
Engineering Planar Separator Algorithms ∗

Martin Holzer† Grigorios Prasinos‡ Frank Schulz† Dorothea Wagner†

Christos Zaroliagis‡

July 12, 2005

Abstract

We consider classical linear-time planar separator algorithms, determining for a given planar
graph a small subset of the nodes whose removal separates the graph into two components of similar
size. These algorithms are based upon Planar Separator Theorems, which guarantee separators of size
O(
√

n) and remaining components of size less than 2n/3. In this work, we present a comprehensive
experimental study of the algorithms applied to a large variety of graphs, where the main goal is
to find separators that do not only satisfy upper bounds but also possess other desirable qualities
with respect to separator size and component balance. We propose the usage of fundamental cycles,
whose size is at most twice the diameter of the graph, as planar separators: For graphs of small
diameter the guaranteed bound is better than the O(

√

n) bounds, and it turns out that this simple
strategy almost always outperforms the other algorithms, even for graphs with large diameter.

1 Introduction

The Planar Separator Theorem was introduced by Lipton and Tarjan in [13], where they give a linear-
time algorithm for determining a set of nodes (separator) of size smaller than 2

√
2n ≈ 2.83

√
n that

separates a given planar graph with n nodes into two components of size smaller than 2n/3. Djidjev [7]
improved the bound on the separator size to

√
6n ≈ 2.45

√
n, and also proved a lower bound of 1.55

√
n,

which is still the best known. The algorithms behind these two classical results share a common core
algorithm, which determines an appropriate fundamental cycle in a planar graph that contributes to the
sought separator.

Since then, a lot of generalizations and extensions have been made, and the upper bound on separator
size has been improved by Alon, Seymour and Thomas [2] to 2.13

√
n and by Djidjev and Venkatesan [8]

to the currently best known bound of 1.97
√

n (where the aforementioned core algorithm is used as a
subroutine, too). A recent work by Alexandrov et al. [1] considered a generalization of planar separator
algorithms that computes t-separators: nodes have associated costs and weights, which are used in
calculating the cost of the separator and the weights of the components resp.; the weight of each remaining
component is required to be less than or equal to t ·w(G), where t is an arbitrary constant in (0, 1) and
w(G) the total weight of the graph. This typically requires the graph to be separated into more than
two components, and with t = 2/3 and unit weight and cost includes the basic variant of the problem,
as introduced above. The paper includes experimental study on a few synthetic and real-world families
of graphs. For comparison, we consider some of the families used in [1] in our experiments.

We are not aware of a systematic and detailed experimental study regarding the classical algorithms by
Lipton and Tarjan [13], and by Djidjev [7]. In this work, we do not only investigate finding separators that
satisfy upper bounds, but we also consider several new algorithmic aspects regarding: (i) the optimization
of separator size and balance; (ii) the consideration of fundamental-cycle separator algorithms in their
own right; and (iii) the application of postprocessing techniques to improve the quality of the separators.
The fundamental-cycle separator algorithms guarantee a bound on the separator size of 2d + 1, where d
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denotes the diameter of a triangulation of the input graph. When the diameter is small, which is often
the case for real-world graphs, this guarantees smaller separators than the O(

√
n) bounds of the classical

algorithms.
Our main contribution in this work is the comprehensive experimental study of the above issues.

It turned out that the behavior of the algorithms depends highly on the input graph: for example, on
very regular graphs like grids a level of a breadth-first search tree (which is the first attempt of the
classical algorithms) is already an almost optimal separator, whereas for more irregular and real-world
graphs (e.g., road map graphs) the classical algorithms yield relatively bad solutions. Hence, for our
experiments we used a large variety of planar graphs, both from real-world and synthetic inputs with
different characteristics (e.g., size of diameter, size of minimum separator, etc). A surprising outcome of
our experimental investigation is that fundamental-cycle separator algorithms always provide the best
solutions. Another important issue of our experimental analysis concerns the arbitrary choices that have
to be made during the course of an algorithm (e.g., the choice of a node as the root of a breadth-first
search tree). It turns out that such choices influence the quality of the separators found significantly.

