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ABSTRACT
In mostdistributedsystems,namingof nodesfor low-level com-
municationleveragestopologicallocation(suchasnodeaddresses)
andis independentof any application.In thispaper, weinvestigate
anemergingclassof distributedsystemswherelow-level commu-
nication doesnot rely on network topological location. Rather,
low-level communicationis basedon attributesthat areexternal
to the network topology and relevant to the application. When
combinedwith densedeployment of nodes,this kind of named
dataenablesin-networkprocessingfor dataaggregation,collabo-
rative signalprocessing,andsimilar problems.Theseapproaches
are essentialfor emerging applicationssuchas sensornetworks
whereresources suchasbandwidthandenergy arelimited. This
paperis thefirst descriptionof thesoftwarearchitecturethatsup-
ports nameddataand in-network processing in an operational,
multi-applicationsensor-network. We show thatapproachessuch
asin-network aggregationandnestedqueriescansignificantlyaf-
fectnetwork traffic. In oneexperiment aggregationreducestraffic
by up to 42% andnestedqueriesreduceloss ratesby 30%. Al-
thoughaggregationhasbeenpreviously studiedin simulation,this
paperdemonstratesnestedqueriesasanotherform of in-network
processing, andit presentsthefirst evaluationof theseapproaches
over anoperational testbed.

1. INTRODUCTION
In mostdistributedsystems,namingof nodesfor low-level com-
�
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municationleveragestopologicallocation(suchasnodeaddresses)
and is independent of any application. Typically, higher-level,
location-independentnamingandcommunicationisbuilt upon these
low-level communicationprimitivesusingoneor more levels of
(possiblydistributed)bindingservicesthatmaphigher-level names
to topologicalnamesandsometimesconsiderapplication-specific
requirements.

An exampleof this is the InternetwhereIP addressesprovide
thelow-level namessuitablefor routing. IP addressesareassigned
topologically: theaddressesfor nodesthataretopologicallyprox-
imateareusuallydrawn from the sameaddressprefix [18]. (By
topology, we meanlogical connectivity asdistinct from physical
geography.) This topological assignment is essentialfor scaling
therouting systemandwascarriedforward into IPv6 [30]. DNS
providesa text-basedhierarchicalnodenamingsystem[26] that
is implementedusingIP. Above this system,the web andsearch
enginesprovide a documentandobjectnamingsystem,andcon-
tentdistributionnetworksaddgeographic or application-level con-
straints.As an alternative, systemssuchasJini [35] andINS [1]
layerdifferentapproachesfor resourcediscoveryaboveIP for net-
worksof devices.

In this paper, we investigatean emerging classof distributed
systemswherelow-level communication doesnot rely onnetwork
topological location. Rather, low-level communication is based
onnamesthatareexternalto thenetwork topologyandrelevant to
theapplication;namescanbebasedoncapabilitiessuchassensor
typesor geographic location. Suchan approachto namingal-
lows two kinds of efficiencies. First, it eliminatesthe overhead
of communication requiredfor resolving namebindings. Sec-
ond,becausedatais now self-identifying,it enablesactivation of
application-specific processinginsidethe network, allowing data
reductionnearwheredatais generated.

Thesetwo benefits do not apply to the Internet as a whole,
where,by comparison, bandwidthis plentiful, delay is low, and
throughput(routerprocessingcapability) is theprimaryconstraint.
Technologytrendssuggest,however, that theseconditionsarere-
versed in wirelesssensornetworks. Sensornetworks arepredi-
catedontheassumptionthatit will befeasibleto havesmallform-
factordevicescontainingsignificantmemoryresources,process-
ing capabilities,andlow-power wirelesscommunication,in addi-
tion to several on-boardsensors.In sensornetworks processing



time� per bit communicatedis plentiful (CPUsarefastandband-
widths low), but bandwidthis dear. For example, in onescenario
PottieandKaiserobservethat3000instructionscouldbeexecuted
for thesameenergy costof sendingabit 100mby radio[29]. This
environmentencouragestheuseof computationto reducecommu-
nication. In that context, fewer levels of namingindirectionand
theuseof in-network, application-specificmessageprocessing(as
opposedto opaquepacket forwarding)areessentialto thedesign
of sensornetworks.

