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Abstract

In this paper we study the problem of computing subgraphs of a certain

configuration in a given topological graph G such that the number of crossings

in the subgraph is minimum. The configurations that we consider are spanning

trees, s–t paths, cycles, matchings, and κ-factors for κ ∈ {1, 2}. We show that

it is NP-hard to approximate the minimum number of crossings for these

configurations within a factor of k1−ε for any ε > 0, where k is the number of

crossings in G. We then show that the problems are fixed-parameter tractable

if we use the number of crossings in the given graph as the parameter. Finally

we present a mixed-integer linear program formulation for each problem and

a simple but effective heuristic for spanning trees.

1 Introduction

An undirected graph G(V,E) that is embedded in the plane such that no two edges
share an unbounded number of points is called a topological graph. If all edges are
straight-line embedded, then G is called a geometric graph. A crossing {e, e′} is a
pair of edges in G such that e∩ e′ 6⊆ V . We call µee′ = |(e∩ e′) \ V | the multiplicity
of the crossing {e, e′}. Note that µ ≡ 1 for geometric graphs. Let X ⊆

(

E
2

)

be the
set of pairs of crossings in E. Note that c edges intersecting in a single non-endpoint
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give rise to
(

c
2

)

crossings. We will use n, m, and k as shorthand for the cardinalities
of V , E, and X, respectively. We define the weighted number of crossings of G as
∑

{e,e′}∈X µee′ .
In this paper we study the problem of computing subgraphs of a certain configu-

ration in a given topological graph such that the weighted number of crossings in the
subgraph is minimum. The configurations that we consider are spanning trees, s–t
paths, cycles, matchings, and κ-factors, i.e. subgraphs in which every node v ∈ V
has degree κ, for κ ∈ {1, 2}. In the version of matching that we consider the number
M of desired matching edges is part of the input. We will refer to this version as
M -matching.

Note that in our case the embedding of the graph is given and fixed. We do not
try to find an embedding such that the number of edge crossings is small. Recently
Grigoriev and Bodlaender [2] considered graphs that have an embedding where each
edge has a bounded number of crossings. They showed that many optimization
problems (like maximum independent set) admit polynomial-time approximation
schemes when restricted to such graphs. However, they also showed that it is NP-
hard to decide whether a graph has an embedding in the plane with at most one
crossing per edge.

Algorithms that find subgraphs with few crossings have applications in VLSI
design and pattern recognition [4]. For example, a set of processors (nodes) on
a chip and a number of possible wire connections (edges) between the processors
induce a topological graph G. A spanning tree in G with few crossings connects
all processors to each other and can help to find a wire layout that uses few layers,
thus reducing the chip’s cost.

There is also a connection to matching with geometric objects. Rendl and Woeg-
inger [8] have investigated the problem of reconstructing sets of axis-parallel line
segments. Given a set of 2n points in the plane they want to decide whether there
is a perfect matching (i.e. a 1-factor) where the matched points are connected by
axis-parallel line segments. They give an O(n log n)-time algorithm for this problem
and show that the problem becomes NP-hard if the line segments are not allowed
to cross.

Kratochv́ıl et al. [5] have shown that for topological graphs it is NP-hard to
decide whether they contain a crossing-free subgraph for any of the configurations
mentioned above. Later Jansen and Woeginger [4] have shown that for spanning
trees, 1- and 2-factors the same even holds in geometric graphs with just two different
edge lengths or with just two different edge slopes.

These results do not rule out the existence of efficient constant-factor approx-
imation algorithms. However, as we will show in Section 2, such algorithms do
not exist unless P = NP. In Section 3 we complement these findings by a simple
polynomial-time factor-(k−c) approximation for any constant integer c. This result
being far from satisfactory, we turn our attention to other possible ways to attack
the problems: in Section 4 we show that the problems under consideration are fixed-
parameter tractable with k being the parameter. While there are simple algorithms
that show tractability, it is not at all obvious how to improve them. It was a special
challenge to beat the 2k-term in the running time of the simple fixed-parameter
algorithm for deciding the existence of a crossing-free spanning tree. Based on this
decision algorithm and those for the other configurations, we also give optimization
algorithms. In Section 5 we present mixed-integer linear program (MIP) formu-
lations. Both of the approaches in Sections 4 and 5 yield exact solutions, but in
general need exponential time. They can be used to solve the above-mentioned
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problem of Rendl and Woeginger [8]. In our MIP formulations the numbers of vari-
ables and constraints depend only linearly on k. This makes the MIP formulations
an interesting alternative to the fixed-parameter algorithms of Section 4 for larger
values of k.

Finally, in Section 6 we give a simple heuristic for computing spanning trees
with few crossings. Due to our findings in Section 2 our heuristic is unlikely to
have a constant approximation factor. However, it performs amazingly well, both
on random examples and on real-world instances. We use the corresponding MIP
as baseline for our evaluation.

Our fixed-parameter algorithms and the MIP formulations do not exploit the
geometry of the embedded graph. Thus they also work in a setting where we are
given an abstract graph G and a set X of crossings, and we view a crossing simply
as a set of two edges not supposed to be in the solution at the same time.

In the whole paper we assume that the set of crossings X in the input graph has
already been computed. Depending on the type of curves representing the graph
edges this can be done using standard algorithms [3]. Whenever we want to stress
that X is given, we use the notation G(V,E,X).

2 Hardness of Approximation

For each of the configurations mentioned in the introduction we now show that it
is hard to approximate the problem of finding subgraphs of that configuration with
the minimum number of crossings in a given geometric graph G. The reductions
are simple and most of them follow the same idea.