It should be noted that, although [1] deals with separators of planar graphs, the focus of our paper
is different. We perform a more thorough experimental analysis regarding the classical algorithms,
examining the interesting case of two balanced components and a small separator. We develop heuristics
for improving the quality of the separation and the execution time. We use many kinds of graphs,
both artificial and real-world (some of very large size), studying the effect of their characteristics on the
execution time of the algorithm and on the heuristic techniques we employ.

We start (Section 2) with a brief review of the planar separator algorithms and their implementa-
tions, give our optimization criteria, and introduce the fundamental-cycle separator (FCS) algorithm.
Moreover, we present the postprocessing techniques applied and address the issue of practically in the
implementation of the FCS algorithm. Section 3 describes the graphs used for our experiments, while
the results of our experimental study are reported in Section 4. We conclude in Section 5.

2 Separating Planar Graphs

In this section, we consider classical linear-time planar separator algorithms implementing the Planar
Separator Theorem as stated below. The node separators computed by the different algorithms fulfill
different upper bounds β

√
n, for some constant β, on the separator size, while each of the remaining

components contains less than two thirds of all nodes. The first theorem of this kind (for β = 2
√

2)
and the Fundamental-Cycle Lemma, which constitute the foundation of our work, were introduced by
Lipton and Tarjan [13]. For simplicity, we state the theorem and its related algorithms for the case of
an unweighted planar graph. The algorithms and our implementations work for the weighted case, as it
is introduced in [13], as well.

Theorem 1 (Planar Separator Theorem) Given a planar graph G, the n nodes of G can be parti-
tioned into three sets A, B, and S such that no edge joins a node in A with a node in B, neither A nor
B consists of more than 2n/3 nodes, and S contains no more than β

√
n nodes, where β is a constant.

An important concept used in the theorem are fundamental cycles: given a spanning tree of the input
graph, a fundamental cycle consists of a non-tree edge e together with the path connecting the two
end-nodes of e in the spanning tree.

Lemma 1 (Fundamental-Cycle Lemma) Let G be a connected planar graph. Suppose G has a span-
ning tree of height h. Then, the nodes of G can be partitioned into three sets A, B, and C such that no
edge joins a node in A with a node in B, neither A nor B consists of more than 2n/3 nodes, and C is a
fundamental cycle containing no more than 2h + 1 nodes.

2.1 Optimization Criteria

In practical applications of planar separator algorithms, requirements as to “good separations” may vary
a lot. We therefore provide three optimization criteria: separator size, balance, and separator ratio. Let
A be the smaller and B the larger of the two components, then balance is defined as A/B, and the
separator ratio as S/A (cf. [12]). What is desirable are small separator size and high balance at the
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same time; the separator ratio, which is to be minimized, represents a trade-off between the two targets.
Note that if one of the simple criteria, separator size or balance, is to be optimized and there are several
optimal solutions, then the separator ratio criterion becomes relevant.

2.2 The Algorithms

We investigate two classical algorithms, by Lipton and Tarjan (LT) [13] and by Djidjev (Dj) [7]. Both
work in three phases. First, a breadth-first search (BFS) tree is computed, partitioning the nodes into
levels. If one of the BFS levels constitutes a separator fulfilling the size and balance requirements, then
the algorithm returns that level. In case there are several feasible levels and an optimization criterion
is applied, the respective algorithm selects a level that is optimal with respect to that criterion. In the
second phase, separators consisting of two levels of the BFS tree are considered, yielding a separation of
the tree into a lower, middle, and upper part of the graph. If there is a separator such that the biggest
of these parts and the remaining two put together each meet the bound, it is returned. If not so, the
third phase applies Lemma 1 to one part of a previous two-level separation. In this case, the separator
consists of those two levels and the fundamental cycle found through the lemma. The algorithms differ
in the selection of the levels, as described in more detail below. We also consider fundamental-cycle
separations computed by applying (the algorithmic version of) Lemma 1 directly to the graph.

Note that there are several parts in all the above algorithms, where certain arbitrary (in a sense
“random”) decisions have to be made: (i) the choice of the BFS root and the search itself; (ii) the
triangulation of the graph, which is needed in phase 3 of the algorithms; (iii) the choice of the funda-
mental cycle from among several feasible ones—the so-called choice of the non-tree edge, as explained in
Section 2.4. We will thoroughly discuss the influence of the choices of the BFS root and the non-tree
edge in Section 4.