Our thesis,then,is thattheresourceconstraintsof wirelesssen-
sornetworkscanbebettermetby anattribute-basednamingsys-
tem with an external frameof referencethan by traditional ap-
proaches.Therehavebeenmany attribute-basednamingschemes,
but most build over an underlying topological naming scheme
suchasIP [28, 10,6, 38,4, 27,1, 20,22]. Multiple layersof nam-
ing maynot bea bottleneckwith a few or eventensof nodes,but
the overheadbecomesunreasonablewith hundreds or thousands
of nodesthatvary in availability (dueto movementandfailures).
However, constrained,application-specific domainssuchassen-
sornetworkscanprofit by eliminatingmultiple layersandnaming
androuting datadirectly in application-level terms. Efficient at-
tribute namingis basedon external framesof referencesuchas
pre-definedattributesandgeography. Pre-definedsensortypesre-
ducethe levelsof run-timebindingandgeographic-aidedrouting
reducesresourceconsumption.

In addition to attribute-basednaming, application-specific, in-
networkprocessingis essentialin resource-constrainedsensornet-
works. As suggestedby the above trade-off betweencomputa-
tion and communication, application-specific caching,aggrega-
tion, andcollaborative signalprocessing shouldoccurascloseas
possibleto wherethedatais collected.Suchprocessingdepends
on attribute-identifieddata to trigger application-specificfilters,
pre-definedattributesanddatatypesto allow pre-deploymentof
thesefilters, andhop-by-hopprocessingof thedata.This kind of
processingis similar to Active Networks [34], but differs by op-
eratingin theconstrained, bandwidth-poorenvironmentof sensor
networkswhereanintegrated,application-specificsolutionis ap-
propriate.

As anillustrationof attribute-basednamingandin-network pro-
cessingin a sensornetwork, considera wirelessmonitoringsys-
temwith a mixtureof light or motionsensors(constantlyvigilant
at low-power),andafew higher-power andhigher-bandwidthsen-
sorssuchas microphonesor cameras.To conserve energy and
bandwidththe audio sensorswould be off (or not recording)at
most times, except when triggeredby lessexpensive light sen-
sors. Insteadthis computation canbe distributedthroughout the
network. Queries(userrequests)arelabeledwith sensortype(au-
dio or light) known to thesystemat designtime. Queriesdiffuse
throughthe network to be handledby nodeswith matchingsen-
sorsin the relevant geographic region. The applicationwill hear
from whatever relevant sensorsrespond. Moreover, the decision
of onesensortriggeringanothercanbe moved into the network
to be handleddirectly betweenthe light andaudiosensors.The
alternative Internet-basedarchitecturewould have a centraldirec-
tory of active sensorsand a centralapplicationthat interrogates
this database,monitorsspecificsensors, andthentriggersothers.
Our goal is to eliminatethe communicationcostsof maintaining
thiscentralinformationto providemorerobustandlong-livednet-
works in spiteof changingcommunications, moving nodes,and
limited batterypower. (We exploreexactly how theseapproaches

work in Section5 andquantify potentialsavingsin Section6.)
In this paper, we demonstratethat thereexists a simplearchi-

tecturethatusestopology-independentnamingfor low-level com-
municationsto achieve flexible, yet highly energy efficient appli-
cationdesigns.Thekey contributionsof this work aretherefore:

� Identifying thebuilding-blocksof this architecture,specifi-
cally anattribute-basednamingschemewith flexiblematch-
ing rulesgrounded in asharedframework of attributes(such
assensortypesandgeography).

� Showing how this approachto namingenablesapplication-
specific, in-networkprocessingsuchaslocalizeddataaggre-
gation,andto quantifythesebenefitsin a runningsystem.

In previouswork [23], wehavediscussedthelow-level commu-
nicationprimitives that constitutedirecteddiffusion. This work
focusedon understanding thedesignspaceof the network proto-
cols underlying directeddiffusion. It alsoevaluatedtheir perfor-
mancethroughsimulation,findingthatscalabilityis goodasnum-
bersof nodesand traffic increases.However, this work did not
developthesoftwarearchitecturenecessary for realizingattributes
andin-network processingin anoperationalsystem(for example,
it employedasimplifiedattributeschemeandhard-codedaggrega-
tion methods).In addition,simulationsnecessitateapproximating
environmental effectssuchasradiopropagation,andmany param-
etersof thosesimulationswerenot set to matchthe sensornet-
working hardwarethat is only now becoming available. By con-
trast,thispaperevaluatesthedesignquestionsconcerningnaming
andin-network processing encounteredin deploying asensornet-
work, andit presentsthe first experimentalresultsof datadiffu-
sionin a testbed(reflectingthedetailsof an implementationsuch
asnon-idealizedradios,propagation,MAC protocols,etc.).

