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ABSTRACT

In mostdistributed systemsnamingof nodesfor low-level com-
municationeverageatopologicallocation(suchasnodeaddresses)
andis indepen@ntof any application.In this paperwe investigate
anemepging classof distributedsystemsvherelow-level commu-
nication doesnot rely on network topologcal location. Rather
low-level communications basedon attributesthat are external
to the network topology and relevant to the application. When
combinedwith densedeploymentof nodes,this kind of named
dataenabledn-networkprocessingor dataaggr@ation,collabo-
rative signalprocessingandsimilar problems.Theseapproackes
are essentiaffor emeging applicationssuch as sensornetworks
whereresourcea suchas bandwidthand enepgy arelimited. This
paperis thefirst descriptionof the softwarearchitecturehatsup-
ports nameddata and in-network procesgg in an operational,
multi-applicationsensometwork. We shav thatapproabessuch
asin-network aggreationandnestedjueriescansignificantlyaf-
fectnetwork traffic. In oneexperimern aggrgationreducedraffic
by up to 42% and nestedqueriesreduceloss ratesby 30%. Al-
thoughaggreationhasbeenprevioudy studiedin simulation,this
paperdemonstratesestedqueriesasanotherform of in-network
processingandit presentshefirst evaluationof theseapproacles
over anoperatioral testbed.

1. INTRODUCTION

In mostdistributedsystemsnamingof nodesfor low-level com-
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municationleveragegopologicallocation(suchasnodeaddressés
and is indepemlent of ary application. Typically, higherlevel,
location-indegndenhamingandcommunications built uponthese
low-level communicationprimitives using one or more levels of
(possiblydistributed)bindingservicegshatmaphigherlevel names
to topologicalnamesandsometimesonsiderapplication-speific
requirements.

An exampleof this is the InternetwherelP addressegrovide
thelow-level namessuitablefor routing. IP addresseareassigned
topologicdly: theaddresssfor nodesthataretopologicallyprox-
imate are usually dravn from the sameaddressrefix [18]. (By
topology we meanlogical connetivity asdistinctfrom physical
geograpy.) This topologcal assignmenis essentiafor scaling
the routing systemandwas carriedforward into IPv6 [30]. DNS
provides a text-basedhierarchicalnode naming system[26] that
is implementedusing IP. Above this systemthe web andsearch
enginesprovide a docunentandobjectnamingsystem,andcon-
tentdistribution networksaddgeograpit or application-leel con-
straints. As analternatve, systemssuchasJini [35] andINS [1]
layerdifferentapproackesfor resourcaliscovery above IP for net-
works of devices.

In this paper we investigatean emeping classof distributed
systemswvherelow-level communic&@ion doesnotrely on network
topologicd location. Rather low-level communicaion is based
onnameghatareexternalto the network topologyandrelevantto
theapplicationjnamescanbe basedn capabilitiessuchassensor
typesor geagraphic location. Suchan approachto namingal-
lows two kinds of efficiencies. First, it eliminatesthe overhea
of communicdion requiredfor resolving namebindings. Sec-
ond, becasedatais now self-identifying,it enalles activation of
application-speific processingnsidethe network, allowing data
reductionnearwheredatais generated

Thesetwo bendits do not apply to the Internetas a whole,
where, by compaison, bandwidthis plentiful, delayis low, and
throughput (routerprocessig capalility) istheprimaryconstraint.
Technologytrendssuggest,however, thattheseconditionsarere-
versedin wirelesssensometworks. Sensometworks are predi-
catedontheassumptiornthatit will befeasibleto have smallform-
factor devices containingsignificantmemoryresourcesprocess-
ing capabilitiesandlow-power wirelesscommunication,in addi-
tion to several on-boardsensors.In sensometworks procesig



time per bit communicateds plentiful (CPUsarefastandband-
widthslow), but bandwidthis dear For examgde, in onescenario
PottieandKaiserobsene that3000instructionscould beexecuted
for thesameenepy costof sendinga bit 100mby radio[29]. This
environmentencouagesheuseof computatiorto reducecommu-
nication. In that context, fewer levels of namingindirectionand
theuseof in-network, application-specificnessag@rocessingas
opposedo opagle paclet forwarding) are essentiato the design
of sensometworks.

Ourthesisthen,is thattheresourceconstraintof wirelesssen-
sornetworks canbe bettermetby anattribute-basechamingsys-
tem with an external frame of refeencethan by traditional ap-
proachesTherehave beenmary attribute-basethamingschemes,
but most build over an underlying topologcal naming scheme
suchaslP [28, 10,6, 38,4, 27,1, 20,22]. Multiple layersof nam-
ing may not be a bottleneckwith a few or eventensof nodes but
the overheadbecomesunreasoablewith hundred or thousads
of nodesthatvary in availability (dueto movementandfailures).
However, constrainedapplication-spcific domainssuchassen-
sornetworks canprofit by eliminatingmultiple layersandnaming
androuting datadirectly in application-leel terms. Efficient at-
tribute namingis basedon external framesof referencesuchas
pre-definedattributesandgeogaphy Pre-definedensotypesre-
ducethe levels of run-timebinding andgeograpkc-aidedrouting
reducegesourceconsunption.

In additionto attribute-basedaming application-spcific, in-
networkprocessings essentiain resource-costrainedsensonet-
works. As suggestedy the abore trade-of betweencompua-
tion and communicdion, application-speific caching,aggreja-
tion, andcollaboratve signalprocesig shouldoccurascloseas
possibleto wherethe datais collected. Suchprocessinglepends
on attribute-identifieddatato trigger application-specifidilters,
pre-definedattributesand datatypesto allow pre-deplymentof
thesefilters, andhop-hy-hop processingf the data. This kind of
processings similar to Active Networks [34], but differs by op-
eratingin the constrainedbandvidth-poorenvironmentof sensor
networks whereanintegrated,application-specifisolutionis ap-
propriate.

As anillustrationof attribute-basesamingandin-network pro-
cessingn a sensometwork, considera wirelessmonitoring sys-
temwith a mixture of light or motion sensorgconstantlyvigilant
atlow-power), andafew higherpower andhigherbandwidthsen-
sorssuch as microptonesor cameras. To consere enegy and
bandwidththe audio sensorswould be off (or not recording)at
most times, except when triggeredby lessexpensve light sen-
sors. Insteadthis compuation canbe distributed througtout the
network. Querieg(userrequestsarelabeledwith sensottype (au-
dio or light) known to the systemat designtime. Queriesdiffuse
throughthe network to be handledby nodeswith matchingsen-
sorsin the relevant geograjhic region. The applicationwill hear
from whatever relevant sensorgespond Moreover, the decision
of one sensortriggering anothercan be moved into the network
to be handleddirectly betweenthe light and audiosensors.The
alternatve Internet-basedrchitecturevould have a centraldirec-
tory of active sensorsand a centralapplicationthat interrogates
this databasemonitorsspecificsensos, andthentriggersothers.
Our goalis to eliminatethe communicationcostsof maintaining
thiscentralinformationto provide morerobustandlong-livednet-
works in spite of changingcommunicatios, moving nodes,and
limited batterypower. (We explore exactly how theseapproahes

work in Section5 andquartify potentialsavzingsin Section6.)

In this paper we demonstratéhat thereexists a simple archi-
tecturethatusegopology-indepementnamingfor low-level com-
municationgto achieve flexible, yet highly enepy efficient appli-
cationdesigns Thekey contribtutionsof this work aretherefore:

o |dentifying the building-blocksof this architecturespecifi-
cally anattribute-basedamingschemewith flexible matc-
ing rulesgroundea in asharedrameavork of attributes(such
assensoitypesandgeograpy).

e Shawing how this approacto namingenablesapplication
specifi¢in-networkprocessinguchaslocalizeddataaggre-
gation,andto quantifythesebenefitsin arunningsystem.

In previouswork [23], we have discussedhelow-level commu
nication primitives that constitutedirecteddiffusion. This work
focusedon understading the designspaceof the network proto-
colsundelying directeddiffusion. It alsoevaluatedtheir perfor
mancethroughsimulation finding thatscalabilityis goodasnum-
bersof nodesandtraffic increases.However, this work did not
developthesoftwarearchitecturanecessey for realizingattributes
andin-network processingn anoperationakystem(for example,
it employedasimplifiedattributeschemendhard-codedggrea-
tion methods).In addition,simulationsnecessitatapproximating
environmental effectssuchasradiopropagationandmary param-
etersof thosesimulationswere not setto matchthe sensomet-
working hardwarethatis only now becaming available. By con-
trast,this paperevaluatesthe designquestiors concerninghaming
andin-network processig encounteredin deploying a sensomet-
work, andit presentghe first experimentalresultsof datadiffu-
sionin atestbedreflectingthe detailsof animplementatiorsuch
asnon-idealizedadios,propagationMAC protocols etc.).

Numerots early systemshave developedattribute-basedham-
ing systemsfor generaluse[28, 10, 6], asan approachto soft-
waredesign[9, 4, 27,17, 25] andfor sensometworks[1, 22]. Our
work is uniquein thatit replacesatherthanaugmentstheundely-
ing networking routing layers,andthatit provides matchingrules
thatallow efficientimplementatiorandyet areexpressie enough
to cover a wide rangeof applications,and provides in-network
processing.