Lipton and Tarjan (LT). First, the middle level in the BFS tree is considered, i.e., the first level,
starting from the root, that covers together with the lower levels more than half of the nodes. If this
level is too large, the levels above and below are scanned until in each direction a level of size less than
2(
√

n − D) is found, where D is the distance to the middle level. If the part between these two levels is
too large then Lemma 1 is used to separate it and in this case the separator consists of the two levels plus
a fundamental cycle. We consider a textbook version [14, 11] of the algorithm guaranteeing a separator
of size less than 4

√
n, i.e., β = 4.

Djidjev (Dj). Already in [13], Lipton and Tarjan give an even better bound, and in [7] Djidjev further
improves the selection of levels to β =

√
6 ≈ 2.45. In a similar but more sophisticated way than that in

LT, the algorithm tries to find a separator consisting of one or two levels of the BFS tree (which have to
be smaller than in LT), and as final option also determines a fundamental cycle.

Fundamental-Cycle Separation (FCS). During the experimental phase of this study, we observed
that it is very effective to omit the selection of levels and directly consider fundamental cycles as sep-
arators: We compute a simple-cycle separator by applying Lemma 1 directly to the input graph. The
height of any spanning BFS tree is smaller than the diameter d of the graph, and thus, for BFS trees,
the fundamental cycle C computed by Lemma 1 is a separator with no more than 2d + 1 nodes. The
minimum height of a spanning tree equals the radius r of the graph, and in this case the fundamental
cycle can be guaranteed to contain no more than 2r + 1 nodes. A spanning tree of height r can be
computed in time O(n2) simply by computing the breadth first search trees originating from every node
in the graph. Hence, FCS computes, in linear time, a separator of size no more than 2d + 1, and, by
investing quadratic time, even a separator of size 2r + 1 can be guaranteed.

Simple-cycle separators are also promising from a theoretical point of view, since an upper bound on
the separator size of 1.97

√
n, which is (to our knowledge) the best bound in n that is currently known [8],

is achieved by a simple cycle.1 For graphs of small diameter and radius, the FCS approach guarantees

1The algorithm used in the proof of the 1.97
√

n bound is rather sophisticated, and since the simple-cycle separators
obtained by FCS are (often by far) smaller than this bound for all graphs we are considering, we restrict our experiments
to FCS concerning simple-cycle separators.
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a better bound than the β
√

n bounds, whereas in general, of course, the β
√

n bounds are stronger since
the maximum diameter and radius of planar graphs are linear in the number of nodes.

Optimized versions. We have also implemented optimized versions of LT, Dj, and FCS that select
an optimal separator according to a specific optimization criterion (cf. Section 2.1).

2.3 Postprocessing

To the above algorithms we provide two optional postprocessing steps, which may help to improve the
separation found by the specific algorithm in terms of separator size and/or balance. The first one, called
node expulsion, consists of moving separator nodes that are not connected to both components A and
B (and hence do not actually separate two nodes from different components) to one of the components,
thus decreasing the size of the separator. If a node can be moved to either component, then it is assigned
to the smaller one, so that imbalance does not deteriorate. The idea behind the other postprocessing
step, called the Dulmage-Mendelsohn optimization [3], is to detect a subset of the separator, ∅ 6= S′ ⊂ S,
such that the subset B′ ⊂ B, consisting of nodes that are adjacent to S′ and belong to the larger
component B, is smaller than S′. Then, the separator is modified by removing the nodes in S′ and
adding the nodes in B′. The size of the new separator is smaller than the original one, and the balance
may be improved as well. This decreases the size of the separator and may also reduce imbalance. More
precisely, S and the set of nodes in B adjacent to S, Adj(S) ∩ B, are decomposed into SI , SX , and SR

and BI , BX , and BR, respectively, forming the Dulmage-Mendelsohn decomposition. Setting S′ = SI

and C = BX = Adj(SI) ∩ B reduces the separator size if and only if |SI | − |BX | > 0, and this S′ is
one subset of S yielding maximum reduction. A similar fact holds for S′ = SI ∪ SR and C = BX ∪ BR,
so that we pick from among these choices of S′ that one yielding better balance. For details on the
construction of S′ we refer to [3].