We begin with the problem of finding a spanning tree with as few crossings
as possible. We already know [4] that the problem of deciding whether or not G
has a crossing-free spanning tree is NP-hard. Our reduction employs this result
directly. Given a graph G with k crossings and a positive integer d, we build a new
graph G′ by arranging kd copies of G along a horizontal line and by then connecting
consecutive copies by a single edge as in Figure 1. The new graph G′ has kd+1

crossings. Now if G has a crossing-free spanning tree then G′ has a crossing-free
spanning tree. Otherwise every spanning tree in G′ has at least kd crossings. Let
φ(G) be 1 plus the minimum number of crossings in a spanning tree of G. Then
φ(G′) = 1 or φ(G′) ≥ kd + 1. Our construction yields the following result. All
theorems in this section hold for any ε ∈ (0, 1].

Theorem 1 It is NP-hard to approximate φ(G) within a factor of k1−ε.

Proof. Assume there exists a real ε ∈ (0, 1] such that we can compute a factor-
k1−ε approximation in polynomial time. We choose the number of copies d in the
construction of G′ outlined above such that d ≥ (1− ε)/ε. Then by our assumption
we can compute in polynomial time a spanning tree of G′ that approximates φ(G′)
within a factor of

(

kd+1
)1−ε

= kd+1 · k−ε(d+1) ≤ kd+1 · k−ε[ 1−ε

ε
+1] = kd+1 · k−1 = kd.

But then we could decide in polynomial time whether there is a crossing-free span-
ning tree in G. This would contradict the hardness result in [4].
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Fig. 1: Graph G′: kd copies of G.
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Fig. 2: The basis of the reduction in [5].

We also consider a kind of dual optimization problem: Find a crossing-free
spanning forest in G with as few trees as possible. Let φ′(G) denote the minimum
number of trees in a spanning forest of G. Since there is a spanning forest with one
tree if and only if there is a crossing-free spanning tree in G, we immediately have
the following theorem.

Theorem 2 It is NP-hard to approximate φ′(G) within a factor of k1−ε.

Next let us briefly consider the problems of finding M -matchings, 1- and 2-
factors in G with as few crossings as possible. Again we already know that the
related decision problems are NP-hard [4]. Let η(G) denote 1 plus the minimum
number of crossings in a subgraph of G of the desired configuration. Arguing along
the same lines as for spanning trees we obtain the following theorem. Note that in
this reduction we do not connect the copies of G in G′.

Theorem 3 It is NP-hard to approximate η(G) within a factor of k1−ε.

Now we turn to the problem of finding a path between two given vertices s and t
(an s–t path for short) with as few crossings as possible. We show that the problem
of deciding whether or not a given geometric graph has a crossing-free s–t path
is NP-hard by adapting the hardness proof for topological graphs of Kratochv́ıl et
al. [5]. Their proof is by reduction from planar 3SAT. Figure 2 reproduces Figure 7
from [5]. Each clause ci is represented by three edges between the same two vertices.
Each edge in such a triplet represents a variable that occurs in ci. Kratochv́ıl et
al. [5] show that it is possible to draw the edges that correspond to a variable v
such that two of these edges cross if and only if they correspond to a negative and
a positive occurrence of v. Thus there is a satisfying truth assignment if and only
if there is a crossing-free s–t path in the constructed graph.

Our point here is not to go through the whole reduction presented in [5]. We just
outline how to modify the reduction such that the result is not merely a topological
but a geometric graph. Consider edges in the clause gadgets that correspond to
the same variable v. At first glance it seems difficult to make these edges cross
in the desired way, i.e. two of them must cross if and only if they correspond to
a negative and a positive occurrence of v. The starting point is that each edge in
a clause gadget is represented by two straight-line segments as shown in Figure 8
in [5]. The construction in [5] is such that for each variable we can draw a circle that
intersects exactly the clause-gadget edges that correspond to the occurrences of this
variable. This is indicated in Figure 3 (a). The circle is drawn dotted. The part of
the clause-gadget edges inside the circle are the little tips. Tips drawn with bold
and thin solid lines correspond to positive and negative occurrences of the variable,
respectively. We modify each clause-gadget edge as indicated in Figure 3 (b). Then
we replace the gray box in Figure 3 (b) by that in Figure 3 (c). This generates the
desired intersection pattern.

Now we apply the same trick as in the case of spanning trees to turn the NP-
hardness of the decision problem into a hardness-of-approximation result. This is
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(a) (b) (c)

Fig. 3: Details of the reduction.

indicated in Figure 4. If there is a crossing-free s–t path in G then there is a
crossing-free s1–tkd path in G′. If there is at least one crossing in every s–t path in
G then there are at least kd crossings in every s1–tkd path in G′. Let γ(G) denote
1 plus the minimum number of crossings in an s–t path in G. Then we have the
following theorem.

Theorem 4 It is NP-hard to approximate γ(G) within a factor of k1−ε.

In [5] it is shown that it is even possible to draw the edges of the graph in Figure 2
in such a way that in addition to the crossings which ensure the consistency of the
chosen truth setting we can make the edges in every clause pairwise intersecting.
Thus we can choose at most one edge in every clause gadget and the constructed
graph does not contain a crossing-free cycle. Now we connect vertices s and t by
an extra sequence of edges as indicated in Figure 5 and easily obtain the following
corollary.

Corollary 1 It is NP-hard to decide whether or not a geometric graph contains a
crossing-free cycle.

Unfortunately it seems impossible to apply the same trick again to obtain the
hardness of approximation, since there may be cycles that do not pass through
vertices s and t and that have only few crossings. Thus we have to punish the usage
of a crossing in forming a cycle in the graph. To achieve this goal for every crossing
in the constructed graph we make the sequences of straight line edges cross many
times. This is indicated in Figure 6. By choosing the number of bends large enough
we obtain the following theorem where ζ(G) denotes 1 plus the minimum number
of crossings in a cycle in G.