2. RELATED WORK

Our work builds on prior work in attribute-basedhaming in-
network processig, andsensometworks.

2.1 Attrib ute-basednaming systems

Therehasheenalargeamourt of work on attribute-basedham-
ing, bothfor generapurposeuseover Internet-stylenetworks, for
specialdomains(suchasthe web), andasaninternal structuring
mechanisnfor services.

Researclandindustryhave developednumerousttribute-based
namingsystemdayeredon top of general-pgposenetworks. Uni-
versandyellow-pagesamingatthe University of Arizona[6, 28]
weredesignedo provide servicediscovery for groupsof compu-
ers(for example,print to an unloadedpostscript-capablprinter).
Likeourwork, they includeattributesandoperatorsbut they build
overstandardnternetprotocolsfor communications.Commercial
attribute-basedamingsystemsuchasX.500[10] andLDAP [38]
also operateover Internetor Internet-like routing and provide a



primarily hierarchicalorganization. Depenenceon IP-level ad-
dressingand routing limits addssubstatial overhea when ap-
plying thesesystemso highly resource-costrainedervironments
suchassensometworks. (For example,someappro@&hesto ser
vice locationfor smartspacesequireservicesor IP assignment,
IP-level routing, hostnamelookup, and serviceregistrationand
lookup.) With end-to-endprocessg only, thesesystemsalsodo
not provide in-network processing.

As an alternatve to providing attribute-basechamingfor end-
useruse severalsystemsave propogdattribute-basedommuni-
cationsfor structuringdistributedsystems Linda proposedstruc-
turingdistributedprogramausingseveral CPUsaroundanattribute-
indexed comma memorycalleda tuple space[9]. For the S/Net
implementatiorthis wasthebasiccommunicatiormechanismbut
proposel implementationsaassumeuniform and rapid communi-
cationsbetweenall processors.Later systemssuchas ISIS [4]
andthe Information Bus [27] provide a “publish and subscibe”
approachwhere information providers publish information and
clientssubscribeo attribute-specifiedubsetof thatinformation.
Thesesystemsare designedo be robustto failure, but againas-
sumereasonaly fast, plentiful, and expensve communicdéions
betweennodes. Theseapproabesare not directly applicableto
resource-costrainedsensonetworks. They donotuseapplication-
specific,in-network processingsinceall processearereasonaly
closeto eachother; whenthey do useprocessing(suchasat a
wide-areagatavay) it is manually configured

More specificstill is work that proposesattribute-basegrimi-
tives as solutionsto specificproblems. SRM first suggestedus-
ing nameddata as the fundamental data unit for reliable mul-
ticastcommuncation, and it demonstratedhis approat with a
distributed whiteboard[17]. Our work is inspired by theseap-
proachesbut it differs by providing a wider rangeof matching
operatorgratherthanjustequality),addingin-network processig
to leverageCPU-communicationtrade-ofs for sensometworks,
and operatingdirectly over low-level (hop-by-hg@) communica-
tions protocolsinsteadof the Internetmulticastinfrastructure.

2.2 In-network processing

Recentwork in active networks [34] and active services|[2]
hasexaminedwaysto provide in-network processingor the In-
ternet. Sampleapplicationsncludeinformationtranscodiig, net-
work monitoring,andcaching Thiswork is built overaninternet-
likeinfrastructurepftenaugmenedwith anextendedrun-timeen-
vironment,and assumesodesareindividually addressale. We
insteadbuild directly over hop-by-lop communicationgrimitives
andidentify datainsteadof nodes. Our work differs from active
servicesin that we assumethat communicationscostsbetween
nodesvary greatly while currently proposedactive servicesas-
sumerougHy equialentdistancedetweenall service-proiding
nodes. We differ from active networks primarily in the tamget
domain: we target sensometworks wherebandwidh is limited,
enepy is expensve, and computepower is comparatrely plenti-
ful andinexpensve. Instead,active networks typically considers
Internet-like domainswhere bandwidthis plentiful, the ratio of
computepower to bandwidthis muchlower, andenepy is notan
issue.All of theseapproackesdistribute application-sgcific code
throughaut the network, raising questionsabou codesafetyand
portability Theseproblemsare not centralto somesensornet-
works (suchasthosethataredevotedto a singleapplication),but
morecomplex networkswould bendit from active-netvorks-style

executionervironmentsto suppaot in-placeupgradabity .

Recentwork onadaptve webcaching[25] andpeerto-peerfile
sharingsystemssuchasFreene{12] explore application-speific,
hop-by-hop processing. Unlike active networks and our work,
theseappro@hesemphasizeprotocolsdesignedfor a particular
application. In addition, our work runsdirectly over hop-by-hop
commuricationratherthanover avirtual network layeredover the
Internet.

2.3 Sensornetwork-spedfic systems

Sensometworking researcthasseenincreasingactuvity in the
lastfew yearswith advancesin sensonodeandradiohardware[33,
29]. This work hasbeeninstrumentalin clarifying the trade-of
betweencompuation and commurication and the needfor in-
network procesgg. Our focuson in-network processings moti-
vatedby thiswork. Thisworkis howeverbasedntopogaphically-
addressedensomodes;the primary differencein our work is the
useof attribute-basedamingfor structureanddatadiffusion for
commurication.

Internetadhocrouting(Brochetal. surey severalprotocols[7]
suchas DSR and AODV) can also be usedin sensometworks.
Sincead hoc routing recreatedP-style addressig, it would re-
quire somekind of directoryserviceto locatesensorsunlike our
approat wherethey arenamedby attributes.Ad hocroutingdoes
notsuppat in-network processing

Jini is an example of a resourcediscovery systembuilt over
Internetprotocols[35]. It provides a directory serviceand uses
Javato distribute processingo usernodes,makingit well suited
to a local-areanetwork with high bandwidthand multicast. By
contrast,we distribute the directory acrossthe network and al-
low application-spcific procesing at intermediatesystemnodes,
addressingproblemsof resource-constraime multi-hop wireless
networks. TheNinja ServiceDiscovery Serviceg15] locatesXML-
namedbjectsthroughanetwork of collaboratingsenersbut again
targetshigh bandwidh local-areaesources.

ThePiconetwork haspresentedundametmal advancesin enegy-
consening network communicaionsfor networks of devices|[3].
Their work focuses on static hierarchiesof networked devices,
concertrators, and hosts. While similar to our tiered architec-
ture with full andmicro-diffusion, they do not considerattribute-
nameddataor dynamicin-network processing.

SPIN evaluatesseveral variantsof flooding for wirelesssensor
networks[20]. Datain SPINis identifiedby application-speific
metadatahat appeas to assumendividual senses are address-
able.Weinsteaduseattributesto namedataalone;globally unique
identifiersarenotused.SPINdoesnotconsideapplication-speific
in-network processing.

ThelntentionalNamingSystemis anattribute-basedshamesys-
temoperatingin anoverlay network over the Internet[1]. Its use
of attributesasa structuringmechaimsmandamethodto copewith
dynanically locatingdevicesis similarto our approachin motiva-
tion and mechanism.The primary differenceis that we assume
that attribute-baseccommunication(data diffusion) is the basic
commurcationsprimitive (abose hop-by-hop messaginy while
they constructan overlay network over an IP-basednternet. Ar-
chitecturallythis impliesthatwe distribute namematchingacross
mary smallcommunicationsnodeswhile they managenamesata
few resohersthat cooperatively managepartsof the namespace.
Finally, the detailsof matchingare differentin the two systems.
Their work providesa sophisticatedierarchicalattribute match-



ing procedue. Ourapproab is muchmoremodesty comparison
(targetingsmallerembedieddevices but addscomparatie oper
atorsin additionto equality

LEACH analyzetheperformareof clusterbasedoutingmech-
anismwith in-network datacompressior{19]. They emphasize
how intermediate-rangeommuricationvia clusterheadsandhow
compressiorcan reduceenegy consumgion. Their in-network
compressioris oneexampleof the kind of in-network processing
thatwe would like to support.They do not specifyhow flows and
opportunitiesfor aggregationwould be activated,while our work
focuseson the namingmechaismsthatallow suchactiity.

DataSpacelescribesan attribute basednamingmechaism for
queryingphysicalobjectsthat prodice and storelocal data[22].
The DataSpacés divided into smalleradministratve andlogical
datacubeswhicharelogically groupedinto datafloks Dataflocks
areaddressedtthenetwork level throughlPv6 multicastaddresse
that correspondo their geogaphic coordnates,andtheir values
for certainattributesthat sene asnetwork indices. Queryresults
may involve aggreation of more specific queriesaddressedo
sub-datacbes At a high-level their namingapproaa is similar
to ours, but insteadof mappingattributesandgeoméry to a very
large numberof multicastgroupswe routedirectly on attributes
themseleswithout this indirection. In addition, they do not ex-
plorein-network processing.