Numerous early systemshave developedattribute-basednam-
ing systems,for generaluse[28, 10, 6], asan approachto soft-
waredesign[9, 4, 27,17,25] andfor sensornetworks[1, 22]. Our
work is uniquein thatit replacesratherthanaugmentstheunderly-
ing networking routinglayers,andthat it provides matchingrules
thatallow efficient implementationandyet areexpressive enough
to cover a wide rangeof applications,and provides in-network
processing.

2. RELATED WORK
Our work builds on prior work in attribute-basednaming, in-

network processing, andsensornetworks.

2.1 Attrib ute-basednaming systems
Therehasbeena largeamount of work on attribute-basednam-

ing, bothfor generalpurposeuseover Internet-stylenetworks,for
specialdomains(suchasthe web),andasan internalstructuring
mechanismfor services.

Researchandindustryhavedevelopednumerousattribute-based
namingsystemslayeredon topof general-purposenetworks.Uni-
versandyellow-pagesnamingat theUniversityof Arizona[6, 28]
weredesignedto provide servicediscovery for groupsof comput-
ers(for example,print to anunloadedpostscript-capableprinter).
Likeourwork, they includeattributesandoperators,but they build
overstandardInternetprotocolsfor communications.Commercial
attribute-basednamingsystemssuchasX.500[10] andLDAP[38]
alsooperateover Internetor Internet-like routing and provide a



primarily� hierarchicalorganization. Dependenceon IP-level ad-
dressingand routing limits addssubstantial overhead when ap-
plying thesesystemsto highly resource-constrainedenvironments
suchassensornetworks. (For example,someapproachesto ser-
vice locationfor smartspacesrequireservicesfor IP assignment,
IP-level routing, hostnamelookup, andserviceregistrationand
lookup.) With end-to-endprocessing only, thesesystemsalsodo
not provide in-network processing.

As an alternative to providing attribute-basednamingfor end-
useruse,severalsystemshaveproposedattribute-basedcommuni-
cationsfor structuringdistributedsystems.Linda proposedstruc-
turingdistributedprogramsusingseveralCPUsaroundanattribute-
indexedcommon memorycalleda tuplespace[9]. For theS/Net
implementationthiswasthebasiccommunicationmechanism,but
proposed implementationsassumeuniform and rapid communi-
cationsbetweenall processors.Later systemssuchas ISIS [4]
and the InformationBus [27] provide a “publish andsubscribe”
approachwhere information providers publish information and
clientssubscribeto attribute-specifiedsubsetsof thatinformation.
Thesesystemsaredesignedto be robust to failure,but againas-
sumereasonably fast, plentiful, and expensive communications
betweennodes. Theseapproachesarenot directly applicableto
resource-constrainedsensornetworks.They donotuseapplication-
specific,in-network processingsinceall processesarereasonably
closeto eachother; when they do useprocessing(suchas at a
wide-areagateway) it is manually configured.

More specificstill is work thatproposesattribute-basedprimi-
tivesassolutionsto specificproblems. SRM first suggestedus-
ing nameddata as the fundamental data unit for reliable mul-
ticast communication, and it demonstratedthis approach with a
distributed whiteboard[17]. Our work is inspiredby theseap-
proaches, but it differs by providing a wider rangeof matching
operators(ratherthanjustequality),addingin-network processing
to leverageCPU-communicationstrade-offs for sensornetworks,
and operatingdirectly over low-level (hop-by-hop) communica-
tionsprotocolsinsteadof theInternetmulticastinfrastructure.

2.2 In-network processing
Recentwork in active networks [34] and active services[2]

hasexaminedwaysto provide in-network processingfor the In-
ternet.Sampleapplicationsincludeinformationtranscoding, net-
work monitoring,andcaching. Thiswork is built overanInternet-
likeinfrastructure,oftenaugmentedwith anextendedrun-timeen-
vironment,andassumesnodesare individually addressable. We
insteadbuild directlyoverhop-by-hopcommunicationsprimitives
andidentify datainsteadof nodes.Our work differs from active
servicesin that we assumethat communicationscostsbetween
nodesvary greatly while currently proposedactive servicesas-
sumeroughly equivalentdistancesbetweenall service-providing
nodes. We differ from active networks primarily in the target
domain: we target sensornetworks wherebandwidth is limited,
energy is expensive, andcomputepower is comparatively plenti-
ful andinexpensive. Instead,active networks typically considers
Internet-like domainswherebandwidthis plentiful, the ratio of
computepower to bandwidthis muchlower, andenergy is not an
issue.All of theseapproachesdistributeapplication-specific code
throughout the network, raisingquestionsabout codesafetyand
portability. Theseproblemsarenot central to somesensornet-
works(suchasthosethataredevotedto a singleapplication),but
morecomplex networkswouldbenefit from active-networks-style

