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1. The Hoax

In April 1975, Martin Gardner, in his fame8icientific Americarolumn, published the
four-color hoax: a planar map that required five colors (Rig.It was apparently not
completely trivial to 4-color the map, since many readeiieted the hoax. Of course,
we now know that no such map exists.

Figure 1. The April Fool's hoax map from 1975.

Developing an algorithm to 4-color planar maps leads to tweresting computational
issues:

1. Devising an algorithm that will 4-color planar graphsn& the proof that such an
algorithm works would yield the 4-color theorem, one wilvedo deal with the fact
that the algorithm is likely to be not proved to work. One hetit it will simply work
in practice.

2. Devising an algorithm to turn planar maps into planar gsapThis leads to the
guestion of designing a good data structure for maps, argldoar drawings of graphs
whose edges might not be lines, but will have to be brokersline



The most notable work on (1) is by Morgenstern and Shapiro [8jaware of their
work, Joan Hutchinsonand | [5, 6] developed a randomizeatilgn based on Kempe’s
false proof of the four-color theorem. Their paper then paxirus to a 1935 idea of Kit-
tell that leads to a much better algorithm. The Kempe—Hittiglorithm seems to work
very well in practice. Point (2) required the developmenaahethod of going from
a map to its adjacency graph, and a planar drawing of it. ijgartant from several
viewpoints that the drawing be such that the edges stayarik&l countries being con-
nected. Strictly speaking, simply having the cyclic neigh$tructure for each country
is enough to implement a coloring algorithm for maps. Bus itdasonable to take the
approach of first turning the map into a graph, and then usdaoaileg algorithm for
graphs.

2. The Kempe Four-Color Algorithm

In 1879 Kempe gave an explicit method of 4-coloring planapsyahich | summarize
here from the point of view of planar graphs. Assume a planaplyG is given, with
vertices labeled 1 through R, G, B, andY denote the four colors red, green, blue, and
yellow. Choose the first vertex i —call it v — having degree 5 or less (it follows
quickly from Euler's formulas that every planar graph hashsa vertex). Remove it.
Color the remaining graph by induction on the vertex set.nid¢aorv as follows:

1. If the neighbors o¥ have only 3 colors appearing among them, then there is a color
left free forv. 2. If there are 4 neighbors gfand all 4 colors appear among them, use
a Kempe chain to eliminate one of the colors from the set ajimairs. 3. If there are

5 neighbors off and all 4 colors appear among them, use a Kempe chain to alienin
one of the colors from the set of neighbors.

A Kempe chairis defined as follows: Suppose the neighbors bfve colorsR, G,

B, Y, in that order. Look at the subgraph (the "chain”) containihe R-vertex and
consisting of alR andB vertices that are reachable from tRevertex by arR-B path.

If this subgraph does not contain tBeneighbor ofv, simply switch allRs andBs in
the chain. This turns the red vertex blue, and so red can lzearse If the chain does
reach all the way to the blue neighbor, then look instead e¢@gyellow chain starting
from theG-vertex. This cannot reach the yellow vertex because of theeptive red-
blue fence that separat€srom Y. So switching colors on that chain will free up green.
This takes care of case (2) above.

For case (3) suppose the colors on the neighbors, in ciroudiar, areR, G, B, Y, G (if
theG's are adjacent, the reasoning is similar). Start with retfiigu be the vertex so
colored. Letw be the neighbor of colored blue. Look at the connected component of
uamong all vertices colorel or B. If wis not in this component, switch dfls andBs

on the component, thus freeing &for use onv. If, on the other hand, the target
does show up on the chain, then try to make a color-switchgusia pairR-Y. If that
fails, try to eliminate green by chaining from the first grderyellow and then from
the other green to blue. Kempe'’s quite-believable topaigirgument shows that the



Kempe chain method will always succeed in eliminating aicolo

The Bad Example

It took a dozen years, but Heawood (also de la Vallée Pousawmthe flaw in Kempe's
argument. When dealing with thR G, B, Y, G case just described, it can happen that
one color switch can demolish a protective fence. Heawaadinple is often quoted,
but in fact there is a better refutation, due to A. Errera {Bht provides an explicit
graph on which Kempe's algorithm, the one just outlinedsfairhat graph, which |
call the Errera grapk, has 17 vertices and is nicely realized as a map on the sphere.