The COUGAR device databasesystempropose distributing
databasgueriesacrossasensonetwork asoppasedto moving all
datato acentralsite[5]. Sensodatais representedsanAbstract
DataType attribute, the public interfaceto which correspodsto
specificsignal processingunctions supportedby a sensortype.
They thenperformjoins or aggreationin the network asspeci-
fied by a centrallycomputedquery plan. Their work is common
with oursin its emphasi®n in-network processingandour study
of nestedqueries(Section5.2) wasinspiredby their work. The
primary differencebetweentheir work in oursis how placemen
of in-network processingds determined We emphasizehe useof
filtersandnestedjuerieso enableeitherad-hocor sensorspecific
placementof in-network processingwhile COUGAR centrally
translateghe queryandassigngrocessig to the distributedsys-
tem, incurring overheadto centrally collect network information
for queryoptimization.

Declaratve Routingfrom MIT’ s Lincoln Labsis closestto our
work [14]. The publish/sulscribe-orientedAPI we usewas de-
fined in collaborationwith them[13] and they have developed
anindepementimplementation.The primary differencebetween
their work and oursis our focus on in-network processing We
evaluatetheir work morecompletelyin Section4.2.

3. ARCHITECTURE

Ourcommunicatiosarchitecturdés basednthreecomponents:
directeddiffusion, matchingrules,andfilters. Directeddiffusion
is usedto disseminaténformationin the distributedsystem.Data
is managedasa list of attribute-value-opeation tuples.Matching
rulesidentify whendatahasarrived at its destinationor if inter-
mediatefilters shouldprocesghe data. This approat to naming
comestogetherto provide an externalframenork relevantto the
application. Thesecomponats balancethe genericservicesof
diffusion and matchingruleswith application-preided attributes
andfilters. We next describesachof thesecompments.

3.1 DirectedDiffusion

Directeddiffusionis a datacommunicatiormechanisnior sen-
sornetworks[23]. Datasourcesandsinksuseattributesto identify
whatinformationthey provide or areinterestedn. The goal of
directeddiffusion is to establishefficient n-way communication
betweenone or more sourcesand sinks. Directeddiffusionis a
data-centricommunicéion paradigmthatis quite differentfrom
host-baseccommunicationin traditional networks. To describe
the elementf diffusion, we take the simpleexampleof a sensor
network desigredfor trackinganimalsin awildernessefuge.

Supposethat a userin this network would like to track the
movementof animalsin someremotesub-reion of the park. In
directeddiffusion, this tracking task representsan interest An
interestis a list of attribute-value pairs that describea task us-
ing sometask-specifimamingschemgwe describethe detailsof
theseattributesin the next section).Intuitively, attributesdescribe
the datathat is desiredby specifying sensortypesand possibly
somegeograpft region. They arethenusedto identify andcon-
tactall relevant sensors We usethe termsink to dende the node
thatoriginatesaninterestandthereforeis the destinatiorof data.

The interestis propagtedfrom neightor-to-neighbortowards
sensomnodesn thespecifiedregion. A key featureof directeddif-
fusionis that every sensomodeis task-awae—by this we mean
thatnodesstoreandinterpretinterestsratherthansimply forward-
ing themalong.In our example,eachsensonodethatrecevesan
interestremembersvhich neighba or neightors sentit that in-
terest. To eachsuchneightor, it setsup a gradient A gradient
representdoth the directiontowardswhich datamatchinganin-
terestflows, andthe statusof thatdemanl (whetherit is active or
inactive and possiblythe desiredupdde rate). After settingup a
gradientthesensonoderedistributestheinterestto its neightors.
Whenthenodecaninfer wherepotentialsourcesmightbe (for ex-
ample from geograplt informationor existing similargradients),
theinterestcanbeforwardedto a subsebf neightors. Otherwise,
it will simply broadcastheinterestto all of its neighbas.

Whenasensonodethatmatchegheinterests found, theappli-
cationactivatesits local sensorgo begin collectingdata.(Priorto
activation we expectthe nodes sensoravould bein a low-power
mode). The sensomodethengenerateslata messagesatching
theinterest. In directeddiffusion, datais alsorepresentedising
an attribute-basedhamingscheme.A sensomodethat generates
suchanevert descriptionis termeda source.

Datais cachedat intermediatenodes as it propagategoward
sinks. Cacheddatais usedfor several purposesat differentlevels
of diffusion. The corediffusionmechanisnusesthe cacheto sup-
pressduplicatemessageandpreventloops,andit canbe usedto
preferentiallyforward interests. (Sincethe diffusion coreis pri-
marily interestedin an exact match, as an optimization, hashes
of attributescanbe computedandcompaed ratherthancomplete
data.)Cachedlatais alsousedfor application-spcific,in-network
processing.For example,datafrom detectionsof a single object
by differentsensorsnay be meigedto a singleresponsdasedon
sensorspecificcriteria.

Theinitial datamessagédrom the sourceis marked asexplora-
tory andis sentto all neighborsfor which it hasmatchinggra-
dients. If the sink hasmultiple neighbors,it chooseso receve
subsequet datamessage$or the sameinterestfrom a preferred
neighbor(for example,the one which deliveredthe first copy of
the datamessage To do this, the sink reinforcesthe preferred
neighbor which, in turn reinforcesits preferredupstreamneigh-
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Figure 1: A simplified schematicfor dir ecteddiffusion.

bor, andsoon. Finally, if anodeon this preferredpathfails, sen-
sornodescanattemptto locally repar the failed path. The sink
may alsonegativelyreinforce its currentpreferredneighbor if an-
other neighba delivers better(lower lateng) sensordata. This
negative reinforcemen propagatesieighborto-neigtbor, remor-

ing gradiens andtearingdown andexisting pathif it is no longer
needed?23]. Negative reinforcementsuppressoopsor duplicate
pathsthatmay arisedueto network dynamics.

After theinitial exploratorydatamessagesubsegantmessages
are sentonly on reinforcedpaths. Periodicallythe sourcesends
additional exploratory data messageso adjustgradientsin the
caseof network changes (dueto nodefailure, enegy depletion,
or mobility), temporarynetwork partitions,or to recover from lost
exploratory messagesRecoery from datalossis currently left
to the application. While simple applicationswith transientdata
(suchassensorghatreporttheir stateperiodically) needno addi-
tionalrecorery mechanismye arealsodeveloping retransmission
schemdor applicationghattransferarge, persistentiataobjects.

Eventhis simplified descriptionpointsout several key features
of diffusion,andhow it differsfrom traditionalnetworking. First,
diffusion is data-centricall communicaion in a diffusion-basd
sensometwork usesintereststo specifynameddata. Secondall
commurication in diffusion is neighborto-neigtbor or hop-by-
hop, unlike traditional datanetworks with end-to-endcommuni-
cation.Every nodeis an“end” in asensomnetwork. A corollaryto
this previous observatioris thatthereareno “routers” in a sensor
network. Eachsensomode caninterpretdataand interestmes-
sages. This designchoiceis justified by the task-specificityof
sensometworks. Sensometworks are not general-puposecom-
municationnetworks. Third, nodesdo not needto have globally
uniqueidentifiersor globally uniqueaddressgfor regular opera-
tion. Nodes,however, do needto distinguishbetweemneighbors.
Fourth, becausendividual nodescancache aggreate,andmore
generally procesamessagest is possibleto performcoordinaed
sensingcloseto the sensephenomaea. It is alsopossibleto per
form in-network datareduction,therebyresultingin significant
enepgy savings. Finally, althoughour exampledescribes partic-
ular usageof the directeddiffusion paradigm(a query-response
typeusageseeFigurel), the paradigmitself is moregenerathan
that; we discussseveral otherexampleapplicationsn Section5.

3.2 Attrib ute Tuplesand Matching Rules

Diffusion message and applicationinterestsare composedf
attribute-value-operatiotuples.Attributesareidentifiedby unique

one-waymatch:
given two attribute setsA and B
for eadh attribute a in A wherea.opis aformal {
matchel = false
for eadh attribute b in B wherea.key = b.key andb.opis anactud
if a.val comparesvith b.val usinga.op,then matched= true
if not matchel then return false(no match)

retum true (succesfulone-way match)

Figure 2: Our one-waymatching algorithm.

keys drawn from a centralauthority (In practicewe implement
theseas simple 32-bit numkbers and assumeout-of-bandcoordi-

nation of their values,just as Internetprotocd numkbers are as-

signed.) Attributesimplicitly have a dataformat (integersand

floating point valuesof differentsizes,strings,and uninterpreted
binary dataarecurrentlysuppated).

Theoperationfield defineshow datamessageandinterestsn-
teract.Operationsarethe usualbinary comparisong§EQ, NE, LE,
GT, LE, GE, correspadingto equdity, inequality lessthan,etc.),
“EQ-ANY” (which matchesarything), andIS. “IS” allows users
to specifyanactual(literal or bound value,while all the otherop-
erationsspecifyformal (acompaisonor unbound)parametergor
comparisonA one-waymatt comparesll formal parametersf
oneattribute setagainstthe actualsof the others(Figure2). Any
formal parametetthat is missinga matchingactualin the other
attribute setcauseghe one-way matchto fail (for example,“con-
fidenceGT 0.5” musthave anactualsuchas“confidencelS 0.7”
andwould not match“confiderce IS 0.3”, “confidenceLT 0.7”,
or “confiderce GT 0.7”). Two setsof attributeshave a complete
matd if one-way matchessucceedn both directions. In other
words, attribute setsA and B matchif the one-way matchalgo-
rithm succeed$rom both A to B and B to A.