executionenvironmentsto support in-placeupgradability .
Recentwork onadaptivewebcaching[25] andpeer-to-peerfile

sharingsystemssuchasFreenet[12] exploreapplication-specific,
hop-by-hop processing. Unlike active networks and our work,
theseapproachesemphasizeprotocolsdesignedfor a particular
application. In addition,our work runsdirectly over hop-by-hop
communicationratherthanoveravirtual network layeredover the
Internet.

2.3 Sensor-network-specific systems
Sensornetworking researchhasseenincreasingactivity in the

lastfew years,with advancesin sensornodeandradiohardware[33,
29]. This work hasbeeninstrumentalin clarifying the trade-off
betweencomputation and communication and the needfor in-
network processing. Our focuson in-network processingis moti-
vatedby thiswork. Thiswork ishoweverbasedontopographically-
addressedsensornodes;theprimarydifferencein our work is the
useof attribute-basednamingfor structureanddatadiffusion for
communication.

Internetadhocrouting(Brochetal.survey severalprotocols[7]
suchas DSR and AODV) can also be usedin sensornetworks.
Sincead hoc routing recreatesIP-styleaddressing, it would re-
quiresomekind of directoryserviceto locatesensors,unlike our
approach wherethey arenamedby attributes.Ad hocroutingdoes
not support in-network processing.

Jini is an exampleof a resourcediscovery systembuilt over
Internetprotocols[35]. It provides a directoryserviceanduses
Java to distributeprocessingto usernodes,makingit well suited
to a local-areanetwork with high bandwidthand multicast. By
contrast,we distribute the directory acrossthe network and al-
low application-specific processingat intermediatesystemnodes,
addressingproblemsof resource-constrained, multi-hop wireless
networks.TheNinjaServiceDiscoveryService[15] locatesXML-
namedobjectsthroughanetwork of collaboratingserversbut again
targetshigh bandwidth local-arearesources.

ThePiconetwork haspresentedfundamentaladvancesin energy-
conserving network communicationsfor networksof devices[3].
Their work focuses on static hierarchiesof networked devices,
concentrators, and hosts. While similar to our tiered architec-
turewith full andmicro-diffusion, they do not considerattribute-
nameddataor dynamicin-network processing.

SPINevaluatesseveralvariantsof flooding for wirelesssensor
networks [20]. Datain SPINis identifiedby application-specific
metadatathat appears to assumeindividual sensors areaddress-
able.Weinsteaduseattributesto namedataalone;globallyunique
identifiersarenotused.SPINdoesnotconsiderapplication-specific
in-network processing.

TheIntentionalNamingSystemis anattribute-basednamesys-
temoperatingin anoverlaynetwork over the Internet[1]. Its use
of attributesasastructuringmechanismandamethodto copewith
dynamically locatingdevicesis similar to ourapproachin motiva-
tion andmechanism.The primary differenceis that we assume
that attribute-basedcommunication(datadiffusion) is the basic
communicationsprimitive (above hop-by-hop messaging), while
they constructanoverlay network over an IP-basedInternet.Ar-
chitecturallythis impliesthatwe distributenamematchingacross
many smallcommunicationsnodeswhile they managenamesata
few resolvers that cooperatively managepartsof the namespace.
Finally, the detailsof matchingaredifferent in the two systems.
Their work providesa sophisticatedhierarchicalattribute match-



ing	 procedure. Ourapproach is muchmoremodestby comparison
(targetingsmallerembeddeddevices) but addscomparative oper-
atorsin additionto equality.

LEACHanalyzestheperformanceof cluster-basedroutingmech-
anismwith in-network datacompression[19]. They emphasize
how intermediate-rangecommunicationvia cluster-headsandhow
compressioncan reduceenergy consumption. Their in-network
compressionis oneexampleof thekind of in-network processing
thatwe would like to support.They do not specifyhow flowsand
opportunitiesfor aggregationwould beactivated,while our work
focuseson thenamingmechanismsthatallow suchactivity.

