer to the adjacency list for v at the time
v was removed, or a vertex u with which v was
identified.

78 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

Before reducing a vertex of degree 5, its neighbours are
checked to find two neighbouring vertices with sufficiently
low degree which can be identified. For the purposes of
the algorithm the vertices selected must have degree less
than some constant k. The value of k will be defined later.

The process of identifying two vertices involves the
merging of their two neighbour sets, while taking care to
avoid the creation of multiple edges. To this end a
Boolean array MARK]v] is used, the elements of which
are all set to false initially. Each member of the neighbour
set of vertex 1 is ‘marked’ by setting the corresponding
entry of MARK to true. Then each ‘unmarked’ member
of the neighbour set of vertex 2 is added to the neighbour
set of vertex 1 while each ‘marked’ member is simply
ignored.

Two additional arrays used are: DEG(v] stores the
degree of each vertex v, while DP[v] contains a pointer to
an element v in Q; (4 < i £ 5) if v is present in Q;.

The algorithm is as follows:

procedure COLOURS;
procedure CHECK (w);
if DEG[w] = 5 then add w to Q;
else if DEG[w] = 4 then move w from Q; to Q,;
procedure DELETE(v);
begin
for weL[v] do
begin
delete v from L[w];
DEG(w]: = DEG [w]—1;
CHECK (w)
end;
push (v, pointer to L[v]) on to S;
delete from Q; the node pointed to by DP [v];
noofvert: = noofvert—1
end;
procedure IDENTIFY (u, v);
begin
for weL[v] do MARK [w]: = true;
for weL[u] do
begin
delete u from L[w];
if not MARK[w]
then begin (*w is adjacent to u but not v*)
add w to L[v]; add v to L[w];
DEG]{v]: = DEG[v]+1;
if DEG[v] = 6 then delete v from Q,
else if DEG[v] = 5 then move v from Q, to Q,
end
else begin
DEG]w]: = DEG[w]—1;
CHECK (w)
end
end;

A LINEAR ALGORITHM FOR COLOURING PLANAR GRAPHS

for weL[v] do MARK]|[w]: = false;
delete u from Q;;
push (u, v) on to S;
noofvert: = noofvert — 1
end;
procedure REDUCE;
while noofvert > 5 do
if Q, # @ then DELETE (top entry from Q,)
else begin
take top entry v from Q;;
if two non-adjacent vertices x,yeN(v) can be found such
that DEG[x] < k and DEG([y] < k
then begin
DELETE(v);
IDENTIFY (x, y)
end
else return v to rear of Q,
end;
procedure COLOUR;
begin
colour remaining vertices (i.e. those on Q,);
while S not empty do
begin
pop top element (x, y) from S;
if y is pointer to adjacency list L then colour x with colour
different from vertices on L
else colour x with same colour as vertex y
end
end;
begin
scan graph and set up arrays MARK, DEG, Q,, Q;, and DP;
noofvert: = n;
REDUCE,;
COLOUR
end (*OF COLOURS5*)

3. TIME COMPLEXITY

Initially Q, is set up to contain those vertices with degree
less than or equal to four, Q; to contain those with degree
five. That both queues cannot be empty follows from the
fundamental property of planar graphs that the average
degree of vertices in a planar graph is less than 6. We now
establish the following theorem concerning the queues Q;.

Theorem 1

At the beginning of each iteration of the loop within the
procedure REDUCE the queues @, and Q, will contain
all vertices v with d(v) < 6 in the graph.

Proof. Proof is by induction. Assume that the theorem
holds at some point in the execution of REDUCE. The
only operations performed by REDUCE which can alter
the state of the graph or the queues (other than their
order) are as follows

(a) DELETE (top entry from Q,) or DELETE(v). In
this case a vertex is deleted from the graph and from Q;.
It is deleted from the adjacency lists of each of its
neighbours and the degree of each neighbour is decreased
by one. After doing so the degree of each neighbour is
checked and if it is less than 6, the neighbour is added to
Q. or moved from Q; to Q, if necessary. No other vertex
of the graph will be affected by the deletion. Thus after
the deletion the Q; will contain all vertices v with d(v) < 6.

(b) IDENTIFY (x, y). In this case vertex x is deleted
from the graph and from Q,, and each of the neighbours

of x which is not a neighbour of y will be connected to
y. As in (a), the degree of each affected vertex is checked
so that after identification of x and y the Q; will contain
all vertices v with d(v) < 6.