Thismatchingstyleis similarto therulesusedn otherattribute-
basedanguagegfor example,Linda[9] andINS[1]), but we add
two-way matchingandarangeof operatorsn additionto equdity.
Whenmultiple attributesandoperatorsare presenthey areeffec-
tively “anded together;all formalsmustbe satisfiedfor a match
to be successfulThis approab strikesa balancebetweenreaseof
implementatiorandflexibility. The simpleboundel setof opera-
torscanbeimplementedn tensof linesof codeandyet suppats,
for example,rectanglar regions.



To seehow diffusion and attribute matchinginteract,we con-
tinue the example from Section3.1 where a userasksa sensor
network to track four-leggedanimals.The users querytranslates
into an interestwith the attributes(type EQ four-legged-aimal-
searchintenal IS 20ms,durationlS 10 secondsx GE—100,x LE
200,y GE 100,y LE 400). Also, animplicit “class|S interest”
attribute is addedto identify this messages an interest(as op-
posedo data).Thisinterestspecifiedive conditions:detectionof
animalsin a particularregion specifiedby arectanglelt alsopro-
videsinformation abou how frequerily datashouldbe returned
andhow long thequeryshouldlast.

Sensorsn thenetwork areprogrammeadvith animalsearchou-
tines(eitherby pre-programmingitdeploymenttime or by down-
loading mobile code). Suchsensorswould watch for interests
in animalsby expressinginterestsaboutinterestswith attributes
(classEQ interest,type IS four-legged-animal-searghx IS 125,
y IS 220). Whenthe users interestarrivesat the sensorit would
activateits sensousingthe parameterprovided (durationandin-
tenal) andreply if it detectsanything.

Whenthe sensodetectssomethinghe datamessagevould in-
clude attributes (type IS four-legged-animal-saah, instancelS
elephantx IS 125,y IS 220, intensityIS 0.6, confidene IS 0.85,
timestampsS 1:20, classlS data). This messageatisfieghe orig-
inal interest.It encods asattributesadditionalinformationabou
whatwasseenandwhatconfidercethesendeihasin its detection.

This exampleillustratesthe detailsof a specificquery It shavs
how nameddataprovidesa convenientway of encodng informa-
tion, and how geometryand well-known attributesallow simple
matchingruleswork for this application Although this example
usesseveralattributes,someapplicationamay useonly a subsebf
thesemethodspmitting geograhic constraintgin a smallsensor
network) or usinga singleattribute (whenthereis only onesensor
type). We have found thattheseprimitives provide goodbuilding
blocksfor arangeof applicatiors; we describethesein Section5.

Althoughmatchingis reasonaly powerful, it doesnotperfectly
cover all scenarioor tasks. Simple matchingin thesecasescan
approximatewhat is required,and application-speific code can
furtherrefinethe choice. For example,perfectrectanglesligned
with the coordinde systemare insufficient to describearbitrary
geometricshapes.Non-rectanglar shapesanbe acconplished
eitherby multiple queriesor by usingthe smallestourding rect-
angleand having the applicationignore requestsnside the rect-
anglebut outsidethe requiredregion. Similarly, applicationscan
usegeneralattributesthat are clarified with sub-attritutesor pa-
rameterqtype IS animal-searchsubtypelS four-legged). Filters
(describecdhext) alsoallow applicationgo influenceprocessing.

3.3 Filters

Filtersareourmechanisnfor allowing application-spcificcode
to runin the network andassistdiffusion andprocessing Appli-
cationsprovide filters beforedeployment of a sensometwork, or
in principlefilters couldbedistributedasmobile codepackagsat
run-time. Filtersregisterwhatkinds of datathey handlethrough
matching;they arethentriggeredeachtime thatkind of dataen-
tersthenode.Wheninvoked, afilter canarbitrarily manipulatehe
message;achingdata,influencinghow or whereit is sentonward,
or generatingnew messagein responseFiltershave accesgo in-
ternalinformationaboutdiffusion,including gradientsandlists of
neighbormodes.

Filtersaretypically usedfor in-network aggreation,collabora-

tive signalprocessing¢caching,andsimilar tasksthatbenefitirom
controlover datamovement.In additionto theseapplicationswe
have foundthemvery usefulfor detuggng andmonitoring.

Continuingour example, a filter canbe usedto suppresson-
currentdetectionsof four-leggedanimalsfrom differentsensors.
It would registerinterestin detectioninterestsand datawith at-
tributes(type IS four-legged-animbisearch).It could thenrecord
what the desiredintenal is, then allow exactly one reply every
interval units of time, suppressingepliesfrom othersensors.A
moresophisticatedilter could countthe numker of detectingsen-
sorsand addthat as an additionalattribute, or it could gener&e
somekind of aggregate“confidence” ratingin someapplication-
specificmanne. In this examplefiltering may discardsomedata,
but by reducingunnecesarycommunicatiorit will greatlyextend
the systems operationalifetime.

We describesomeapplicationof filters in Section5, andquan
tify thebenefitsof aggreationin onescenarian Section6.1.

4. IMPLEMENT ATIONS

Therearecurrentlythreeimplementation®f all or partof this
architecture Our currentreferencemplementatiorSCADD dif-
fusionversion 3 providesall componets. MIT-Lincoln Labshas
implemented‘declarative routing” that provides attribute match-
ing but nofilters[14]. Both of theseémplementationsun on Linux
on desktopPCsand PC/104-basedensomodes[11] (embedded
x86 machinespurswith a66MHz CPU and16MB of RAM and
flash disk, Figure 3(a)), and on WINSng 1.0 sensomodes [29]
(Windows-CE-basedodeswith customlow-power radios, Fig-
ure 3(b)). We have alsoimplementednicro-diffusion a baresub-
setof theseservicegdesignedo run on Moteswith tiny 8-bit pro-
cessorandonly 8KB of memory(Figure3(c)).

Sourcecodeto our implementationganbe found on our web
sitehtt p: // ww. i si . edu/ scadds.

All of ourimplementatios build upona simpleradio API that
supportsbroad@stor unicastto immediateneighlors. Neighbas
must have somekind of identifier, but it is not requiredto be
persistent. We can use persistentidentifiers (for examgde, Eth-
ernetMAC addresss)or operatewith ephermallyassignedden-
tifiers [16].

4.1 Basicdiffusion APIs

Our referencemplementationincludesC++ Network Routing
APIs summarizedn Figure4 (see[13] for a completespecifica-
tion andexamplesourcecode). TheAPIsdefineapublish/sulscribe
approacho datahanding. To receve data,nodessubscribeo par
ticular setof attributes. A subscriptionresultsin interestsbeing
sentthroughthe network andsetsup gradients.A callbackfunc-
tion is theninvoked whenever relevantdataarrivesatthe node.

Applications that generateinformation publish that fact, and
thensendspecificdata. Theattributesspecifiedn the publishcall
mustmatchthe subscription.If thereareno active subscriptios,
publisheddatadoesnot leave the node. As a further optimization
sensonodes maywishto avoid generatinglatathathasno takers.
In this casethe applicationwould subscribefor subscriptionsand
would be informedwhensubscriptionsrrive or terminate.

Filter-specificAPls areshavn in Figure5. A filter is primarily
a callbackprocedire (the cb specifiedin addFilter)thatis called
whenmatchingdataarrives. Ratherthanoperateonly on attribute
vectors,filters are given direct accesso message that include
identifiersfor the previous and next immediatedestinations.We



(a) OurPC/104node

(b) WINSNng1.0node

(c) UCB ReneMote

Figure 3: Diffusion operational platforms.

handl e NR : subscri be(NRAttrVec *subscribeAttrs,
const NR :Call back * ch);
int NR :unsubscribe(handl e subscription_handl e);
handl e NR: : publish(NRAttrVec *publishAttrs);
int NR :unpublish(handl e publication_handle);
int NR :send(handl e publication_handle,
NRAttrVec *sendAttrs);

Figure 4: Basicdiffusion API.

handl e addFilter(NRAttrVec *filterAttrs,
intl6_t priority, FilterCallback *ch);
int NR:renoveFilter(handle filter_handle);
voi d sendMessage( Message *nsg, handl e h,
intl6_t agent_id = 0);
voi d sendMessageToNext (Message *nmsg, handl e h);

Figure5: Filter APlIs.

are currently evaluating using this additionallevel of control to
optimize diffusion, for example using geograpit informationto
avoid flooding exploratoryinterests We expecttheseinterfacesto
be extendedaswe gain moreexperiencewith how filters areused
andwhatinformationthey require.