Theorem 5 It is NP-hard to approximate ζ(G) within a factor of k1−ε.

G G G Gs1

t1
s2

t2
s3

t3
...

skd

tkd

Fig. 4: The graph G′.
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t

Fig. 5: Adding edges between s and t.
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d

Fig. 6: Punishing the usage of crossings.
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3 Approximation Algorithms

After this long list of negative results on approximability let us now give a positive
remark. Trivially, any spanning tree in a geometric graph with k crossings (k + 1)-
approximates φ(G). However, with just a little more effort for every constant c ∈ N

we can compute a factor-max{1, k − c} approximation. We distinguish two cases.
Case 1: The graph G has at most c crossings. Then we can compute an optimal

solution in polynomial time with our fixed-parameter algorithm, see Section 4.
Case 2: The graph G has at least c+1 crossings. Then we check for every subset

S of c+1 crossings from the set of all crossings in G whether there is a way to delete
edges participating in the crossings in S such that the resulting subgraph of G is
still connected but all the crossings in S have disappeared. If such a set S of c + 1
crossings exists then we can find a spanning tree of G avoiding all the crossings in
S. Such a spanning tree will have at most k − c − 1 crossings and thus is a factor-
(k− c) approximation. If no such set S of c+1 crossings exists then every spanning
tree of G must have at least k − c crossings and we can find an optimal solution in
polynomial time by checking for every subset of at most c crossings from the set of
all crossings in G whether there is a spanning tree of G avoiding the crossings in
the subset.

Theorem 6 For every constant c ∈ N there is a polynomial-time factor-max{1, k-c}
approximation for φ(G).

4 Fixed-Parameter Algorithms

In this section we present fixed-parameter algorithms using the total number k of
crossings as the parameter. The intuition behind the concept of fixed-parameter
algorithms [1] is to find a quantity associated with the input such that the problem
can be solved efficiently if this quantity is small. The number k suggests itself
naturally since on the one hand the problems under consideration become trivial if
k = 0 and on the other hand the reductions in Section 2 employ graphs with many
crossings.

4.1 A Simple General Approach

We assume that the input graph G has a subgraph of the desired configuration and
we only try to find one with the minimum weighted number of crossings. For exam-
ple, when looking for spanning trees we assume that the input graph is connected.
We set EX =

⋃

X. Thus EX contains exactly those edges that participate in a
crossing. Note that |EX | ≤ 2k. Now we can proceed as follows:

1. Form the crossing-free graph G′ by removing all edges in EX from G.

2. For all crossing-free subsets H ⊆ EX check whether the graph G′ ∪ H has a
subgraph of the desired configuration.

The graph G′ can be constructed in O(m) time. Let checkC(n,m) be the time needed
for checking whether G′∪H has a subgraph of configuration C. Since checkC(n,m) =
poly(n,m) for all the configurations we consider, the two-step procedure shows that
the corresponding decision problems can be solved in O(m + checkC(n,m) 4k) time
and thus are all fixed-parameter tractable. However, it is easy to do better.
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Observation 1 To check the existence of a crossing-free configuration in G it suf-
fices to go through all maximal (w.r.t. the subgraph relation) crossing-free subgraphs
of G and check whether one of them has a subgraph of the desired configuration.

There are at most 2k maximal crossing-free subsets of EX : Let a(k) be an upper
bound on the number of maximal crossing-free subsets. Consider an arbitrary edge
e ∈ EX . Let l denote the number of crossings in X that contain e. A maximal
crossing-free subset can either contain e or not. Hence, a(k) ≤ 2a(k− l). This gives
us a(k) ≤ 2k. Going through the edges in EX we can build each of the maximal
crossing-free subsets of EX in O(k) time.

Theorem 7 Given a topological graph G(V,E,X) and a configuration C, we can
decide in O(m+(checkC(n,m)+k) 2k) time whether G has a crossing-free subgraph
of configuration C.

If the desired configuration C is an M -matching, we have checkC(n,m) ∈ O(
√

nm)
[7, 10]. Note that a 1-factor is just a special kind of M -matching. For 2-factors we
can employ the graph transformation of Tutte [9] and obtain checkC(n,m) ∈ O(n4).

Observe that in step 2 the only interesting connected components of G′ are those
that contain an endpoint of an edge from EX . However, there are at most 4k such
connected components. For the configurations spanning tree, s–t path, and cycle
this observation yields a reduction to a problem kernel [1], i.e. to a problem whose
size depends only on the parameter k, but not on the size of the input. Here the
problem kernel is the component multigraph G⋆ of G′ that has a node for each
connected component of G′. The edges of G⋆ correspond to the edges in EX . An
edge e in EX is incident to a vertex v of G⋆ if and only if e has an endpoint in the
connected component represented by v. To decide whether G′ ∪ H has a spanning
tree, s–t path, or cycle for some maximal crossing-free H ⊆ EX , we can do the
check (by some variant of breadth-first search) in G⋆ ∪H. This is faster than doing
the check in G′ since G⋆ has size O(k).

Corollary 2 Given a topological graph G(V,E,X), we can decide in O(m + k2k)
time whether G has a crossing-free spanning tree, s–t path or cycle.

Finally we want to present a simple approach to deal with the corresponding
optimization problems, i.e. the problem of finding a desired configuration with min-
imum weighted number of crossings. Our idea is to check for each subset X ′ of X
whether G has a configuration of the desired type that uses only crossings in X ′.
This can be done as follows.

1. Compute the graph G′′ = G′ ∪ ⋃

X ′.