2.4 Implementing the Fundamental-Cycle Lemma

The proof of Lemma 1 given by Lipton and Tarjan in [13] is a constructive proof in the sense that it
delivers an algorithm for computing the desired fundamental cycle. This algorithm provides the core to
all planar separator algorithms under investigation. Briefly, the algorithm, which will be referred as the
Fundamental-Cycle Separator (FCS) algorithm, is as follows. The graph is triangulated and a spanning
tree of the appropriate height is constructed. Every non-tree edge forms together with some tree edges
a cycle. Each of these cycles is a candidate fundamental cycle separating the graph into two parts, so
the goal is to find a cycle such that these two parts have the appropriate sizes. The optimized version of
the FCS algorithm selects a cycle that induces an optimal separator according to a specific optimization
criterion.

The FCS algorithm proceeds by examining each non-tree edge and the corresponding cycle, keeping
track of the nodes on the cycle as well as of those inside it and their weight. Depending on whether the
two edges, which form together with the current non-tree edge the triangular face lying inside the cycle,
belong to the tree, the algorithm combines information computed for previous cycles until the desired
cycle is found (e.g., in the case that one of the other two edges is non-tree and its corresponding cycle
lies inside the current cycle). It is relatively straightforward to show that this strategy will compute a
fundamental cycle.

Although the description of the algorithm is clear, there is a subtle problem of how to deal with
the notions inside and outside. To compute correctly the information about cycles, there must be a
sense of direction so that the non-tree edges are examined in a meaningful order. Our approach provides
this sense of direction. We make use of the dual of the planar graph. The following well-known lemma
provides an interesting property linking the spanning trees of a planar graph and its dual.

Lemma 2 Let G = (V, E) be a connected planar graph with dual G∗ = (V ∗, E), and let E′ ⊆ E. Then,
T = (V, E′) is a spanning tree of G iff T ∗ = (V ∗, E − E′) is a spanning tree of G∗.

The given planar graph G is triangulated, a spanning tree T = (V, ET ) of appropriate height is found
using a simple breadth-first search, and the dual G∗ is constructed. By Lemma 2, the edges E − ET

form a spanning tree T ∗ = (V ∗, E −ET ) of G∗. A node of T ∗ is chosen (arbitrarily) to be the root of T ∗
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graph nodes edges diameter radius LT Dj FCS
orig triang orig triang min mean min mean min mean

grid 10000 19800 198 67 100 50 82 106 82 106 89 99

rectangular 10000 19480 518 20 260 10 20 27 20 27 20 20

sixgrid 9994 14733 513 22 257 11 21 28 21 28 21 21

triangular 5050 14850 99 45 66 34 58 83 58 83 58 68

globe 10002 20100 101 101 76 67 100 119 100 119 100 106

t-sphere 10242 30720 96 96 80 80 160 169 160 169 160 164

diameter 10000 29994 3333 3333 1667 1667 3 4 3 4 3 3.3

del 10000 25000 56 45 46 36 206 300 82 113 65 75

del-max 10000 29971 52 48 43 39 204 314 86 117 74 79

leda 9989 25000 18 15 11 8 76 216 7 31 5 8

leda-max 10000 29975 15 14 9 8 56 205 7 26 6 10

c-grid 10087 19904 212 72 106 36 38 78 38 78 5 6.4

c-globe 10090 20325 144 142 73 71 4 96 4 96 4 12

c-del-max 10005 29972 65 58 34 29 74 318 19 65 5 8.3

c-leda-max 10005 29984 20 16 11 8 78 209 7 32 4 4.5

airfoil1 4253 12289 65 31 36 21 50 89 26 85 26 35

city2 2948 3564 131 14 66 9 15 39 15 39 4 9.5

city3 15868 16690 658 13 329 9 28 53 28 53 4 6.8

Table 1: Large graphs: parameters and results. The table depicts the number of nodes and edges, the
diameter and the radius for both the graph itself (orig) and a triangulation of it (triang) as well as for
each of the algorithms LT, Dj, and FCS, all of them optimized on separator size with postprocessing
applied, the minimum and mean separator sizes over all BFS root nodes; bold-face and italic figures
indicate the best result(s) for the respective graph.

and all edges of T ∗ are directed away from this root. It can be easily proven that all these constructions
require linear time.