Finally, theseAPIs have beendesignedo favor anevent-driven
programmingstyle, althoughthey have beensuccessfullyusedin
multi-threadedervironmerts suchasWINSng 1.0. We have tar-
getedevent-driven progranmming to avoid synchronizationerrors
and to avoid the memory and performane overhead of multi-
threading.Evidenceis growing thatevent-driven softwareis well
suitedto embeddedrogramming particularly on very memory-
constraineglatforms[21].

Also we allow filters andapplicationgto runin the sameor dif-
ferentmemoryaddresspacesrom eachotherandthe diffusion
core. Single-addresspaceoperationis necessaryor very small
sensomodes that lack memory protectionand as a performarce
optimization. Multiple addresspacesnay be desiredfor robust-
nesgto isolatefilters of differentapplicationsrom eachother

4.2 MIT -LL declarative routing
Dan Coffin helpeddefine the basic diffusion APIs (Figure 4

and[13]) anddeveloped anindepenéntimplementatiorin MIT-
Lincoln Lab’s Declaratve Routing system[14]. In principle all
applicationsthatdo not depem on filters will run over eitherim-
plementationThislevel of portability hasbeendemorstratedwith
Cornell’s queryproxy [5] thatrunsover bothimplementations.

Declaratve routinganddatadiffusionarefar moresimilarthan
they aredifferent. Both namedataratherthanend-rodes. Differ-
encesarein how routesand transmissiorare optimized,both by
applicationsandthe core system. The primary differenceis that
declaratve routing doesnot include filters to allow applications
to directly influencediffusion. We seefilters as a critical nec-
essarycomponat to enablegeneralin-network dataprocessing.
SecondLincoln Lab’s declaratie routing includesdirectsupport
for enegy andgeogray-aidedroutingsothatroutesareselected
to avoid enegy-poa nodesand generallymove “towards” a tar-
getgeogaphicarea. In our currentimplementatiorinterestsand
exploratorymessagearefloodedthroughthe network beforegra-
dientsare setup for direct commurncation. We are currently ex-
ploring usingfilters to optimizediffusion (avoiding flooding) with
geograpic information[39].

4.3 Micr o-diffusion

Micro-diffusion is a subsetof our approachimplementedon
very small processorg8-bit CPU, 8KB memory). It is distin-
guishedby its extremely small memoryfootprint and a comple-
mentaryapproacHor deploymentto our full system.

Micro-diffusion is a subsetof our full system,retainingonly
gradients,condensig attributesto a single tag, and suppating
only limited filters. As aresultit addsonly 2050bytesof codeand
106 bytesof datato its hostoperatingsystem. (By comparison,
our full systemrequiresadaemorwith staticsizesof 55KB code,
8KB data,andalibrary at20KB code 4KB data.)Micro-diffusion
is implementedasa compmentin TinyOS [21] thatadds3250B
codeand 144B of data(including supportfor radio and a photo
sensor)sothe entiresystemrunsin lessthan’5.5KB of memory
Micro-diffusionis statically configuredto suppat 5 active gradi-
entsanda cacheof 10 pacletsof the 2 relevantbytesper paclet.

!No chargeswererequiredto our diffusion implementational-
thoughthe port requiredone changeto the applicationto accom-
modatea casewhereMIT’ s implementationvaslessstrict about
attribute matching.



Althoughreducedn size,the logical headeformatis compadible
with that of the full diffusionimplementatiorandwe areimple-
mentingsoftware to gatevay betweenthe implementations.Al-
thoughwe do not currentlyprovide filters in micro-diffusion, they
areanessentiatomporentof enablingin-network aggreationin
diffusion,andwe planto addthem. We intendto leverageon the
ability to reprogranmotesover theair [21] to programfilters dy-
namically

Motesandmicro-diffusioncanbeusedin regionswherethereis
needfor densesensowdistribution, suchasdistributing photosen-
sorsin aroomto detectchargein light or temperaturesensordor
fine grainedsensing.They provide the necessargensomatapro-
cessingcapability with theability to usediffusionto communicate
with lessresource-costrainednodes (for example,PC/104-class
nodes). Motes can alsobe usedto provide additionalmulti-hop
capabilityunderadwersewirelesscommunic@on conditions.

We thusenvisagedeploymentof atieredarchitecturewith both
larger and smallernodes. Lessresource-onstrainednodeswill
form the highesttier and act as gatavaysto the secondtier. The
secondtier will be compose of motesconnestedto low-power
sensorsrunning micro-diffusion. Most of the network “intelli-
gence”is programned into the first tier. Second-tiemodeswill
be controlledandtheir filters programme from thesemore capa-
ble nodes.

4.4 Implementation discussion

We draw two obsenationsfrom our experierceswith theseim-
plementationsFirst, the rangeof diffusionimplementationsug-
geststhat both the ideasand the code are portablesince there
arethreeindependatimplementationgour mainimplementation,
micro-diffusion, and MIT-LL’s declaratve routing) and our pri-
mary implementationruns on multiple platforms (PC/104sand
WINSng 1.0 as of June2001, with portsin progresso two new
radiosand platforms). The requiremets for diffusion are quite
modestin termsof CPU speed(a 15MHz 32-bit processois suf-
ficient), memory(afew megabytessupportdiffusion,anOS,and
applications)andradio (10—2kb/sbandwidthis suficient). Sev-
eral low-power radio designshave paclet sizesassmallas30B.
We requiremoderatesize paclets (100B or more) and usecode
for fragmentatiorandreassemblyhennecessg. Secondmicro-
diffusiondemonstratethatit is possibleto implementa subsebf
diffusion on an embedled processar A comman preconeption
is thatfully customprotocds are neededor embedled systems;
theseobsenations suggetthatuseof diffusionshouldnotbe pre-
cludeddueto sizeor compleity.

5. APPLICATION TECHNIQ UESFOR
SENSORNETWORKS

We next considerapplicationtechnique in moredetail. These
techniquesllustratehow topologyindependat low-level naming
andin-network processingcanbe usedto build efficient applica-
tionsfor sensometworks. Thefirst approachwe examineis filter-
drivendataaggreation anexampleof how in-network processing
canreducedatatraffic to conseve enegy. We alsoconside two
approachsto provide nestedquerieswhereone sensorcuesan-
other Finally, we briefly describeseveral otherapplicationsthat
have beenimplemented

5.1 In-network data aggregation

An anticipatedsensorapplicationis to querya field of sensors
andthentake someactionwhenoneor moreof thesensorss acti-
vated.For example,a suneillancesystemcould notify a biologist
if an animalentersa region. Caverageof deployed sensorswill
overlapto ensurerobust coverage,so one event will likely trig-
germultiple sensorsAll sensorswill reportdetectionto theuser
but communicationandenegy costscanbereducedf this datais
aggreatedasit returnsto the user Datacanbe aggreatedto a
binary value (therewas a detection),an area(therewas a detec-
tion in quadram 2), or with someapplicationspecificaggreyation
(seismicandinfraredsensorsndicate80% chanceof detection).

Althoughdetailsof aggreyationcanbe application-speific, the
commonsystemsproblemis the designof mechanismdor es-
tablishingdatadisseminatiorpathsto the sensorawithin the re-
gion, and for aggr@ating responsse. Considerhow one might
implementthis kind of datafusionin a traditional network with
topologically-assigad low-level node names. First, in orderto
determinewhich sensorsarepresentin a given region, a binding
servicemust exist which, given a geograghical region, lists the
nodeidentifiersof sensorsithin thatregion. Oncethesesensors
aretasled, an electionalgorithm mustdynamically electone or
morenetwork nodes to aggrejatethe dataandreturnthe resultto
thequerier

Instead,our architectureallows usto realizethis usingoppor
tunisticdataaggreation. Sensosselectiorandtaskingis achieved
by naming nodesusing geograpic attributes. As datais sent
from the sensorgto the querier intermediatesensorsn the re-
turn pathidentify and cacherelevant data. This is achiezed by
runningapplication-speific filters. Theseintermediatenodescan
thensuppressluplicatedataby simply not propagtingit, or they
may slightly delayandaggreyatedatafrom multiple sourcesWe
arealsoexperimentingwith influencingthe dynamicselectionof
aggreationpointsto minimize overall datamovement.

Opportunstic dataaggreationbenefitsirom severalaspectof
ourapproachFilters provide a naturalapproacto inject applica-
tion-specificcodeinto the network. Attribute namingandmatch-
ing allow thesdfiltersto remaininactive until triggeredby relevant
data. A commonattribute setmeanshatfilters incur no network
coststo interactwith directoryor mappingservices.

In prior work we analyzedthe performanceof diffusion with
andwithout aggreyation throughsimulation[23]. In Section6.1
we evaluae ourimplementatiorof this over realsensomnodesand
validateour initial resultswith laboratorytests.