2. Compute the subset of crossings X ′′ from X that do not share an edge with
any crossing in X ′.

3. Decide whether there is a crossing-free subset H of
⋃

X ′′ such that G′′ ∪ H
contains a desired configuration.

We filter out those subsets of crossings X ′ for which we get a positive an-
swer in step 3. Among the filtered-out subsets we can easily keep track of one
that has the minimum weighted number of crossings. Clearly, step 3 dominates
the running time of our algorithm. Let k′′ = |X ′′| ≤ k − k′ and k′ = |X ′|.
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Now suppose in step 3 we use a decision algorithm that takes O(checkC(n,m)βk′′

)
time after spending O(m) time on preprocessing, then the above procedure takes

O(m +
∑k

k′=0

(

k
k′

)

checkC(n,m)βk−k′

) total time. We apply the binomial theorem
and conclude as follows.

Theorem 8 Given a topological graph G(V,E,X), we can compute in O(m +
checkC(n,m)(1+β)k) time a subgraph of configuration C in G with minimum weighted
number of crossings if we can solve the decision problem in O(checkC(n,m)βk) time
after an O(m)-time preprocessing.

4.2 Spanning Trees

In this section we want to improve the 2k-term in the running time of the simple
decision algorithm. It will turn out that we barely achieve this goal. We will
get the exponential term in the running time down to 1.9999992k. While this
improvement seems marginal, the fact that we managed to beat the trivial algorithm
is of theoretical interest. Moreover, we think that our methods can be applied in
a wider scenario. A similar approach for s–t paths and cycles yields 1.733k, see
Section 4.3.

Imagine the process of selecting the edges for the set H ⊆ EX as a search tree.
Branchings in the tree correspond to possible choices during the selection process.
By selecting edges in EX to be in H or not to be in H we reduce the number
of crossings from which we can still select edges. The leaves of the search tree
correspond to particular choices of H. Let T (k) denote the maximum number of
leaves in the search tree for input graphs with k crossings. Note that T (k) also
bounds the number of interior nodes of the search tree.

First we show that it is rather easy to speed up the algorithm of Corollary 2
as long as the crossings in G are not all pairwise disjoint. Let e be an edge such
that exactly z ∈ {2, . . . , k} crossings c1 = {e, f1}, . . . , cz = {e, fz} in X share edge
e. If we select edge e to be in H, then none of the edges f1, . . . , fz can be in H. If
we select edge e not to be in H, then we can select edges f1, . . . , fz as if crossings
c1, . . . , cz would not exist. Thus for both choices there are only k − z crossings left
from which we can still select edges. This leads to the recurrence T (k) ≤ 2T (k − z)
which solves to T (k) ∈ O(2k/z).

It remains to consider the case that the crossings in X are pairwise disjoint. Up
to now we concentrated on the set EX . It was only after selecting an edge e to
be in H that we took a look at the connected components of G′ that are possibly
connected by e. Now we also take the connected components of G′ into consideration
to guide the selection process. Observe that any connected component C (in order
to make G′ connected) must be connected by at least one edge from EX to the
rest of G′. This puts some restriction on which crossing-free subsets of the edges in
EX with an endpoint in C need to be checked. After introducing some notation,
Lemma 1 will make this more precise.

We can assume that for every crossing c ∈ X neither of the two edges in c
connects vertices in the same connected component of G′, since such an edge cannot
help to make G′ connected and thus need not be selected to be in H.

We define the degree of a connected component of G′ as the number of edges in
EX with one endpoint in this component. Now consider some connected component
C of G′. Let d denote the degree of C and E(C) the set of edges in EX incident to a
vertex of C. Note that d = |E(C)|. Let X(C) denote the set of crossings contained
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in E(C). We set x = |X(C)|, R =
⋃

X(C) and S = E(C) \ R. Then S consists of
the d − 2x edges in E(C) that do not cross any other edge in E(C). To connect C
with the rest of G′ we select subsets T of E(C) such that T contains exactly one
edge from each crossing in X(C) and a subset of the edges in S.

Lemma 1 It suffices to check 2d−x − 1 subsets of E(C).

Proof. First consider the case that T ⊆ E(C) contains at least one edge from S.
There are 2x(2d−2x − 1) subsets T of this type.

Next we consider the case that none of the edges in S belongs to T . Suppose
there is a maximal crossing-free set H such that G′∪H is connected and H ∩S = ∅.
Then we consider the graph G′′ that is formed by deleting component C from G′∪H.
Let r denote the number of components of G′′. Since G′ ∪ H is connected, all the
components of G′′ are connected in G′ ∪ H to component C by edges from the
crossings in X(C). Since H is maximal crossing-free it contains exactly one edge
from each crossing in X(C). Thus the graph G′′ has at most x components.

We want to show that there is at least one other maximal crossing-free set Ĥ
such that G′ ∪ Ĥ is connected and Ĥ ∩S = ∅. Then for each edge set T ⊂ R which
leads to a maximal crossing-free set H that connects G′ there would be another
edge set T̂ ⊂ R which also leads to a maximal crossing-free set Ĥ that connects G′.
Hence it would suffice to check only 2x−1 subsets T of E(C), one could be omitted.
We know r ≤ x.

If r < x, then there are two distinct crossings c1 = {e1, f1} and c2 = {e2, f2} in
X(C) such that edges e1 and e2 are in H and connect the same component of G′′

with C. Then Ĥ = (H \ {e1})∪{f1} is another maximal crossing-free subset of EX

that connects G′.
If r = x, then we consider two sub-cases:
If there is a crossing c = {e, f} in X(C) such that e is in H and both edges e and

f are incident to vertices in the same component of G′′, then Ĥ = (H \ {e}) ∪ {f}
is another maximal crossing-free subset of EX that connects G′.