Since there is a one-to-one correspondence between the non-tree edges in the original planar graph
and the tree edges of the dual, there is a correspondence between the cycles in the original and the tree
edges of the dual graph. By first examining the cycles corresponding to the edges that lead to the leaf
nodes of T ∗ and continuing towards the root, the properties of all the cycles can be computed inductively.
The direction of the edges in T ∗ ensures that when examining a cycle, all information needed (from cycles
that lie inside it) will have been already computed.

Evidently, our strategy provides the necessary order of cycle examination. It should be noted that in
the actual implementation of the algorithm the construction of the dual graph and its spanning tree can
be avoided. Instead, the construction of the spanning tree is simulated by performing a “breadth-first”
traversal on the faces of the original graph using the non-tree edges. We keep track of the edges that
are used to “enter” a face and then examine them in the reverse order of their discovery. The result is a
correct and reasonably efficient implementation.

3 Data Sets

In the following, we give a brief description of the graph classes we used in our experiments and are
illustrated in Figure 1. Some parameters of the graphs that we used in the experiments (see Section 4)
are reported in Table 1. The first five categories consist of synthetically generated graphs, whilst the
data sets in the last stem from real world.

Grid-like graphs. This category encompasses three classes of regular-structured graphs, namely grid,
rect(angular), sixgrid, and triang(ular). The grid and rect graphs can be regarded as an x × x
or x× y raster of nodes, respectively, where adjacent nodes of the same row or column are connected by
an edge. A sixgrid graph is composed of x × y hexagons in a honeycomb-like fashion, and a triang

graph is generated iteratively as follows: starting with one triangle, in each iteration in the middle of
every edge a new node is placed, and for each inner triangle three new edges are added that connect the
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Figure 1: Sample graphs. From top to bottom and left to right: t-sphere, del, sixgrid, city5,
diameter, and c-del-max. Nodes belonging to a component are drawn as red (grey) and blue (black)
circles, separator nodes as black squares.
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three new nodes on the edges of the respective triangle. In a grid graph with n nodes a separator with
minimal size consists of approximately

√

2n/3 ≈ 0.82
√

n nodes. If x ≪ y, then the smallest separator
of a rectangular graph has x nodes, and a sixgrid graph has an optimal separator with x + 1 nodes.

Sphere approximation. In [7] the currently best lower bound of 1.55
√

n on the separator size is
proven by graphs that approximate the sphere. We consider two simple constructions of graphs that
approximate the sphere, as worst-case examples concerning separator size. A globe graph is—simply
speaking—the graph induced by (a specified number of) meridians and circles of latitude of a terrestrial
globe. A t-sphere graph approximates the sphere by almost similar triangles, see e.g., [5]. The iterative
generation process starts with an icosahedron (consisting of 20 equilateral triangles with all nodes on the
sphere). During an iteration each triangle is split into four smaller ones.

Graph with big diameter. Given a diameter d, we construct a maximal planar graph that consists
of 3d + 1 nodes and has diameter d. We refer to this class as diameter. By construction, such a graph
has always a separator of size 3.

Random planar graphs. Random maximum planar graphs, denoted by del-max and leda-max, are
generated such that the specified number of nodes are randomly placed in the plane and the convex
hull of them is triangulated, the triangulation being a Delaunay triangulation (del-max) or a standard
LEDA-triangulation [15] (leda-max), respectively. In addition, we have the del and leda graphs, which
are obtained from del-max and leda-max, respectively, by deleting at random a specified number of
edges. We will occasionally refer to del and del-max (leda and leda-max, resp.) as the Delaunay
(LEDA, resp.) graphs.

Graphs with small separators. Given a planar graph, two copies of this graph are connected via
a given small number of additional nodes, which constitute a perfectly balanced separator of a so con-
structed graph. The challenge of the algorithms is to re-determine these small separators. We consider
four of the previous graph types and get the following new kind of generated graphs: c-grid, c-globe,
c-del-max, and c-leda-max graphs.