Figure 2. The Errera graph, drawn in the plane, and also agpaoma sphere. In the
latter form it is the fulleren€30,

When all the vertices except 1 are colored, Kempe's methosl into an impasse (see
Fig. 3). Vertex 1 has two green neighbors, 10 and 12. The dnethedge in figure)

from 12 to yellow (3) works and eliminates one of the greems,dauses a switch in
7’s color from yellow to green, which breaks the protectiged-ryellow fence around
10 and causes the other green chain (purple in figure), frota B0to fail.



Figure 3. Kempe’s algorithm on the Errera graph leads to gasse, since the chain
method fails to color the remaining vertex.

But the Kempe chain idea is so pretty, and counterexamplearspthat it is not sur-
prising that it leads to a good algorithm. The Errera grapghdsunterexample only if
it is labeled in a certain way. Empirical trials shows thaigbly 10% of the labelings
cause a problem; for 90% of the labelings, the Kempe ordeiffsreint and the im-
passe does not arise. So one attack on the 4-color probleyivésthe graph a random
labeling and try Kempe's algorithm; if it fails, relabel angtry; continue. That will
work for E. But it will fail badly on, say, 30 disjoint copies d&. For if 90% of the
E-labellings are good, then only 4% of the labelings oEZ0e good! As we will see,
a simple modification turns this algorithm into one that, aygmtly, works much better.
But we are left with an intriguing question regarding thedam Kempe algorithm just
presented, maely: Does it always halt?

QUESTION. Is it true that any planar graph admits a labelorgdfhich Kempe’s col-
oring method works? That is, does the algorithm just deedrib- the "relabel and
retry” strategy — always halt?

3. Kittell's Improvement

Irving Kittell in 1935 had some ideas that he hoped would l@eal solution of the four
color problem. From a computational viewpoint, his ideasloa viewed as leading to
the following method: To eliminate the impasse that Kempasthod might run into,



make color-switches on Kempe chains connecting two rangambsen neighbors,
even when those neighbors are consecutive and adjaceictiotieer. Note that Kempe
would never have looked at such a color-switch, since itrblerill not free up a color.
Kittell's point is that, nevertheless, it might cause a a@that leads to resolution later.
For the Errera graph, if one follows Kempe’s method until iilh@asse and then tries
random Kittell chain switches, then the impasse gets resbir a small number of
steps. In a typical case, it took 13 random switches to getgosition where only
three colors appear among the five neighbors of vertex lingake fourth free to use
on 1. The chosen pairs, after the switch on (12,7), were [1(83.4), (10,12), (17,8),
(12,10), (3,5), (5,12), (3,10), (10,5), (10,3), (5,3), émd,6). In the last case the chain
from 12 did not reach the target, 3, which is what freed up arcdh the (3,14) and
(17,8) cases the chain did not reach the target either, utlith not free up a color,
since the color at the start of the chain appeared twice.

Figure 4. Eleven random Kempe switches resolve the impasséee up red for the
remaining vertex.

Thus we can formulate the following coloring algorithm. Arigion on this idea
is studied in [9]; they looked at many instances and madeectunjes about running
times. They also considered some other algorithms.

The Kempe—Kittell Algorithm.

1. Given a planar graph, label the vertices randomly. 2. Bekiempe order of the
vertices, by removing a vertex of degree 5 or less, and rigmeantil only a single
vertex is left. 3. Color the single vertex red. 4. Add versidack in the reverse order
in which they were removed, coloring them as follows: i. BallKempe’'s method to
the letter, switching colors on chains defined by noncorsecuertices in an attempt



to free up a color. ii. If Kempe's method fails, use Kittelfandom Kempe-chain-
switches until the impasse is resolved.

As before, a proof that this will always work is lacking. Buseems to work very well
in practice, and has no problem getting a 4-coloring of tleg@hgrconsisting of multiple
copies of the Errera graph. The following conjecture watedtan [6].

CONJECTURE. The Kempe—Kittell algorithm always halts.

4. From a Map to a Graph

Given a planar map, with countries that are polygons, thelgist way to color it is
to apply an algorithm to a planar representation of the &djeg graph (where each
country is a vertex, and two vertices are adjacent if the t@sshare a part of a linear
border). While simply having the abstract information abthe cyclic ordering of
neighbors around each country is adequate, it is more watisfo turn the map into
a planar graph, and then apply an algorithm that is set to wargraphs. Here is
one way to do that (Wagon [13]), where the map is assumed tdvea g@s a finite
set of points, along with index sets delineating the poiatsiing the border of each
polygonal country.