Since Q, and Q; are set up initially to contain all
vertices v with d(v) < 6, the theorem is proved. |

Since the average degree of vertices in a planar graph
is less than six, these queues can never both be empty as
long as there are vertices in the graph.

Noofvert is a variable which represents the number of
vertices in the graph. It is initially set to have value » and
is reduced by 1 in each of the procedures DELETE and
IDENTIFY when a vertex is removed from the graph.

Theorem 2

The procedure COLOURS will colour any planar graph
G with at most five colours.

Proof. Each reduction step removes either one or two
vertices from the graph until it has no more than five
vertices. These can be coloured with at most five colours.

In the final phase each of the vertices removed from the
graph is unstacked from the stack S and assigned a
colour. If at the time that it was removed from the graph
a vertex v had:

(a) fewer than five neighbours
then v will be connected to vertices coloured with at most
four colours;

(b) five neighbours
then S will contain two entries: an entry E, identifying
one of the neighbours of v, x, with another, y, and below
it an entry E, containing a pointer to an adjacency list
with five vertices (including x and y). At this point a
colour will have been assigned to vertex y, and entry E,
can be unstacked and vertex x assigned the same colour.
Then E, can be unstacked, and » will be connected to
vertices coloured with at most four colours.

Thus each vertex can be coloured with one of at most
5 colours.

Now consider in more detail the way in which Q; is
handled and vertices are selected for identification.
Initially Q is set up to contain all vertices with degree 5.
In the procedure REDUCE an entry may be removed
from the front end of Q;. If the vertex corresponding to
this entry has two non-adjacent neighbours of sufficiently
small degree, it will be deleted; otherwise the vertex will
be returned to the rear end of the queue (such a vertex
will be termed a blocked vertex). During the process of
a deletion or identification vertices may be removed from
any point within the queue or added to the rear end of
the queue.

Consider a particular instance of Q; at a point where
Q, is empty. The term stage will be used to refer to the
period from this point until Q, is (once again) empty and
all the original entries on this instance of @, have been
removed, so that Q; consists entirely of new entries and
entries which have been returned to the rear of the queue
(blocked vertices) or the graph has been collapsed to a
point that it contains less than six vertices. The proof of
linearity which follows later relies on the fact that the total
number of blocked vertices encountered (or, if you prefer,
the total number of times a vertex is returned to the end
of Q) depends linearly on n.

The first result which is required concerns the
maximum number of blocked vertices in a stage.

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 79

M. H. WILLTIAMS

Lemma (Upper bound on number of blocked vertices in
a stage.)

If at the beginning of a stage a graph contains n; vertices
of degree i(i = 5), and during the stage d type 2 reductions
and e type 1 reductions are performed, the maximum
number of blocked vertices encountered during the stage
(B) cannot exceed

Y in,/2+ (2k —4) d/2.
i=k

Proof. Consider a vertex v of degree 5 in the graph. For
v to be a blocked vertex it must have at least two
neighbours of degree at least & (since otherwise it is always
possible to find two non-adjacent neighbours each with
degree less than k).

If each vertex of degree i (i = k) has edges in common
with i blocked vertices then since each blocked vertex
must have edges in common with at least two vertices of
degree greater than or equal to k, it follows that, ignoring
any new vertices of degree at least k created during the
stage, the number of blocked vertices cannot exceed

Y in;/2.
i=k

Since for each type 2 reduction performed during the
stage, a pair of vertices will be identified, this could create
up to dnew vertices of degree greater than k. As the degree
of each of the vertices identified must be at most k—1
before deletion and identification, the largest degree
which the resulting vertex may have is 2k —4. Each type
1 reduction only decreases the degrees of vertices and thus
cannot create additional blocked vertices.

Hence the total number of blocked vertices encountered
during the stage may not exceed

Y in;/2+(2k—4)d/2. |
i=k

For the current purposes k will be taken to be the value
13.

Theorem 3

If at the beginning of a stage a graph contains n; vertices
of degree i (i = 5) and during the stage R reductions are
performed and B blocked vertices are encountered then
B
R < 237.

Proof. Assume that during the stage d type 2 reductions
and e type 1 reductions are performed. For each type 2
reduction one vertex of degree 5 will be deleted and the
degree of each of its neighbours decremented (removing
the neighbour from Q; if necessary). For each type 1
reduction a vertex of degree less than 5 is deleted and the
degree of each neighbour decremented (removing it from
Q, if necessary). Thus altogether fd+ge vertices will be
removed from Q, during the stage, where 1 < f < 6 and
0 < g £ 4. All other vertices originally on Q, must be

blocked vertices, i.e.
no. of blocked vertices = B = n,—fd—ge.