Real-world graphs. Regarding real-world data, we consider a graph representing a finite-element
mesh [6] (airfoil1), and seven graphs representing the road networks of some U.S. cities and their
surrounding areas (referred to as city), taken from the San Francisco Bay Area Regional Database
(BARD) [4] and the Environmental Systems Research Institute (ESRI) info-page [9].

4 Experiments

Our experimental study is subdivided into three parts encompassing graphs of increasing size. The three
algorithms LT, Dj, and FCS have been implemented in C++ using the LEDA library [15] (version 4.5).
The code is compiled with GCC (version 3.3.3) and the experiments were performed on a 2.8 GHz Intel
Xeon machine running a Linux kernel (version 2.6.5).

4.1 Small Graphs

For each of the generated graph types grid, rect, sixgrid, globe, del, leda, del-max, and leda-max,
we considered series of 20 graphs containing between 50 and 1000 nodes. We take into account all
algorithms, LT, Dj, and FCS, optimized on separator size, and each node was once chosen as BFS root.
As already described above, if more than one smallest separators have been found, the one with best
balance is selected.

Separator size and balance. Concerning the grid-like and globe graphs, the differences between the
three algorithms are quite small. Due to the regular construction of these graphs, LT and Dj always
succeed right after the first phase, and the smallest BFS level is almost optimum. The mean size of
a fundamental-cycle separator is always slightly smaller and yields better balance. For the randomly
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Figure 2: Experiments with a series of Delaunay graphs of sizes ranging from 50 to 1000 nodes: The
upper diagrams show the mean separator size (top left) and mean balance (top right) with LT, Dj, and
FCS. The lower diagrams show for FCS the ranges of the mean separator size (bottom left) and mean
balance (bottom right), comparing BFS root and non-tree edge selection.

generated graphs, the results are different. Although for the Delaunay graphs, LT always terminates
after the first phase with a smallest valid BFS level, Dj applies for around 15 per cent of the BFS roots
the last phase of the algorithm.

In Figure 2, the diagrams in the upper row show the mean values of separator size and balance for
the case of Delaunay graphs. It can be clearly seen that FCS computes on average the best separators,
while Dj is slightly better than LT. Considering the LEDA random graphs, the results are again different:
With those, both LT and Dj always have to pass the third phase. The mean separator size of FCS is
only slightly better than that of Dj, while LT is by far worse. The mean balance with LEDA graphs is
similar for all three algorithms, in the range between 0.8 and 0.9.

BFS root and non-tree edge selection. The lower diagrams in Figure 2 show the influence of
BFS root selection and non-tree edge selection on separator size and balance. For FCS applied to the
Delaunay graphs, the range of the mean of both the separator size and balance values are depicted,
either over all possible BFS root nodes or over all possible non-tree edges. For example, the range of the
mean separator size over all possible BFS root nodes is defined as follows: For every BFS root, determine
the mean separator size over all possible non-tree edges. Then, the wanted range of the mean is the
difference between the maximum and the minimum of these separator sizes among all BFS root nodes.
The other ranges are defined similarly. The diagrams show that selection of the BFS root node is more
decisive for the separator size than non-tree edge selection. Concerning balance, both selections are of
similar importance.

4.2 Large Graphs

The second series of graphs that we experimented with, the large graphs, consists of 16 graphs of the
categories mentioned in Section 3 of size roughly 10000 (except for the three real-world graphs, which
have between 3000 and 16000 nodes). The rectangular graph represents a 20×500 raster, the sixgrid
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Figure 3: Box plots depicting the separator sizes relative to
√

n obtained with unoptimized LT (light-
gray) and LT (gray), Dj (dark-gray), and FCS (black), the latter three optimized on separator size. The
dashed lines indicate the range of all separators without postprocessing applied.

graph consists of 20×237 hexagons, the globe has 100 meridians and circles of latitude, and the t-sphere
is constructed by 5 iterations. For c-grid, c-del-max and c-leda-max, the two copies of the respective
graph are connected by 5 nodes, while for c-globe only 4 nodes are used to connect the two globe

graphs. A detailed synopsis of the graphs and some of their characteristics, such as the diameter and
the radius, for both the original (orig) and the triangulated graph (triang), respectively, are reported in
Table 1.