5.2 Nestedqueries

Real-vorld eventsoftenoccurin responsg¢o someervironmen
tal change.For example,a personenteringaroomis often corre-
latedwith changesn light or motion, or a flower’s opering with
thepresencer absencef sunlight. Multi-modal sensonetworks
canusethesecorrelationdy triggeringa seconary sensoased
onthe statusof anotherin effect nestingonequeryinsideanother
Reducingthe duty cycle of somesensorscanreduceoverall en-
ergy consunption(if thesecondangensoiconsumesmoreenegy
thantheinitial sensorfor exampleasanaccelerometeriggeringa
GPSrecever) andnetwork traffic (for example,atriggeredmager
generatesnuchlesstraffic thana constam video stream). Alter-
natively, in-network processingnight choosethe bestapplication
of a sparseresource(for example,a motion sensortriggering a
steerabl&eamera).
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Figure 6: Two approachesto implementing nested queries.
Squaresare initial sensorsgray circlesare triggered sensors,
and the large circle is the user Thin dashedlines represent
communication to initial sensors;bold lines are communica-
tion to the triggered sensor

Figure6 shavs two apprachesfor a userto causeone sensor
to triggeranotterin a network. In both casesve assumesensors
know their locationsandnot all nodescancommunicae directly.
Part (a) shavs a directway to implementthis: the userquerieshe
initial sensorgsmallsquares)whenasensois triggered theuser
queriesthe triggeredsensor(the small gray circle). The alterna-
tive shavn in part (b) is a nested two-level approachwherethe
userqueriesthe triggeredsensomwhich thensub-taskghe initial
sensorsThis nestedqueryapproactgrew out of discussios with
PhilippeBonnetandembeddedlatabaseueryoptimizationin his
COUGARdatabas¢5s].

Theadwantageof anestedjueryis thatdatafrom theinitial sen-
sorscanbeinterpretediirectly by thetriggeredsensaorratherthan
passingthroughthe user In monitoring applicationsthe initial
andtriggeredsensoravould oftenbe quite closeto eachother(to
cover the samephysicalarea) while the userwould be relatively
distant. A nestedquery localizesdatatraffic nearthe triggering
eventratherthansendingit to the distantuser thusreducingnet-
work traffic and lateng. Sinceenegy-conservingnetworks are
typically low-bandvidth and may be higherlateng, reductionin
lateng canbe substantialandreductiors in aggreyatebandvidth
to the usercan meanthe differencebetweenan overloadedand
operationahetwork. The challengedor nestedqueriesarehow to
robustly matchtheinitial andtriggeredsensorsandhow to select
agoodtriggeredsensoiif only oneis desired.

Implementatiorof directqueriess straightforvardwith attribute-
addressedensors.The usersubscibesto datafor initial sensors
andwhensomethings detecteche requestghe statusof thetrig-
geredsensoi(eitherby subscribingor askingfor recentdata).Di-
rectqueriedllustratetheutility of predefinedattributesidentifying
sensottypes. Diffusion may alsomake useof geograply to opti-
mizerouting.

Nestedqueriescan be implementedby enablingcode at each
triggeredsensorthat watchesfor a nestedquery This codethen
sub-taskshe relevart initial sensorsand actiatesits local trig-
geredsensomon demand.If multiple triggeredsensorsareaccept-
ablebut thereis a reasonablelefinition of which oneis best(per
haps,the mostcentralone), it can be selectedthroughan elec-

tion algorithm. Onesuchalgorithmwould have triggeredsensors
nominatethemseles after a randomdelayasthe “best”, inform-
ing their peersof their locationandelection(this approad is in-
spiredby SRM repairtimers[17]). Betterpeerscanthendispute
the claim. Useof locationasan external frame of referencede-
finesa bestnode andallows timersto be weightedby distanceto
minimizethe numberof disputedclaims.

In Section6.2 we evaluatenestedquerieswith experimentsin
our testbed.

5.3 Other applications

In addition to theseappro@heswe have explored at ISI, our
systemhasbeenusedby several otherresearctefforts.

Researcherat Cornellhave usedour systemnto provide commu-
nicationbetweeran end-usedatabaeandapplicationthatrepre-
sentsandvisualizesa sensoffield andquery proxiesin eachsen-
sornode [5]. This applicationusedattributesto identify sensors
running query proxiesandto passquery byte-codego the prox-
ies. They alsooriginatedthe ideaof usinga nestedappraachfor
nestedqueries.Futurework includesundestandingwhatnetwork
informationis necessey for databaseuery optimizationand al-
ternatve appro@hesfor nestedjueries.

ResearcheratBAE SystemandPennsylaniaStateUniversity
have usedour systemfor collaboratie signal processing BAE
systemscontributed signal processingcode and systemsintegra-
tion, while PSUprovided sensoifusionalgorithms[8]. Thecom-
binedsystemusedour systemto commuricate databetweensen-
sorsusingnameddataanddiffusion. At thetime our filter archi-
tecturewasnotin place;interestingfuturework is to evaluatehow
sensoffusionwould be doneasafilter.

6. EVALUATION

The approacks describedn this paperare usefulif they can
be efficiently implementedandimprove the enegy-efiiciency of
distributedsystemsuchassensomets.In Section5 we described
several applicationghatemploy thesetechniquesin this section,
we measurethe benefitsof aggregation and nestedqueriesand
verify raw matchingperformarce.

6.1 Aggregationbenefis

In Section5.1, we amguedthatit is relatively easyto build sen-
sor network applicationsusing attribute-basechaming, and in-
network filters. In earlierwork, we have obseredthatin-network
aggre@ationis importantto the performancef datadiffusion[23].
In this section we validatetheseresultswith anactualimplemen-
tation of a simple suneillance applicationusing attribute-based
namesandfilters.

We examinedn-network aggreationin ourtestbedf 14 PC/104
sensonodesdistributedontwo floorsof ISI (Figure7). Thesesen-
sorsare conneted by RadiometrixRPC modens (off-the-shelf,
418MHz, paclet-basd radiosthatprovide about13khk/'s through-
put) with 10dB attenuatorson the antennago allow multi-hop
commuricationsin our relatively confinedspace Theexacttopol-
ogy variesdepenéhg on the level of RF activity, andthe network
is typically 5 hopsacross.

To evaluatethe effect of aggreyationwe placeda sink on one
sideof thetopology(“D” atnode 28) andthenplaceddatasources
ontheotherside(“S” atnodes25,16,22,and13),typically 4 hops
apart. All sourcesgenerateeventsrepresentinghe detectionof
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Figure 7: Node positionsin our sensortestbed. Light nodes
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someobject at the rate of one event every 6 second. For ex-
perimentrepeatabilityeverts areartificially generded, ratherthan
taken from a physicalsensorand signal processing.Eachevent
generatesa 112 bytes messageand is given sequene numbers
that are synchrorized at experimeri start? All nodeswere con-
figuredwith aggreationfilters thatpasshefirst uniqgueeventand
suppressubsequet eventswith identicalsequere numbers.Al-
thoughthis scenarioabstractssomedetailsof a completesensor
network (for example, real signal processingnay have different
sensinglelays) we believe it capturegheessencef the network-
ing componat of multi-sensoraggreation.

We would like to comparethe enegy experded per receved
event. Unfortunatelywe cannotmeasurehatdirectly for two rea-
sons. First, we do not have hardware to directly measureenegy
consumptionin a running system. Second,we have previously
obsered that choiceof MAC protocd cancompletelydominate
enegy measurementsn low power radios,MAC protocolsthat
do not sleepperiodically are dominatedby the amountof time
spentlistening, regardlessof choice of protocol. Thus enepgy-
consciougprotocolslike PAMAS [32] or TDMA arenecessarjor
long-lived sensometworks. We arecurrentlyexperimening with
power-awareMAC approackes.

Althoughwe currentlycannotmeasureenegy consumgion on
anappropriateMAC, we canestimatethe effectivenes of reduc-
ing traffic for MACs with differentduty cycles. A simplemodel
of enegy consunptionis:

Pa = dpltl +prt'r +psts

wherep andt definethe relative power and time spentlisten-
ing, receving, and sendingandd is definedasthe requiredlis-
tenduty cycle (thefraction of time the radio mustbe listeningto
receve all traffic destinedto it). We found our sensometwork
containedpockets of severecongestion,but in the aggr@ate,ra-
dioslisten:recere:sendimeswereaboutl:3:40. Relative enegy

2An operationakensometwork would usetimestampsnsteadof
sequencenumbes. Both require synchroiization, but time can
be synchrorzed globally with GPS or NTP. We use sequence
numbersbecauseat the time of this experimen we had not syn-
chronizedour clocks. Experimentallyotherthansynchraization
overheadsequ@cenumbersandtimestampsreequialent.
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Figure8: Bytessentfrom all diffusion modules,normalized to
the number of distinct events,for varying numbers of sources.

consumptionof listen:recere:sendhas beenmeasuredat ratios
from 1:1.05:1.4to 1:2:2.5[37]. For simplicity, assumeenegy

consumptionratios of 1:2:2. With theseparametersenegy us-
agefor nodeswith aduty cycle of 1 arecompletelydominatecby

enepgy spentlistening. At duty cycle of 22% half of theenepy is

spentistening. Duty cyclesof 10%begin to bedominatecby send
cost.Duty cycle for mostradiostodayis 100% but TDMA radios
suchasin WINSng nodes [29] may have duty cyclesof 10-15%
for non-base-stationsThis analysisillustratesthe importanceof

enepgy-conseving MAC protocols.