From ref. 2, for a maximal planar graph (i.e. one in
which each face is bounded by three edges)® the number
of vertices of degree 5 initially on Q; is given by

ng = 12+ ¥ in; .

=1

80 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

If the graph at the beginning of the stage is not maximal
planar and requires the addition of m edges to make it
maximal planar, it can easily be shown that

= 1242m+ X in;,

=1

-
from which it follows that

B=124+2m+ Y in;,—fd—ge.

i=1

2
From the previous lemma

12+2m+2‘,m1+6 —fd—ge < Ezn/2+(2k 4)d/2.

For k=13

Y iny/2

=13

11d+fd+ge 2 124 2m+ X in; ¢ —
i1

6

=1242m+ Tin; o+ Z g y12/2.

t=1
Now since (11+f) d+ge < (11+f) (d+e)

< 17(d+e)
= 17R,

3

equation (3) becomes

6
17R > 1242m+ S ing g+ T ingsys/2. @)
=1 =1

Since f > 1,

11d _11fd

<
Adding fd/12 to each side gives

fd=11+/)d/12
and hence
(fd+ge) = (11 +f)d+ge)/12

Combining this with equations (2) and (3) gives

1
B<1242m+ Yin; . o— 12(12+2m+ Yin ¢+ Zlni+12/2>
i=1 i=1 i=1
11<12+2m+ Y in, >+Z< 3 +6) ’)
12 — i+6 — 24 1+l2‘

Comparing each term of (5) with the corresponding term
of (4) the largest ratio occurs when i = 13, namely

1671167

24727 127
from which it follows that

B 167

17R =12
or

B < 237R. i
Theorem 4

The procedure COLOURS will colour any planar graph
G containing n vertices in O(n) time.

Proof. It can easily be verified that the procedure
DELETE deletes a vertex v from the graph in O(d(v)) time

A LINEAR ALGORITHM FOR COLOURING PLANAR GRAPHS

where d(v) < 5. Since this procedure can be called at most
n—>5 times the contribution to the total running time is
at most O(n).

Likewise the procedure IDENTIFY (x, y) can be seen
to operate in time of order O(d(x)+ d(y)). Since for each
call d(x) < k and d(y) < k, and since the number of calls
can be at most (n—5)/2, the total time spent by the
procedure IDENTIFY is at most O(n).

On each iteration of the loop in the procedure
REDUCE either at least one vertex will be removed from
the graph or a blocked vertex will be moved from the
front to the rear of the queue. From the previous theorem
the total number of blocked vertices encountered in all
the stages must be less than 237 times the total number
of reductions performed, i.e.

XB<237%XR.

Since the total number of reductions performed is at most
n—35, the total number of blocked vertices must be less
than 237 (n— 5) and hence the number of iterations of the
loop in the procedure REDUCE is O(n). Each operation
can be shown to operate in time less than or equal to some
fixed constant (since even the test for two non-adjacent
vertices x, yeN(v) such that DEG{x] < k and DEG[y] < k
depends only on k).

In the procedure COLOUR the stack S is unstacked
element by element and either

(a) anadjacency list of up to 5 elements is scanned and
a set S’ of colours used is constructed; then a colour not
contained in this list is selected (this is always possible
otherwise Theorem 2 would not hold), or

(b) the colour of vertex y is assigned to vertex x.
Since the stack contains just less than elements, the time
taken for this operation is O(n).

Hence the procedure COLOURS operates in O(n)
time. [|

This algorithm has been tested using a set of 3000
planar graphs, each with between 50 and 200 vertices, and
an analysis of its performance is given in ref. 4.

REFERENCES

1. N. Chiba, T. Nishizeki and N. Saito, A linear 5-coloring
algorithm of graphs, Journal of Algorithms 2, 317-327
(1981).

2. M. H. Williams, Cubic map configurations, Information
Processing Letters 11, 180-185 (1980).

3. O.Ore, The Four-color Problem. Academic Press, New
York (1967).

4. M. H. Williams and K. T. Milne, The performance of
algorithms for colouring planar graphs. The Computer
Journal 27, 165-170 (1984).

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 81

cpPJ 28