In the first experiments that we carried out for large graphs, we investigated the performance in terms
of separator size of LT, both unoptimized and optimized on separator size, Dj, and FCS, the latter ones
also optimized on separator size. We ran each of these algorithms for each graph while once making each
node the root of the BFS tree.

The subsequent experiments deal with the effect of postprocessing on the various algorithms. In order
to appropriately choose the postprocessing variant to be performed with each optimization criterion, we
undertook a pre-study, performing for each graph and each combination of optimization and preprocessing
steps one run of each of the above algorithms.

To get an idea of the quality of the separators found by the algorithms, we compare them against
separators obtained with the help of MeTiS [10], a graph partitioning tool collection. Separators de-
termined by MeTiS are a trade-off between separator size and balance, so for the sake of a meaningful
comparison, we contrast the MeTiS results and our algorithms optimized on separator ratio.

Pre-study. Figure 4 depicts average values of the separator reduction relative to the former separator
size and the absolute improvement in terms of balance and of separator ratio. These results suggest that
optimization of separator size and separator ratio should be accompanied by a combination of Dulmage-
Mendelsohn optimization as the first postprocessing step and node expulsion afterwards; the same holds
when not optimizing at all. With balance as optimization criterion, no postprocessing step is on the
average able to improve balance further.
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separator ratio); the lower one stands for postprocessing (-: none, E: node expulsion, D: Dulmage-
Mendelsohn decomposition), where double letters reflect the application order of the postprocessing
steps.
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Figure 6: Minimum separator sizes relative to
√

n (left) and balance (right) computed with MeTiS
(light-gray) and with FCS (black) optimized on separator ratio.

Main results. The results of the experiments regarding the separator sizes achieved by the various
algorithms are listed in Table 1, and illustrated in Figure 3 by means of box plots that represent the
middle fifty per cent of the data series (note that the whiskers here span the whole range of outcomes).
The data shows that—except for the grid graphs—the smallest minimum separator is found by FCS,
and concerning the mean separator size FCS achieves the best result for all graphs under consideration.
This, together with the fact that the boxes are clearly slender, and—except for c-globe—the ranges are
minimal for FCS, suggests that FCS significantly outperforms the other algorithms in terms of separator
size. In particular, this behavior is surprising for graphs with rather big diameter d and radius r (e.g.,
c-globe, globe, and diameter), since the guaranteed bound on the separator size is 2d + 1 (2r + 1,
respectively; cf. the description of FCS on page 3) for FCS.

For regular-structured graphs (i.e., grid-like, sphere approximation, and the diameter graphs) the
separator sizes are similar and quite high for the three algorithms. For irregular graphs (i.e., leda, the
graphs with small separator, and the real-world graphs), the picture looks different: The Dj algorithm
always yields better results than the LT algorithm, and FCS is clearly superior to both Dj and LT.
Furthermore, the minimum and mean separator sizes computed by FCS are by far below the guaranteed
upper bounds.

The running time considering one BFS root node is linear for all of our algorithms. However, for the
algorithms LT and Dj, the constant crucially depends on the phase in which the algorithms terminate
(cf., Section 2.2). The first two phases consist basically of a breadth-first search, while the computation of
the fundamental cycle requires expensive operations like embedding, triangulation, and copying. FCS, of
course, computes a fundamental cycle and always needs the expensive operations. LT and Dj terminate
after phase 1 with all grid-like graphs, sphere-approximating graphs, and with the diameter, c-grid,
c-globe, and city graphs. In contrast, the LEDA, c-del-max, and c-leda-max graphs in the majority
of cases require phase 3. For the Delaunay graphs, LT mostly terminates after phase 1, but Dj needs
phase 3. The mean running time for LT (applying only phase 1) in the city3 graph, for example, is 0.04
seconds, while FCS involving a fundamental-cycle computation needs 0.71 seconds.

Postprocessing. Figure 5 depicts the average separator size achieved with the diverse algorithms
before and after the application of a postprocessing step. On the one hand, for the grid-like and sphere-
approximating graphs as well as the diameter graph, the separators found by the algorithms without
postprocessing cannot be much improved. (Often the separators are already close to optimal solutions for
these graphs.) On the other hand, for the remaining graphs, the separators computed by the algorithms
Dj and LT are very large compared to an optimal solution, and in these cases the postprocessing greatly
improves the separators. The separators computed by FCS can generally be improved only a little.

