
A Machine Resolution of a Four-Color Hoax

Stan Wagon

Macalester College, St. Paul, MN 55105; wagon@macalester.edu

1. The Hoax

In April 1975, Martin Gardner, in his famedScientific Americancolumn, published the
four-color hoax: a planar map that required five colors (Fig.1). It was apparently not
completely trivial to 4-color the map, since many readers believed the hoax. Of course,
we now know that no such map exists.

Figure 1. The April Fool’s hoax map from 1975.

Developing an algorithm to 4-color planar maps leads to two interesting computational
issues:

1. Devising an algorithm that will 4-color planar graphs. Since the proof that such an
algorithm works would yield the 4-color theorem, one will have to deal with the fact
that the algorithm is likely to be not proved to work. One hopes that it will simply work
in practice.

2. Devising an algorithm to turn planar maps into planar graphs. This leads to the
question of designing a good data structure for maps, and forplanar drawings of graphs
whose edges might not be lines, but will have to be broken lines.
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The most notable work on (1) is by Morgenstern and Shapiro [9]. Unaware of their
work, Joan Hutchinson and I [5, 6] developed a randomized algorithm based on Kempe’s
false proof of the four-color theorem. Their paper then pointed us to a 1935 idea of Kit-
tell that leads to a much better algorithm. The Kempe–Kittell algorithm seems to work
very well in practice. Point (2) required the development ofa method of going from
a map to its adjacency graph, and a planar drawing of it. It is important from several
viewpoints that the drawing be such that the edges stay inside the countries being con-
nected. Strictly speaking, simply having the cyclic neighbor structure for each country
is enough to implement a coloring algorithm for maps. But it is reasonable to take the
approach of first turning the map into a graph, and then use a coloring algorithm for
graphs.

2. The Kempe Four-Color Algorithm

In 1879 Kempe gave an explicit method of 4-coloring planar maps, which I summarize
here from the point of view of planar graphs. Assume a planar graphG is given, with
vertices labeled 1 throughn; R, G, B, andYdenote the four colors red, green, blue, and
yellow. Choose the first vertex inG —call it v — having degree 5 or less (it follows
quickly from Euler’s formulas that every planar graph has such a vertex). Remove it.
Color the remaining graph by induction on the vertex set. Then colorv as follows:

1. If the neighbors ofv have only 3 colors appearing among them, then there is a color
left free forv. 2. If there are 4 neighbors ofv and all 4 colors appear among them, use
a Kempe chain to eliminate one of the colors from the set of neighbors. 3. If there are
5 neighbors ofv and all 4 colors appear among them, use a Kempe chain to eliminate
one of the colors from the set of neighbors.

A Kempe chainis defined as follows: Suppose the neighbors ofv have colorsR, G,
B, Y, in that order. Look at the subgraph (the ”chain”) containing theR-vertex and
consisting of allR andB vertices that are reachable from theR-vertex by anR–B path.
If this subgraph does not contain theB-neighbor ofv, simply switch allRs andBs in
the chain. This turns the red vertex blue, and so red can be used onv. If the chain does
reach all the way to the blue neighbor, then look instead at a green-yellow chain starting
from theG-vertex. This cannot reach the yellow vertex because of the protective red-
blue fence that separatesG fromY. So switching colors on that chain will free up green.
This takes care of case (2) above.

For case (3) suppose the colors on the neighbors, in circularorder, areR, G, B, Y, G (if
theG’s are adjacent, the reasoning is similar). Start with red, lettingu be the vertex so
colored. Letw be the neighbor ofv colored blue. Look at the connected component of
u among all vertices coloredRor B. If w is not in this component, switch allRs andBs
on the component, thus freeing upR for use onv. If, on the other hand, the targetw
does show up on the chain, then try to make a color-switch using the pairR–Y. If that
fails, try to eliminate green by chaining from the first greento yellow and then from
the other green to blue. Kempe’s quite-believable topological argument shows that the
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Kempe chain method will always succeed in eliminating a color.

The Bad Example

It took a dozen years, but Heawood (also de la Vallée Poussin) saw the flaw in Kempe’s
argument. When dealing with theR, G, B, Y, G case just described, it can happen that
one color switch can demolish a protective fence. Heawood’sexample is often quoted,
but in fact there is a better refutation, due to A. Errera [3],that provides an explicit
graph on which Kempe’s algorithm, the one just outlined, fails. That graph, which I
call the Errera graphE, has 17 vertices and is nicely realized as a map on the sphere.
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Figure 2. The Errera graph, drawn in the plane, and also as a map on a sphere. In the
latter form it is the fullereneC30.