Otherwise, i.e. if in every crossing c = {e, f} in X(C) edges e and f are incident
to vertices in distinct components of G′′, we construct a bipartite graph B with one
independent vertex set representing the crossings in X(C) and the other independent
vertex set representing the components of G′′. A crossing c in X(C) is connected by
an edge in B to a component C ′′ of G′′ if and only if there is an edge in c which is
incident to a vertex of C ′′. Thus there is a one-to-one correspondence between the
edges in R and the edges of the bipartite graph B. Now it is easy to see that the
edges in H ∩ R correspond to a perfect matching M in B. Note that the vertices
of B which correspond to the crossings in X(C) have all degree two. Hence we
can construct another perfect matching M̂ in B: From any crossing c1 we follow
the edge of B which is not in the perfect matching and reach a component C ′′

1 of
G′′. From C ′′

1 we follow the edge in the perfect matching to a crossing c2 and so
on. After traversing at most 2x edges we will eventually return to crossing c1. The
traversed edges of B form a cycle where edges in the perfect matching and edges not
in the perfect matching alternate. Changing the roles of the edges in the cycle gives
us the desired perfect matching M̂ 6= M and thus a maximal crossing-free edge set
Ĥ 6= H.

To summarize the proof: we need only check 2x(2d−2x − 1) + 2x − 1 = 2d−x − 1
subsets of E(C).
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The result of Lemma 1 leads to a new search-tree algorithm. In the beginning
of this section we used edges involved in many crossings to guide the branching.
In order to cope with the case that all crossings are pairwise disjoint, we use a
component of hopefully small degree d to guide the branching. Then Lemma 1 yields
the recurrence T (k) ≤ (2d−x − 1)T (k− (d− x)) for the size of the search tree. First
observe that for every positive integer l it holds that (2l − 1)1/l < (2l+1 − 1)1/(l+1)

since (2l − 1) < 2l < (2 + 1/(2l − 1))l. Now suppose we have an upper bound δ
on d. Then T (k) = (2δ − 1)k/δ solves the above recurrence. This can be shown by
induction on k:

T (k) ≤ (2d−x − 1)T (k − (d − x))

≤ (2d−x − 1)(2δ − 1)(k−d+x)/δ

= (2δ − 1)k/δ · 2d−x − 1

(2δ − 1)(d−x)/δ

= (2δ − 1)k/δ ·
[

(2d−x − 1)1/(d−x)

(2δ − 1)1/δ

]d−x

≤ (2δ − 1)k/δ.

Hence, we have T (k) ∈ O(βk
δ ), where βδ = δ

√
2δ − 1 < 2.

Now we describe how to guarantee the existence of a component with small
degree. The intuition behind this is simple: if G′ has many, i.e. more than αk con-
nected components for some α ∈ (0, 1], then by the pigeon-hole principle there must
be a component of small degree. Otherwise, if G′ has few connected components
(i.e. at most αk), then we can afford to enumerate all possibilities to connect G′ by
a crossing-free edge set H. The choice of α has to balance the running times in the
two cases.

We first consider the case that G′ has more than αk connected components.
Let δ denote the minimum degree of a component of G′. Then we double-count the
edge–component incidences. This yields 4k ≥ 2|EX | > δαk, and hence δ < 4/α. In
the worst case δ = ⌊4/α⌋. The resulting search tree has size

T1(k) ∈ O
(

b1(α)k
)

, where b1(α) = β⌊4/α⌋.

We need O(k) time for generating and checking each of the at most T1(k) nodes
and leaves of the search tree. This yields a total running time of O(m + kT1(k)).

Next we consider the case that G′ has at most αk connected components. Set
l = ⌊αk⌋. Observe that we can make G′ connected without crossing edges if and
only if there are l − 1 crossings in X such that G′ becomes connected by using one
edge from each of these l−1 crossings. Thus we simply go through each of the

(

k
l−1

)

subsets of l − 1 crossings from X. For each such subset we enumerate all 2l−1 ways
to choose one edge per crossing. This results in T2(k) <

(

k
l

)

2l subsets H for which
we can check in O(k) time each whether G′ ∪ H is connected. This yields a total
running time of O(m + kT2(k)). In order to simplify T2 we apply Sterling’s formula
to

(

k
l

)

= k!/(l!(k − l)!). This results in

T2(k) ∈ O
(

b2(α)k
)

, where b2(α) =
2α

αα · (1 − α)1−α
.

In order to balance the expressions T1(k) and T2(k) in the two running times, we
determine a value of α that minimizes maxα∈(0,1){b1(α), b2(α)}. (The graphs of
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b1 and b2 do not intersect since b1 is a stair-case function, i.e. not continuous.)
The minimum is attained at α ≈ 0.227. This value of α yields T1(k) = O(βk

17) =
O(1.9999992k) and T2(k) = O(1.99965k), so the total running time is dominated by
the first case. We sum up our result in the following theorem.

Theorem 9 Given a topological graph G(V,E,X), we can decide in O(m + kβk
17)

time whether G has a crossing-free spanning tree, where β17 < 1.9999992.

If we are willing to resort to a randomized algorithm we can improve the result
of Theorem 9. We are looking for a new way to treat the case that the crossings
are pairwise disjoint and G′ has at most αk connected components. The following
randomized algorithm allows us to choose α larger than in the deterministic algo-
rithm above. Observe that if G has a connected crossing-free spanning subgraph at
all, then there are at least 2(1−α)k maximal crossing-free subsets H ⊆ EX such that
G′ ∪ H is connected. This can be seen as follows: Suppose there is a crossing-free
subset F ⊆ EX that makes G′ connected. Then we can choose such an F with
|F | < αk. Let XF = {c ∈ X | c ∩ F = ∅}. Since the elements of X are pairwise
disjoint we have |XF | > (1 − α)k. If we select one edge from each crossing in XF

and add these edges to F the resulting set of edges is still crossing-free. There are at
least 2(1−α)k possible ways to select edges. Thus there are at least 2(1−α)k maximal
crossing-free subsets H ⊆ EX such that G′ ∪ H is connected.