DataSpacedescribesanattributebasednamingmechanism for
queryingphysicalobjectsthat produce andstorelocal data[22].
The DataSpaceis divided into smalleradministrative andlogical
datacubes, whicharelogically groupedinto dataflocks. Dataflocks
areaddressedatthenetwork level throughIPv6multicastaddresses
that correspondto their geographiccoordinates,andtheir values
for certainattributesthatserve asnetwork indices. Queryresults
may involve aggregation of more specific queriesaddressedto
sub-datacubes. At a high-level their namingapproach is similar
to ours,but insteadof mappingattributesandgeometry to a very
large numberof multicastgroupswe routedirectly on attributes
themselveswithout this indirection. In addition, they do not ex-
plorein-network processing.

The COUGAR device databasesystemproposes distributing
databasequeriesacrossasensornetwork asopposedto moving all
datato a centralsite[5]. Sensordatais representedasanAbstract
DataType attribute, the public interfaceto which corresponds to
specificsignal processingfunctionssupportedby a sensortype.
They thenperformjoins or aggregation in the network asspeci-
fied by a centrallycomputedqueryplan. Their work is common
with oursin its emphasison in-network processing, andour study
of nestedqueries(Section5.2) was inspiredby their work. The
primary differencebetweentheir work in ours is how placement
of in-network processingis determined.We emphasizetheuseof
filtersandnestedqueriesto enableeitherad-hocor sensor-specific
placementof in-network processing, while COUGAR centrally
translatesthequeryandassignsprocessing to thedistributedsys-
tem, incurring overheadto centrallycollect network information
for queryoptimization.

Declarative Routingfrom MIT’ s Lincoln Labsis closestto our
work [14]. The publish/subscribe-orientedAPI we usewas de-
fined in collaborationwith them [13] and they have developed
anindependentimplementation.Theprimarydifferencebetween
their work andours is our focus on in-network processing. We
evaluatetheir work morecompletelyin Section4.2.

3. ARCHITECTURE
Ourcommunicationsarchitectureisbasedonthreecomponents:

directeddiffusion,matchingrules,andfilters. Directeddiffusion
is usedto disseminateinformationin thedistributedsystem.Data
is managedasa list of attribute-value-operation tuples.Matching
rules identify whendatahasarrived at its destination,or if inter-
mediatefilters shouldprocessthe data.This approach to naming
comestogetherto provide an external framework relevant to the
application. Thesecomponents balancethe genericservicesof
diffusion andmatchingruleswith application-provided attributes
andfilters. We next describeeachof thesecomponents.

3.1 Dir ectedDiffusion
Directeddiffusionis adatacommunicationmechanismfor sen-

sornetworks[23]. Datasourcesandsinksuseattributesto identify
what information they provide or are interestedin. The goal of
directeddiffusion is to establishefficient n-way communication
betweenoneor moresourcesandsinks. Directeddiffusion is a
data-centriccommunication paradigmthat is quitedifferentfrom
host-basedcommunicationin traditional networks. To describe
theelementsof diffusion,we take thesimpleexampleof a sensor
network designedfor trackinganimalsin a wildernessrefuge.

Supposethat a user in this network would like to track the
movementof animalsin someremotesub-region of the park. In
directeddiffusion, this tracking task representsan interest. An
interestis a list of attribute-value pairs that describea task us-
ing sometask-specificnamingscheme(we describethedetailsof
theseattributesin thenext section).Intuitively, attributesdescribe
the datathat is desiredby specifyingsensortypesand possibly
somegeographic region. They arethenusedto identify andcon-
tactall relevantsensors.We usethetermsink to denote thenode
thatoriginatesaninterestandthereforeis thedestinationof data.

The interestis propagatedfrom neighbor-to-neighbortowards
sensornodesin thespecifiedregion. A key featureof directeddif-
fusion is that every sensornodeis task-aware—by this we mean
thatnodesstoreandinterpretinterests,ratherthansimplyforward-
ing themalong.In our example,eachsensornodethatreceivesan
interestrememberswhich neighbor or neighbors sent it that in-
terest. To eachsuchneighbor, it setsup a gradient. A gradient
representsboth the directiontowardswhich datamatchingan in-
terestflows, andthestatusof thatdemand (whetherit is active or
inactive andpossiblythe desiredupdate rate). After settingup a
gradient,thesensornoderedistributestheinterestto its neighbors.
Whenthenodecaninfer wherepotentialsourcesmightbe(for ex-
ample,from geographic informationor existingsimilargradients),
theinterestcanbeforwardedto a subsetof neighbors.Otherwise,
it will simply broadcasttheinterestto all of its neighbors.