When all the vertices except 1 are colored, Kempe’s method runs into an impasse (see
Fig. 3). Vertex 1 has two green neighbors, 10 and 12. The chain(red edge in figure)
from 12 to yellow (3) works and eliminates one of the greens, but causes a switch in
7’s color from yellow to green, which breaks the protective red–yellow fence around
10 and causes the other green chain (purple in figure), from 10to 5, to fail.
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Figure 3. Kempe’s algorithm on the Errera graph leads to an impasse, since the chain
method fails to color the remaining vertex.

But the Kempe chain idea is so pretty, and counterexamples sorare, that it is not sur-
prising that it leads to a good algorithm. The Errera graph isa counterexample only if
it is labeled in a certain way. Empirical trials shows that roughly 10% of the labelings
cause a problem; for 90% of the labelings, the Kempe order is different and the im-
passe does not arise. So one attack on the 4-color problem is:give the graph a random
labeling and try Kempe’s algorithm; if it fails, relabel andretry; continue. That will
work for E. But it will fail badly on, say, 30 disjoint copies ofE. For if 90% of the
E-labellings are good, then only 4% of the labelings of 30E are good! As we will see,
a simple modification turns this algorithm into one that, apparently, works much better.
But we are left with an intriguing question regarding the random Kempe algorithm just
presented, maely: Does it always halt?

QUESTION. Is it true that any planar graph admits a labeling for which Kempe’s col-
oring method works? That is, does the algorithm just described — the ”relabel and
retry” strategy — always halt?

3. Kittell’s Improvement

Irving Kittell in 1935 had some ideas that he hoped would leadto a solution of the four
color problem. From a computational viewpoint, his ideas can be viewed as leading to
the following method: To eliminate the impasse that Kempe’smethod might run into,
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make color-switches on Kempe chains connecting two randomly chosen neighbors,
even when those neighbors are consecutive and adjacent to each other. Note that Kempe
would never have looked at such a color-switch, since it clearly will not free up a color.
Kittell’s point is that, nevertheless, it might cause a change that leads to resolution later.
For the Errera graph, if one follows Kempe’s method until theimpasse and then tries
random Kittell chain switches, then the impasse gets resolved in a small number of
steps. In a typical case, it took 13 random switches to get to aposition where only
three colors appear among the five neighbors of vertex 1, leaving the fourth free to use
on 1. The chosen pairs, after the switch on (12,7), were (10,5), (3,14), (10,12), (17,8),
(12,10), (3,5), (5,12), (3,10), (10,5), (10,3), (5,3), and(12,6). In the last case the chain
from 12 did not reach the target, 3, which is what freed up a color. In the (3,14) and
(17,8) cases the chain did not reach the target either, but this did not free up a color,
since the color at the start of the chain appeared twice.
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Figure 4. Eleven random Kempe switches resolve the impasse and free up red for the
remaining vertex.

Thus we can formulate the following coloring algorithm. A variation on this idea
is studied in [9]; they looked at many instances and made conjectures about running
times. They also considered some other algorithms.

The Kempe–Kittell Algorithm.

1. Given a planar graph, label the vertices randomly. 2. Get the Kempe order of the
vertices, by removing a vertex of degree 5 or less, and repeating until only a single
vertex is left. 3. Color the single vertex red. 4. Add vertices back in the reverse order
in which they were removed, coloring them as follows: i. Follow Kempe’s method to
the letter, switching colors on chains defined by nonconsecutive vertices in an attempt
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to free up a color. ii. If Kempe’s method fails, use Kittell’srandom Kempe-chain-
switches until the impasse is resolved.

As before, a proof that this will always work is lacking. But it seems to work very well
in practice, and has no problem getting a 4-coloring of the graph consisting of multiple
copies of the Errera graph. The following conjecture was stated in [6].

CONJECTURE. The Kempe–Kittell algorithm always halts.

4. From a Map to a Graph

Given a planar map, with countries that are polygons, the simplest way to color it is
to apply an algorithm to a planar representation of the adjacency graph (where each
country is a vertex, and two vertices are adjacent if the countries share a part of a linear
border). While simply having the abstract information about the cyclic ordering of
neighbors around each country is adequate, it is more satisfying to turn the map into
a planar graph, and then apply an algorithm that is set to workon graphs. Here is
one way to do that (Wagon [13]), where the map is assumed to be given as a finite
set of points, along with index sets delineating the points forming the border of each
polygonal country.

1. For each country, locate a ”capital” by triangulating thepolygon and choosing the
centroid of the largest triangle.

2. For each country, use the triangulation to generate a treeof triangles, and generate
paths from the capital to the center of each border segment byuniformly dividing the
diagonals that separate the triangles.