This suggests the following randomized algorithm: From each element of X we
randomly select one edge and check if the resulting crossing-free graph is connected.
If the given topological graph G has a crossing-free connected spanning subgraph,
the probability of success is at least 2(1−α)k/2k = 2−αk. Thus T ′

2(k) = O(b′2(α)k)
iterations suffice to guarantee a probability of success greater than 1/2, where
b′2(α) = 2α. This results in a running time of O(m + kT ′

2(k)) if G′ has at most
αk connected components. Otherwise we use the deterministic algorithm with run-
ning time O(m + kT ′

1(k)), where T ′
1(k) ∈ O(b1(α)k) and b1(α) = β⌊4/α⌋.

Again we must choose α to balance the two running times. Setting α = 4/5
yields T1(k) ∈ O(βk

4 ) = O(1.968k) and T ′
2(k) ∈ O(24k/5) = O(1.742k).

Theorem 10 There is a Monte-Carlo algorithm with one-sided error, probability
of success greater than 1/2 and running time in O(m + kβk

4 ) which tests whether a
given topological graph has a crossing-free spanning tree (β4 < 1.968).

Before we turn to other configurations, note that for the dual optimization prob-
lem of finding a spanning forest of G consisting of as few trees as possible, we only
have to find a maximal crossing-free subgraph of G consisting of as few components
as possible. So by checking every crossing-free subset of EX we can easily find one
that yields an optimal solution in O(m + k2k) time. With an argument similar to
the one that led to Theorem 9 one can show that it is not even necessary to check
each crossing-free subset of EX . This yields the following theorem.

Theorem 11 Given a topological graph G(V,E,X), we can compute in O(m+kβk
17)

time a spanning forest of G consisting of as few trees as possible.

4.3 s–t Paths and Cycles

First we consider the problem of finding a crossing-free path between two given
vertices s and t. Suppose C is the connected component of G′ that contains vertex
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s. We select an edge e of EX as the edge by which the crossing-free s–t path leaves
C. Edge e connects C to another component of G′ and the new bigger component
thus created will then play the role of C and so on. If we again imagine this process
of selecting edges as a search tree then we reach a leaf of the search tree if vertices
s and t become vertices of the same component (then we have found a crossing-free
path between them) or if we get stuck because we cannot leave the actual component
C by edges from EX .

Suppose vertices s and t do not belong to the same connected component of G′.
We delete all components that have no vertex incident to an edge in EX . Suppose
the components to which s and t belong are still present.

Again it is rather easy to speed up the algorithm if crossings in X are not
pairwise disjoint. As long as there is an edge e such that exactly z crossings in X
share edge e and 2 ≤ z ≤ k we obtain the recurrence T (k) ≤ 2T (k− z) which solves
to T (k) ∈ O(2k/z).

Next we consider the case that the crossings in X are pairwise disjoint. We can
assume that for every crossing c ∈ X none of the two edges in c connects vertices
in the same connected component of G′. Furthermore we can assume that there is
no connected component C of degree 1 since either C contains s or t and then we
must use the only edge from EX incident to C, or C contains neither s nor t and
then C can be deleted.

Now let C denote the connected component of G′ that contains vertex s. Let d
denote the degree of C and E(C) the set of edges in EX incident to a vertex of C.
Let X(C) denote the set of crossings contained in E(C). We set x = |X(C)|. The
key observation is that if there is a crossing-free s–t path at all then there is one
that uses exactly one of the edges in E(C).

First we consider the case that d − 2x ≥ 1. We obtain the recurrence T (k) ≤
dT (k − d + x). If d is an even number then x ≤ d/2 − 1 and the recurrence solves
to T (k) ∈ O(4k/3) ⊆ O(1.59k). If d is not an even number then x ≤ (d − 1)/2 and
the recurrence solves to T (k) ∈ O(3k/2) ⊆ O(1.733k).

Second we consider the case that d = 2x. We can assume that there is no
crossing c in X(C) such that both edges in c go from C to the same connected
component of G′ since with respect to the existence of a crossing-free s–t path the
edges in c would be equivalent and we could use one of the two edges if necessary.

Now if there are two crossings c1 = {e1, f1} and c2 = {e2, f2} in X(C) such that
e1 and e2 go from C to the same connected component of G′, then it is sufficient to
check only for one of e1 and e2 whether there is a crossing-free s–t path that uses
this edge. Hence we obtain the recurrence T (k) ≤ (d − 1)T (k − d/2) which solves
to T (k) ∈ O(3k/2).

Otherwise the edges in E(C) go from C to pairwise distinct connected com-
ponents of G′. Consider any crossing c = {e, f} in X(C). Let A and B denote
the connected components of G′ to which edges e and f respectively go from C.
Since every connected component of G′ has degree at least two, components A and
B each have a vertex incident to an edge from EX \ E(C). Now observe that if
there is a crossing-free s–t path that uses edge e and also goes through component
B then there is another crossing-free s–t path that uses edge f to go directly to
component B. Hence if we check edge e we can delete component B and all edges
in EX incident to B, and if we check edge f we can delete component A and all
edges in EX incident to A. Thus we get rid of at least x + 1 crossings for each edge
in E(C) checked and obtain the recurrence T (k) ≤ dT (k − d/2− 1) which solves to
T (k) ∈ O(4k/3). This yields the following theorem.
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Theorem 12 Given a topological graph G(V,E,X), we can decide in O(m + kβk
2 )

time whether G has a crossing-free s–t path (β2 =
√

3 < 1.733).