Sincewe cannotdirectly measureenegy per event, Figure 8
measuredytessentfrom diffusionin all nodesin the systemnor-
malizedto the numberof distinct eventsreceved. Eachpointin
this graphrepresentthe meanof five 30-minute experimentswith
95% confiderce intervals. Performanceavith one sourceis basi-
cally identicalwith andwithout suppession(this form of aggre-
gation).As expected suppres®n requiredessdatapereventwith
multiple sourceghanexperimentswithout suppressionWith sup-
pressionthe amountof traffic is roughly constantregardlessof
the numberof sourcesThis application-sgcific dataaggreation
shaws thebenefitof in-network procesing. It alsoshaws thatdif-
fusionis usefulfor point-to-multipointcommunicationsincetraf-
fic representbothdataandcontroltraffic. Comparingtraffic with
andwithout suppressiorshavs that suppressioris ableto reduce
traffic by up to 42% for four sources.The network exhibits very
highlossratesatthatlevel of traffic. OurcurrentMAC is quiteun-
sophisticatedperformingonly simple carrierdetectionandlack-
ing RTS/CTS or ARQ. Sinceall messaggarebroken into several
27-bytefragments]ossof a singlefragmentresultsin lossof the
whole messageand hiddenterminalsare endemic to our multi-
hoptopology this MAC performsparticularlypoarly athighload.
We arecurrentlyworking on a betterMAC protocd.

We can confirm theseresultswith a simpletraffic model. We
approximateall messageas127Blong andaddtogetherinterest
messageésentevery 60sandfloodedfrom eachnode),reinforce-
mentmessagessenton the reinforcedpathbetweerthe sink and
eachsource) simple datamessage$9 out of every 10 datames-
sagessentonly on the reinforcedpath, and eitheraggreatedor
not), andexploratorydatamessage§l out of every 10 datames-
sagessentfrom eachsourceandfloodedin turn from eachnode,



againpossiblyaggr@ated). If datamessagesrenot aggr@ated,
eachsourcencursthecostof thefull path,while if datamessages
areaggreatedafter the first hop eachincursone hop costto the
aggr@ationpointandthenonemessagavill travel onto thesink.
Summingthe messageostandnormalizingper eventwe expect
aggr@ationto provide aflat 990B/evert independentof the num-
berof sourcesandwe expectbytessentpereventto increasérom
990to 328B/eventwithout aggrgationasthe numkter of sources
risefrom 1 to 4.

The shapeof this predictionmatchesour experimeral results,
but in absolutetermsit underpedictsthe B/event of aggreyation
and overpredcts the 4-sourcéno-aggregation case. We believe
thesedifferencesare dueto MAC-layer collisionsin the experi-
mentthattendto drive bytes-perevent to the middle. Only 55—
80% of everts genaatedin the experimentweredeliveredto the
sink, so bytes-pereventin lesscongestedgortionsof the exper
iment (with one sourceor aggreation)is high becawetraffic is
normalizecbverfewerevernts. Ontheotherhand with four sources
and no aggreyation, we believe collisions happenvery nearthe
datasourcesand so the aggr@ate amourt of datasentis lower
thatpredicted.In addition,we sometimeobsere longerpathsin
experimentthanwe expected.

Theseexperimentalmeasuremes of aggreationarealsouse-
ful to validateour previous simulationexperimentghatconsicera
wider rangeof scenariosPrevious simulationstudieshave shavn
thataggreyationcanreduceenegy consumptionby afactorof 3—
5x in alargenetwork (50—250nodes) with five active sourcesand
five sinks (Figure 6b from [23]). Although caremustbe usedin
comparingenepy to bytessent,a 3-5-fold enegy savings with
five sourcess muchgreatetthanthe42% (or 1.7-fold)traffic sav-
ings we obsene with four sources. The primary reasonfor this
differenceis differencesn ratio of exploratoryto datamessages
in thesesystemsExploratorymessageécalledlow-dataratemes-
sagesn [23]) areusedto selectgoad gradientsandsoareflooded
to all nodes. Datamessagescalled high-ratemessage# [23])
aresentonly on reinforcedgradientsforming a pathbetweerthe
sourcesandsinks. In simulationthe ratio of exploratoryto data
messagesentfrom a sourcewas abou 1:100 (exploratory mes-
sageswere sentevery 50s, dataevery 0.5s,messagesvere mod-
eled as 64B paclets). In our testbedthis ratio was abou 1:10
(exploratory message every 60s, dataevery 6s, with messages
of roughly the samesize). Increasingthis ratio in experiment
was not possiblegiven our small radio bandwidh (13kb/srather
than1.6Mb/sin simulation)while keepingreasonablexperimen-
tal runningtimes. This large differencein ratiosis consistentvith
thelargedifferencein enegy or traffic savings.

A potentialdisadwantage of dataaggreation is increaseda-
teng. Theeffect of aggr@ationon lateng is stronglydepenént
onthespecificapplicationdetermineciggreationalgorithm.The
algorithmusedin theseexperimentsdoesnot affect lateny atall,
sincewe forward uniqueeventsimmediatelyuponreceptionand
thensuppressary additionalduplicates(incurring only the addi-
tional neggligible costof searchingfor duplicates). Otheraggre-
gationalgorithms,suchasthosethat delay transmittinga sensor
readingwith the hopeof aggreyatingreadingsrom othersensors,
canaddsomelateng. Understading aggregation andsensorfu-
sionalgorithmsis animportantareaof futurework.

Although we have quantifiedthe benefitsof in-network aggre-
gationin a specificapplication, aggr@ation is one example of
in-network processing Other examplesrangefrom simple data
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Figure 9: Percentageof audio events successfullydelivered to
the user.

cachingto collaboratve signal process;g. As our experiments
shaw, not only do attribute matchingandfilters make aggreyation
andsimilar serviceseasyto provide, they alsoenablenoticeable
performaneimprovemeris.

6.2 Nestedquery benefis

In Section5.2 we suggestedhat nestedqueriescould reduce
network costsandlateng, andwe arguedthatnestedjueriescould
be implementedusingattributesandfilters. To validateour claim
aboutthe potential performarte benefitsof this implementation
we measurethe performanceof an applicationthat usesnested
gueriesagainstonethatdoesnot.

The applicationis similar to that describedn Section5.2 and
Figure6: a userrequestsacousticdatacorrelatedwith (triggered
by) light sensors. We reuseour PC/104testbedshovn in Fig-
ure 7 placing the user“U” at node 39, the audio sensor“A” at
node20, andlight sensors'L” at nodesl6, 25,22, and 13. It is
onehopfrom thelight sensordo the audiosensorandtwo hops
from thereto theusernode.To provide areproducitbe experiment
we simulatelight datato changeautomaticallyevery minute on
the minute. Light sensorgeporttheir stateevery 2s (no special
attemptis madeto synchraize or unsynchonizesensors)Audio
sensorgeneratesimulatedaudio dataeachtime ary light sensor
changesstate.Light andaudiodatamessageareabout100 bytes
long.

Figure9 shaws the percentagef light changeeverts that suc-
cessfullyresultin audio datadeliveredto the user (Datapoints
representhemeanof three20-minute experimeris andshav 95%
confidene intervals.) Thetotal numberof possibleeventsarethe
numbe of timesall light sourceschang stateand a successful
event is audio datadeliveredto the user Thesedelivery rates
do not reflect perhop messagealelivery rates(which are much
higher),but ratherthecumulatie effect of sendingoest-efort data
acrosghreeor five hopsfor nestedbr flat queriesrespectiely.

This systemis very congestedand as describedabove (Sec-
tion 6.1), our primitive MAC protocol exaggeratesthe impact of
congestion. Missing eventstranslateinto increasedletectionla-
teng. Althoughasensonetwork couldafford to missafew events
(sincethey would be retransmittedn the next time the sensoris
measured)theseloss ratesare unaccepably high for an opera-



SetB: data

classlS data

taskIS “detectAnimal”
confidene IS 90
latitudelS 20.0
longitudelS 80.0
tamget!S “4-leg”

SetA: interest

classIS interest
taskEQ “detectAnimal”
confidenceGT 50
latitude GE 10.0
latitude LE 100.0
longitudeGE5.0
longitudeLE 95.0
target IS “4-leg”

Figure 10: Attrib utesusedfor matching experiments.

tional system.

However, this experimentsharply contraststhe bandwidthre-
quirementsof nestedandflat queries. Even with one sensorthe
flat query shaws significantly greaterloss thanthe nestedquery
becauseboth light and audio datamusttravel to the user Both
flat and nestedqueriessufer greatedosswhenmore sensorsare
presentbut the one-level queryfalls off further Comparingthe
delivery ratesof nestedquerieswith one-level queriesshavs that
localizing the datato the sensords very importantto parsimo-
nious use of bandwidth. In an uncorgestednetwork we exped
that nestedquerieswould allow operationwith a lower level of
datatraffic thanone-level queriesandsowould allow a lower ra-
dio duty cycle andalongernetwork lifetime.