1. For each country, locate a "capital” by triangulating gadygon and choosing the
centroid of the largest triangle.

2. For each country, use the triangulation to generate aofre@angles, and generate
paths from the capital to the center of each border segmeunniigrmly dividing the
diagonals that separate the triangles.

3. For each pair of adjacent countries, choose one of theeb@ehments that are
shared and form the piecewise linear curve from the capitahe country to the center
of the chosen border edge, and then on to the capital of trendewountry. This
construction yields a planar graph with edges that stayedptivithin the two countries
that they represent; see Figs. 5 and 6. In Fig. 6, Michigaakisrt to be one state, and
Lake Michigan is added as a region to keep the map simply-exted (so that Euler’s
formula applies).



Figure 5. A triangulation yields disjoint paths from the itapof the polygon — the
(yellow) centroid of the largest triangle — to the midpoifitach edge.

Figure 6. Choosing paths for each adjacency yields a systbroken lines that defines
the adjacency graph of a map, here a part of north-central U.S



Itis not hard to further refine the edges in a couple of way ddiges can be straight-
ened by eliminating corners and checking, at each stepthbatesulting drawing is

still planar; and this can be done repeatedly. Or one camaceghe broken lines with

Bézier curves. | have programmed this to some extent (Fig. 7

Figure 7. The adjacency graph of the map in Figure 6, usirgig&urves to smooth
the edges.

And now we can put it all together to solve the hoax by compgure 8 shows the
adjacency graph for the April Fool's map, and Figure 9 showsaghine generated
4-coloring of the map using Kempe’s method. There are no &8 so Kempe’'s
method, in the exact form he envisioned, has no problem icgjdt:



Figure 8. The adjacency graph of the April Fool's map.

Figure 9. A 4-coloring of the April Fool's map obtained by Kpe's algorithm.



5. A Penrose Application

When applying the preceding map-coloring ideas to Peniiisgs, Wagon noticed
that they seemed to use only three colors. The question dsdther any Penrose tiling
could be 3-colored turned out to have been posed by John HoGwv&/ many years
ago. Sibley and Wagon [12] found an amazingly short proof Benrose rhombus
tilings are 3-colorable: it turns out to be quite easy to stioat any such finite tiling
has a tile with 2 or fewer neighbors. Indeed, this is true fortiing by parallelograms
that meet edge-to-edge or vertex-to-vertex (meaning: temintersect in a full edge of
each, a vertex of each, or not at all). It follows by inductibat every such finite tiling
is 3-colorable, and then from a general result about infigiegohs that any infinite
tiling is 3-colorable. The case of Penrose kites and datiaider, and was done later
by W. Paulsen and R. Babilon, independently [2]. A first gioes{Sibley [11]) is
whether any finite collection of parallelepipeds in 3-spHta meet either face-to-
face, edge-to-edge, vertex-to-vertex, or not at all, hastbat has three neighbors at
most. If this were true, then any such 3-dimensional map —cthantries being the
interiors of the boxes — would be 4-colorable. But the hofdresult is false. A
counterexample appears in [10], reproduced in Figure 1@. dquestion whether such
maps are 4-colorable remains open.

Figure 10. A 3-dimensional map made up of boxes that meetyragad such that every
box has four or more neighbors.
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Returning to the traditional planar situation, we can takplzerical view of maps using
parallelograms. Namely, consider such a map having thddgpof a sphere; that is,
imagine a convex polyhedron whose faces are all parallatogr Is this planar map
3-colorable? Such polyhedra, in the more general situatiogre the faces can 2
gons with opposite sides parallel, are caltedohedraand these objects exhibit a lot of
structure. Much has been written about them (see the tedafi8jorner et al [1]). Yet
apparently the coloring of the faces has not been consid8wdinder another guise,
the question has been considered. It turns out that the mtge afonohedral surface
is equivalent to the arrangement graph of great circles grhars. By this is meant
any collection of great circles on the sphere such that reethave a pointin common;
the vertices of the graph are the intersection points of thees, and the edges are
the arcs connecting neighboring points. Felsner et al [4krthe interesting question
of whether such arrangement graphs are 3-colorable, ahduleation remains open.
Steven Tedford (Franklin & Marshall College) has recentigwn that if there aren
great circles and they somewhere formrafgon, then the entire arrangement is 3-
colorable. The great circles are easily projected onto theqy where they become
circles. But circle graphs in the plane can require four kxlas proved by Koester [8].
His example is shown in Figure 11.

Figure 11. An arrangement of circles in the plane that leadsdraph requiring four
colors.
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