Finally we present a simple way to employ the result of Theorem 12 for finding
crossing-free cycles. For every edge e in EX we check whether there is a crossing-free
cycle that contains edge e. Let A and B be the connected components of G′ that
have a vertex which is incident to edge e and let X ′ be the set of crossings in X
that do not contain edge e. Observe that there is a crossing-free cycle that contains
edge e if and only if there is a crossing-free path from a vertex in component A to
a vertex in component B using only edges in G′ and in the crossings X ′. Thus we
obtain the following theorem.

Theorem 13 Given a topological graph G(V,E,X), we can decide in O(m+k2βk
2 )

time whether G has a crossing-free cycle.

5 MIP Formulations

In this section we give MIP formulations for the problem of computing a subgraph
G′ of a given topological graph G(V,E) with the minimum weighted number of
crossings among all subgraphs of a certain configuration. As it will turn out, the
numbers of variables and constraints in our MIP formulations depend only linearly
on k. This makes the MIP formulations an interesting alternative to the fixed-
parameter algorithms in Section 4 for larger values of k. We first give a formulation
for spanning trees. In Section 6 we use this formulation to measure the performance
of a heuristic for the same problem on small to medium-size instances.

We introduce a continuous variable xee′ that will be forced to be 1 if both e and
e′ are in the spanning tree, and 0 otherwise. Our objective function is

min !
∑

{e,e′}∈X

µee′ xee′ . (1)

We have the following constraints. We introduce a continuous variable ye for each
edge e ∈ E that will be 1 if e is in the spanning tree and 0 otherwise. For each pair
{e, e′} ∈ X we require:

xee′ ≥ 0 and xee′ ≥ ye + ye′ − 1 (2)

Given our objective function (1) and the fact that ye will be forced to lie in {0, 1},
constraint (2) is equivalent to xee′ = min{ye, ye′}. Thus xee′ indeed serves as an
indicator whether e and e′ cross. It remains to make sure that the graph G′(V,E′)
with E′ = {e ∈ E | ye = 1} is connected.

We model connectivity by fixing an arbitrary vertex s ∈ V as sink and then
introducing flow between s and every other vertex t ∈ V \ {s}. The flow is modeled
by a 0–1 variable f t

e for each edge e ∈ E. First we make sure that for each choice
of t, the source s and the sink t have exactly one edge with flow:

∑

e incident to s

f t
e =

∑

e incident to t

f t
e = 1 (3)

Note that if a graph contains an s–t path, then that graph also contains an s–t
path that visits each vertex at most once. So we simply ensure that each vertex
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v ∈ V \ {s, t} has either zero or two incident edges with flow. To do this we need
an auxiliary 0–1 variable ht

v for each v. Now we can model our special kind of flow
conservation in each vertex v ∈ V \ {s, t}.

∑

e incident to v

f t
e = 2ht

v (4)

Finally, for each edge e ∈ E we lower-bound the “global” decision variable ye (that
decides whether e goes into the spanning subgraph G′) by the “local” flow f t

e (that
goes through e from s to t):

ye ≥ f t
e (5)

Given our objective function and constraint (2), this is equivalent to setting ye =
max{f t

e | t ∈ V \ {s}}. This completes our MIP formulation for spanning trees. It
consists of O(nm + k) variables and constraints.

All of the remaining formulations use only O(m + k) constraints and variables.
For s–t paths we only need flow from s to a single target t. Thus the formulation
can be simplified by making ye a 0–1 variable, replacing f t

e by ye, and dropping
constraint (5).

For cycles we drop constraint (3) in the formulation for s–t paths and require
flow conservation (constraint (4)) to hold for all v ∈ V .

For the remaining configurations we do not need the auxiliary variable ht
v any

more. In a 2-factor each vertex must lie on a cycle, thus constraint (4) becomes

∑

e incident to v

ye = 2.

In a 1-factor each vertex must be matched, so constraint (4) becomes

∑

e incident to v

ye = 1.

For M -matchings constraint (4) becomes

∑

e incident to v

ye ≤ 1.

Additionally we need a constraint that makes sure that the required number of edges
is in the matching:

∑

e∈E

ye ≥ M.

Finally we observe that among all cycles or s–t paths with the minimum weighted
number of crossings we can get a cycle or an s–t path with the maximum number of
edges by subtracting the term

∑

e∈E ye/|E| from the objective function. For getting
a subgraph with the minimum number of edges we add the same term. Similarly
we can get a subgraph whose total edge length is shortest among all subgraphs
that have the minimum weighted number of crossings for a given configuration. By
swapping the integral and the fractional part of the objective function we can also
find a matching that has the minimum weighted number of crossings among all
maximum matchings.
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Fig. 7: An example run of our heuristic.

6 Heuristic

Due to our inapproximability results in Section 2, we cannot hope to find a constant-
factor approximation for the number of crossings in any of the configurations we
consider. Instead, we now describe a simple heuristic for computing spanning trees
with few crossings in topological graphs. To simplify our description we assume
that each pair of edges in the input graph G crosses at most once. We also assume
that we know for each edge the edges it crosses—for geometric graphs this is easy
to find out.

Our heuristic uses a set of rules that simplify the input graph without changing
the number of crossings of an optimal spanning tree. Initially all edges are active.
During the process, edges can be deleted or selected. The solution will consist of
the edges that are selected during the process. The process stops as soon as the
selected edges span G.