Benchmark. MeTiS provides—amongst others—implementations of two algorithms, kmetis and pmetis,
for computing small-cardinality k-way edge partitionings with balancing constraints. The application of
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both kmetis and pmetis on all of our instances yield 2-partitionings of very high balances (meeting the
requirement that each part encompass at least one third of the graph’s nodes) with quite few cut edges.

From an edge partitioning thus obtained we can get a node separator by choosing an appropriate
subset of the end-nodes of the edges forming the cut. To achieve this, our implementation proceeds as
follows: at each time, until all cut edges are covered, i.e., have one of their end-nodes included in the
separator, we pick one end-node as a separator node, trying to cover with it as many cut edges not
covered yet as possible.

Since among LT, Dj, and FCS optimized on separator ratio, the solutions computed by FCS were the
best with respect to both separator size and balance, we compare MeTiS with FCS only. Figure 6 shows
the best separator size and balance values. One may state that with FCS, the separator size is always at
least as good as with MeTiS and balance is almost always comparable. Those graphs whose balance is
considerably worse with FCS than with MeTiS (leda and city2) exhibit by far smaller separators with
FCS, which suggests that the weighting between the two criteria, separator size and balance, seems to be
more in favor of separator size with FCS, while MeTiS tends to prefer balance. Indeed, almost perfect
balance can always be achieved with FCS optimized only on balance.

4.3 Very Large Graphs

Under the name of very large graphs, we consider two series of graphs increasing in size: a series of city
graphs with numbers of nodes up to about 45,000 and a series of ten random del graphs of sizes between
50,000 and 500,000. For these graphs we computed separations by the following linear-time procedure:
run FCS on ten BFS trees of a given graph, determined by a random node as root, and from among
these separations take the one with best separator ratio.

The results of the experiments with the city graph graph nodes edges size balance
city1 1429 3034 5 0.871
city2 2948 3564 8 0.996
city3 15868 16690 7 0.869
city4 20036 41476 10 0.789
city5 24106 53826 5 0.740
city6 38823 79988 8 0.704
city7 44878 90930 7 0.547

series are depicted in the table aside. Obviously, all city
graphs have extremely small separators, which are also
found by our algorithm. The separators for the city2

and city3 graphs, which had already been included in
the experiments of the previous section, are somewhat
bigger than those of the preceding experiment (8 and 7
instead of 4, resp.; see Table 1). This is due to the fact
that: (i) the separator ratio is now optimized instead of
the separator size; and (ii) we do not longer take into account every node as a BFS root.

Figure 7 shows the separator sizes and the running times with the Delaunay graph series. The balance
is very high for all graphs, namely greater than 0.94, and the separator size divided by

√
n is always in

the range between 0.6 and 0.63. This suggests that the separator ratio criterion indeed represents a good
trade-off between separator size and balance. The running times vary between approximately 2 and 20
seconds. Also, the diagram pronouncedly reflects linearity of the algorithms’ time complexity.
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5 Conclusions and Outlook

Our experiments have shown that, especially for graphs with small separators, there is a high potential
for optimizing the separators computed by the algorithms. Both the postprocessing and in particular
the Fundamental-Cycle Separation yielded almost-optimal separators with respect to separator size and
balance. Applied to graphs whose triangulations have small diameter (which is true for many graphs,
especially from real world), FCS is empirically and theoretically superior to the classical algorithms guar-
anteeing separators of size O(

√
n). Selection of the non-tree edge in the fundamental-cycle computation

has a considerable influence on both criteria, and we are able to select the best during the respective
algorithm. The choice of the BFS root also exhibits a great impact on separator quality, mainly on its
size. The experiments on city graphs and very large Delaunay graphs confirmed that FCS, applied to
a small random sample of BFS root nodes and separator ratio as optimization criterion yields excellent
separators in linear time.

An issue for further investigation would be to explore whether more sophisticated strategies for
selecting an appropriate BFS root can be developed. In addition, we would like to investigate other
parts of the algorithms that are also subject to arbitrary choices, namely triangulation and breadth-first
search.
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