6.3 Run-time costsof matching

Attribute matchingis usedin all commurication betweensen-
sors, filters, and applicationsin our system. Although technol-
ogy trendssuggestapid improvementin processoperformane,
price,andsize,sensomnodesmay choseto hold performartce con-
stantandleveragetechndogy throughreducedprice andsize,so
run-timeperformarce mustbe consideredA secondconstraintis
memorystorageparticularlyin very smallimplementations.

To evaluate matching performancewe examinedthe cost of
matchingdatafrom asensor Thebasicmatchingin thatcasecom-
paresan8-elemeninterestagainst 6-elementata(attributesare
shavn in Figure 10). To evaluatethe costof larger dataobjects
we increasedhe numberof attributesin the datafrom 6 to 30 at-
tributes. This experimentwas doneon our PC/104sensomode
with a66MHz AMD 486-classCPU.To evaluatethe costof asin-
gle matchwe measureaostof mary matcheg5000for matching
or 10,000for thenon-machingcase)n aloopandnormalizedre-
peatingthis experimern 1000 timesto avoid unduesystemeffects
suchasinterrupts. The orderof attributesin eachsetis random-
izedeachexperiment.We alsoshav 95%confidene intervals, al-
thoughthey arealwayslessthan5% of the mean.Althoughmem-
ory cachingwill causethis apprachto underestimatéhe costof
amatch thebasictrendsit identifiesshouldbe applicableto oper
ationalsystems.

Our expectationis that the costof matchingis linear with the
numberof elements. This is confirmedin Figure 11 that shavs
the costof matchingasthe numberof attributesin one attribute
setincreasedn differentways. Thetwo lowestlines (no-match/IS
and no-match/EQ)shav the casewhereone of the attributesin
setA is notmatchedby thosein setB (specifically the confidence
valuein setB is changel from 90 to 10). Becausehe two-way
matchingalgorithmteststheformalsin setA first, theincremental
costof additionalattributesin setB is fairly smallin this case,
andit is insensitve to the type of attribute added If the failing
formal wasin setB we would expectthe costto be higher (mid-
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Figure 11: Matching performanceasthe number of attrib utes
grow.

way betweerthe measurediata).

The two higherlines (match/ISand match/EQ)show the cost
of matchingwhenall attributessucceed. The differencein cost
of additionalattributesin theselines shaws the costof additional
matching. In the match/EQIine all additionalattributesare for-
mals (additionsof the “classEQ interest”attribute), so eachnew
attribute mustbe matchedagainstsetA. For match/IS,additional
attributesareactuals(repetitionsof ‘extra|S “foo” ’) thatmustbe
examinedbut do notrequiresearching

Althoughourcurrenimplementatioris completelyunoptimized
the absolue performanceof theseoperationss quite reasonale.
At 50Qus/mach for small attribute setsour quite slow PC/104
can match2000 setsper second. Although quite slow by Inter
netrouterstandardsthis is reasonabléor sensometworks where
we expecthigh-level eventsto happe with frequerciesof 10Hz
orless.

Finally, thesemeasuremetssuggesseveral potentialoptimiza-
tionsto matchingperformance Segregatingactualsfrom formals
canreducesearchtime (sinceformalscannotmatchotherformals
thereis noneedto comparehem).Attributescouldbestaticallyor
dynamicallyoptimizedto move theattributesleastlik ely to match
to thefront. We planto explorethesekindsof optimizationsin the
future.

6.4 Experiment Discussion

Theseexperimentshave provided new insightinto sensomet-
work operationpuilding substatially onour prior simulationstud-
ies[23].

Theseexperimentsarefirst examinationof nestedqueriesand
matchingperformance They suggesthatthe CPU overheal of
matchingshouldnot be a constraintfor reasonablypowerful sen-
sornodesandthatnestedjueriescangreatlyreduceconterion by
localizingdatamovemen.

Theseaxperimenthave exploredlow-bandvidth operation Pre-
vious simulationstudiesof sensometworks often have not used
the low-bandvidth radioswe seein actualsensometwork hard-
ware. Protocolsand scenariosbehae qualitatvely different at
10-20Mb/sfor senso networksratherthanthe 3—12Mib/s common
to wireless802.11LANs. Evenwith our early operationakexpe-
riencein small-scaledemonstrationsnd testing,we did not ap-



preciatethe difficulty of operatinga 14-nodesensometwork at a
relatively high utilization. Our observationsuggestwo areasof
futurework: first, sensometworks mustadaptto local nodeden-
sities(we arebeginning to explore this area[11]). Secondmore
work is neededo understandhow diffusion’s parametersmapto
differentneeds particularly the trade-ofs betweenoverheadand
reliability presentin the frequeng of exploratory messagesin-
terestsandreinforcemets. Finally, the diffusion applicationswve
currently use operatein an openloop; feedbackand congestion
controlareneedel.

Two aspect®f radiopropagatiorproved unexpectedlydifficult.
First, someexperimentsseemedo shav asymmetridinks (com-
municationwas fine in one direction but poor or impossiblein
the other). Diffusiondoesnot currentlywork well with asymmet-
ric links; we areconsideringhow to bestreviseit. Secondsome
links provided only intermittentconrectivity. A future direction
for diffusion might sendsimilar dataover multiple pathsto gain
robustnessvhenfacedwith low-quality links. Currentsimulation
models,evenwith statisticalnoise,do notadequatelyreflectthese
obsered propagtioncharacteristics.

Finally, we weregenerallyhappy with ourapproah to attribute
namingandfilters. It wasreasonablyeasyto build andadaptour
sampleapplicationsanddeluggingsoftware.

7. FUTURE WORK

Thiswork describe®ur currentapproacho constructingobust
distributedsensonetworksfor afew applicationslt suggetsser-
eralareador futurework includingenhancingurtestbedandpro-
tocols,applyingthemto additionalapplicationsandunderstad-
ing how to build sensometworks.

We have severalplannal changedo ourtestbechardware. Most
importantly we planto move to a differentradio by RF Mono-
lithics andto useaUCB Mote asthepaclet controller Thepaclet-
level controllerof our RadiometrixRPCwasvery helpful for rapid
development,but thisrevisedapproazhwill give uscompletecon-
trol overthe MAC protocol.

We have now explored diffusion performanceboth in simula-
tion andwith testbedexperimerts. In-network aggrgationshavs
qualitatively the sameresultsin both evaluaions (Section6.1). A
next stepis to usethe experimentso parametrizeéhe simulations.

In this work we were repeatedlychallenged by the difficulty
in understading what was going on in a network of dozers of
physically distributed nodes. Our currentervironment augnents
the radio network with a separatavired network for experimen-
tal datacollection, but much morework is neededn developing
analysistools for thesenetworks. Tools are neededo reportthe
changirg radio topology, obsenre collision ratesandenegy con-
sumption,permit more flexible logging, and accuratelysynciro-
nize nodeclocks. We have begunwork on in-network monitoring
tools[40], but morework is needed.

AppropriateMAC protocolsfor sensometworks is a continu-
ing challenge. In spiteof publishedwork in this area[3, 33] and
ongoirg actvities, afreely available,enegy avareMAC protocol
remainsneeded We and othersare currently exploring alterna-
tiveshere;we hopesolutionswill beforthcoming

A balanceof controlanddatatraffic is particularlyimportantin
bandwidth-onstrainedsystemssuchassensometworks. Several
known technique to constraincontrol traffic exist for soft-state
protocolsin wired networks [24, 31, 36]; theseapproacksneed

to beappliedto our system.

We have exploredtwo applicationsof sensometworks andcol-
laboratedon other applications,but mary other applicationsre-
main. Oneinterestingdirectionis to explore how collaboratve
signalprocessig interactswith in-network processingndfilters.

Finally, althoughwe focus on wirelesssensornetworks, the
techniqus we develop arealsorelevantto wired sensomnetworks.
Wired connectios greatlyreducebandwidh constraintsandand
eliminate power constraints,but attribute-basechaming can re-
ducesystemcompleity by decouplingdatasourcesndsinks,and
in-network processingnay reducelateny andimprove scalabil-
ity. Although prior systemshave separatelyusedtheseabstrac-
tionsfor virtual informationsystemsa futuredirectionis to apply
themto large, wired sensornetworks that are coupledwith the
physicalworld.

8. CONCLUSION

This pape has describedan approachto distributed systems
built arourd attribute-namedlataandin-network processing By
using attributeswith external meaning(suchas sensortype and
geograpic location) at the lowestlevels of communication this
approat avoidsmultiple levels of namebindingcommonto other
approaties.Attribute-namediatain turn enablesn-network pro-
cessingwith filters, suppating dataaggreation, nestedqueries
and similar techniqueghat are critical to reducenetwork traffic
andconsenre enepgy. We evaluaedthe effectivenesof thesetech-
niquesby quantifying the benefitsof in-network processingor
dataaggregationandnestedqueries.In oneexperimert we found
that aggre@ationreducedraffic by up to 42% and nestedqueries
reducedossratesby 15-30% Although aggreyation hasprevi-
ously beenstudiedin simulation,theseexperimens are the first
evaluation of thesetechniglesin an operation&testbed. These
approatiesareimportantin theemepging domainof wirelesssen-
sor networks wherenetwork and power resourceconstraintsare
fundamental.
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