The heuristic applies the rules in an arbitrary order to the input graph until no
more rule can be applied. Then a heuristic decision is taken. We decided to delete
an edge e that maximizes A(e) + 3S(e) among all active edges, where A(e) and
S(e) are the numbers of active and selected edges that e crosses, respectively. The
intuition behind this particular choice is that we want to use edges for the spanning
tree that cross only few edges among those already selected. At the same time we
want to avoid edges that cross too many of the still active egdes since some of those
may also become tree edges later on. Our experiments show that this works quite
well. After each heuristic decision again all rules are applied exhaustively.

We now specify the rules. They are only applied to active edges. Connected
components refer to the graph induced by all nodes and the selected edges.

(R1) If an edge has no crossings with other edges, it is selected.

(R2) If an edge is a cut edge, it is selected.

(R3) If both endpoints of an edge belong to the same connected component, then
this edge is deleted.

(R4) If two edges e1 and e2 connect the same connected components, and if every
edge crossed by e1 is also crossed by e2, then e2 is deleted.

For an example run of our heuristic, see Figures 7 (a)–(e). From left to right each of
the five figures shows a snapshot of the graph that results from applying rules and
heuristic decisions. Active edges are depicted thin and solid, selected edges bold,
and deleted edges dotted. Whenever an edge changes its status, the edge is labeled
by the reason for its status change (“H” means heuristic decision).
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Fig. 8: Solutions for a 16-node random geometric graph.

Our heuristic always finds a spanning subgraph G′ of G since rule (R2) makes
sure that no cut edge is deleted. Due to rule (R1) G′ may have cycles. If we insist
on a tree, we can simply compute a breadth-first tree of G′. Clearly this tree also
spans the underlying graph G and has no more crossings than G′. A brute-force
implementation of our heuristic runs in O(nm3) time.

We have implemented the heuristic (except for rule (R4)) in C++ using the
LEDA graph library [6]. It can be tested via a Java applet at http://i11www.ira.
uka.de/few_crossings. To compute optimal solutions at least for small graphs,
we also implemented the MIP formulation described in Section 5. We used the MIP
solver Xpress-Optimizer (2004) by Dash Optimization with the C++ interface of
the BCL library. Both heuristic and MIP were run on an AMD Athlon machine
with 2.6 GHz and 512 MB RAM under Linux-2.4.20.

We generated random geometric graphs with 20 nodes and 24, 26, . . . , 80 edges as
follows. First, edges were drawn randomly until the desired graph size was obtained.
The graph was discarded if it was not connected. Finally the coordinates were
chosen uniformly from the unit square. To these graphs we applied our heuristic
and the MIP solver, see Figure 8, which shows the resulting spanning trees of the
same random graph with 16 vertices and 26 edges. The bold line segments represent
edges in the spanning tree, the thin segments are the non-tree edges. Figure 9 shows
the average number of crossings of the spanning trees found by the heuristic and
the MIP solver, as well as the number of crossings in the input graph. For each data
point, we generated 30 graphs. The average was taken only over those which were
solved by the MIP solver within three hours (at least 27 of the 30 graphs per data
point). For random graphs with 30 vertices and 120 edges, the MIP solver often ran
more than 48 hours without finding any solution that was at least as good as the
one found by the heuristic. This is why we chose to show only results for random
graphs with 20 vertices.

As real-world data we used three graphs whose vertices correspond to airports
and whose edges correspond to direct flight connections in either direction. The
flight-connection graphs had each very few high-degree nodes and many leaves.
We used the Mercator projection for planarization and then embedded the edges

16



 0

 10

 20

 40  60  80
 0

 200

 400

 600

# 
cr

os
si

ng
s 

in
 s

pa
nn

in
g 

tr
ee

# 
cr

os
si

ng
s 

in
 in

pu
t g

ra
ph

# edges

heuristic
optimal solution

input graph

Fig. 9: Performance of heuristic and MIP on 20-node random geometric graphs.

Data set Heuristic MIP
nodes edges crossings crossings time [sec.] crossings time [sec.]

Lufthansa Europe 68 283 1760 66 0.2 66 304.1
Air Canada 77 276 1020 83 0.1 83 379.7
Lufthansa World 163 696 8684 128 1.8 121 59.4

Table 1: Number of crossings of spanning trees in airline graphs.

straight-line. We point out that we were not interested in any particularly nice
embedding, but rather in an instance of an existing network with real-world coordi-
nates. Our aim was to see whether our heuristic performed in a completely different
way on these real-world instances as compared to the synthetic instances described
above.

The results are given in Table 1. Figures 10 and 11 show the results of the
heuristic on the Lufthansa World and Air Canada flight-connection graphs. Fig-
ures 12 and 13 show clippings of the previous two graphs. Note that YYZ is the
airport code of Toronto. As in Figure 8, bold and thin line segments represent tree
and non-tree edges, respectively.

Given our inapproximability results in Section 2 we were surprised to see how
well our simple heuristic performs both on random and on real-world data: in 77 %
of the random graphs and in two of the three real-world instances the heuristic
performed optimally. For random graphs it used at most five edge crossings above
optimal.

7 Conclusion

The main achievement of this paper is the design of the non-trivial fixed-parameter
algorithms that decide whether a graph with k crossings has a plane spanning tree,
an s–t path, or a cycle. The difficulty was to show that these configurations allow
algorithms where the base in the exponential part of the running time is strictly
less than 2, namely 1.9999992 for trees and

√
3 for paths and cycles. The main

open question is whether such algorithms also exist for other configurations such as
matchings, and whether the running times of our algorithms can be further reduced.
We are also interested in finding an explanation for the amazingly good performance
of our simple heuristic. How would a bad example look like? The reader is invited to
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Fig. 10: Lufthansa World flight-connection graph.
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Fig. 11: Air Canada flight-connection graph.
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Fig. 12: Clipping of Figure 10.
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play around with our Java applet at http://i11www.ira.uka.de/few_crossings.
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