3. For each pair of adjacent countries, choose one of the border segments that are
shared and form the piecewise linear curve from the capital of one country to the center
of the chosen border edge, and then on to the capital of the second country. This
construction yields a planar graph with edges that stay entirely within the two countries
that they represent; see Figs. 5 and 6. In Fig. 6, Michigan is taken to be one state, and
Lake Michigan is added as a region to keep the map simply-connected (so that Euler’s
formula applies).
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Figure 5. A triangulation yields disjoint paths from the capital of the polygon — the
(yellow) centroid of the largest triangle — to the midpoint of each edge.

Figure 6. Choosing paths for each adjacency yields a system of broken lines that defines
the adjacency graph of a map, here a part of north-central U.S.
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It is not hard to further refine the edges in a couple of ways: The edges can be straight-
ened by eliminating corners and checking, at each step, thatthe resulting drawing is
still planar; and this can be done repeatedly. Or one can replace the broken lines with
Bézier curves. I have programmed this to some extent (Fig. 7).

Figure 7. The adjacency graph of the map in Figure 6, using Bézier curves to smooth
the edges.

And now we can put it all together to solve the hoax by computer. Figure 8 shows the
adjacency graph for the April Fool’s map, and Figure 9 shows amachine generated
4-coloring of the map using Kempe’s method. There are no impasses, so Kempe’s
method, in the exact form he envisioned, has no problem coloring it.
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Figure 8. The adjacency graph of the April Fool’s map.

Figure 9. A 4-coloring of the April Fool’s map obtained by Kempe’s algorithm.
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5. A Penrose Application

When applying the preceding map-coloring ideas to Penrose tilings, Wagon noticed
that they seemed to use only three colors. The question as to whether any Penrose tiling
could be 3-colored turned out to have been posed by John H. C. Conway many years
ago. Sibley and Wagon [12] found an amazingly short proof that Penrose rhombus
tilings are 3-colorable: it turns out to be quite easy to showthat any such finite tiling
has a tile with 2 or fewer neighbors. Indeed, this is true for any tiling by parallelograms
that meet edge-to-edge or vertex-to-vertex (meaning: two tiles intersect in a full edge of
each, a vertex of each, or not at all). It follows by inductionthat every such finite tiling
is 3-colorable, and then from a general result about infinitegraphs that any infinite
tiling is 3-colorable. The case of Penrose kites and darts isharder, and was done later
by W. Paulsen and R. Babilon, independently [2]. A first question (Sibley [11]) is
whether any finite collection of parallelepipeds in 3-spacethat meet either face-to-
face, edge-to-edge, vertex-to-vertex, or not at all, has one that has three neighbors at
most. If this were true, then any such 3-dimensional map — thecountries being the
interiors of the boxes — would be 4-colorable. But the hoped-for result is false. A
counterexample appears in [10], reproduced in Figure 10. The question whether such
maps are 4-colorable remains open.

Figure 10. A 3-dimensional map made up of boxes that meet neatly and such that every
box has four or more neighbors.
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Returning to the traditional planar situation, we can take aspherical view of maps using
parallelograms. Namely, consider such a map having the topology of a sphere; that is,
imagine a convex polyhedron whose faces are all parallelograms. Is this planar map
3-colorable? Such polyhedra, in the more general situationwhere the faces can be2n-
gons with opposite sides parallel, are calledzonohedra, and these objects exhibit a lot of
structure. Much has been written about them (see the treatise by Bjorner et al [1]). Yet
apparently the coloring of the faces has not been considered. But under another guise,
the question has been considered. It turns out that the map ofthe zonohedral surface
is equivalent to the arrangement graph of great circles on a sphere. By this is meant
any collection of great circles on the sphere such that no three have a point in common;
the vertices of the graph are the intersection points of the circles, and the edges are
the arcs connecting neighboring points. Felsner et al [4] raise the interesting question
of whether such arrangement graphs are 3-colorable, and that question remains open.
Steven Tedford (Franklin & Marshall College) has recently shown that if there arem
great circles and they somewhere form anm-gon, then the entire arrangement is 3-
colorable. The great circles are easily projected onto the plane, where they become
circles. But circle graphs in the plane can require four colors, as proved by Koester [8].
His example is shown in Figure 11.

Figure 11. An arrangement of circles in the plane that leads to a graph requiring four
colors.

Acknowledgement: I am grateful to Joan P. Hutchinson for many valuable contribu-
tions at all stages of the preparation of this paper.
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