Whenasensornodethatmatchestheinterestis found, theappli-
cationactivatesits local sensorsto begin collectingdata.(Prior to
activationwe expectthenode’s sensorswould be in a low-power
mode). The sensornodethengeneratesdata messagesmatching
the interest. In directeddiffusion, datais alsorepresentedusing
an attribute-basednamingscheme.A sensornodethat generates
suchanevent descriptionis termeda source.

Data is cachedat intermediatenodes as it propagatestoward
sinks.Cacheddatais usedfor severalpurposesat differentlevels
of diffusion.Thecorediffusionmechanismusesthecacheto sup-
pressduplicatemessagesandprevent loops,andit canbeusedto
preferentiallyforward interests.(Sincethe diffusion core is pri-
marily interestedin an exact match,as an optimization,hashes
of attributescanbecomputedandcomparedratherthancomplete
data.)Cacheddataisalsousedfor application-specific,in-network
processing.For example,datafrom detectionsof a singleobject
by differentsensorsmaybemergedto a singleresponsebasedon
sensor-specificcriteria.

Theinitial datamessagefrom thesourceis markedasexplora-
tory and is sentto all neighborsfor which it hasmatchinggra-
dients. If the sink hasmultiple neighbors,it choosesto receive
subsequent datamessagesfor the sameinterestfrom a preferred
neighbor(for example,the onewhich deliveredthe first copy of
the datamessage). To do this, the sink reinforces the preferred
neighbor, which, in turn reinforcesits preferredupstreamneigh-
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Figure1: A simplified schematicfor dir ecteddiffusion.

bor, andsoon. Finally, if a nodeon this preferredpathfails, sen-
sor nodescanattemptto locally repair the failed path. The sink
mayalsonegativelyreinforce its currentpreferredneighbor if an-
other neighbor delivers better(lower latency) sensordata. This
negative reinforcement propagatesneighbor-to-neighbor, remov-
ing gradients andtearingdown andexisting pathif it is no longer
needed[23]. Negative reinforcementssuppressloopsor duplicate
pathsthatmayarisedueto network dynamics.

After theinitial exploratorydatamessage,subsequentmessages
aresentonly on reinforcedpaths. Periodicallythe sourcesends
additional exploratory data messagesto adjust gradientsin the
caseof network changes(due to nodefailure, energy depletion,
or mobility), temporarynetwork partitions,or to recover from lost
exploratory messages.Recovery from dataloss is currently left
to the application. While simpleapplicationswith transientdata
(suchassensorsthatreporttheir stateperiodically)needno addi-
tionalrecoverymechanism,wearealsodeveloping retransmission
schemefor applicationsthattransferlarge,persistentdataobjects.

Eventhis simplifieddescriptionpointsout severalkey features
of diffusion,andhow it differsfrom traditionalnetworking. First,
diffusion is data-centric;all communication in a diffusion-based
sensornetwork usesintereststo specifynameddata. Second,all
communication in diffusion is neighbor-to-neighbor or hop-by-
hop, unlike traditionaldatanetworks with end-to-endcommuni-
cation.Everynodeis an“end” in asensornetwork. A corollaryto
this previousobservationis thatthereareno “routers” in a sensor
network. Eachsensornodecan interpretdataand interestmes-
sages. This designchoice is justified by the task-specificityof
sensornetworks. Sensornetworks arenot general-purposecom-
municationnetworks. Third, nodesdo not needto have globally
uniqueidentifiersor globally uniqueaddresses for regularopera-
tion. Nodes,however, do needto distinguishbetweenneighbors.
Fourth,becauseindividual nodescancache,aggregate,andmore
generally, processmessages,it is possibleto performcoordinated
sensingcloseto thesensedphenomena. It is alsopossibleto per-
form in-network datareduction,therebyresulting in significant
energy savings. Finally, althoughour exampledescribesa partic-
ular usageof the directeddiffusion paradigm(a query-response
typeusage,seeFigure1), theparadigmitself is moregeneralthan
that;wediscussseveralotherexampleapplicationsin Section5.

3.2 Attrib ute Tuplesand Matching Rules
Diffusion messages andapplicationinterestsarecomposedof

attribute-value-operationtuples.Attributesareidentifiedby unique

one-waymatch:
given two attributesets
 and �
for each attribute � in 
 where ��
 op is a formal �

matched = false
for each attribute � in � where ��
 key ����
 key and ��
 op is anactual

if ��
 val compareswith ��
 val using ��
 op,then matched= true
if not matched then return false(no match)�

return true(successfulone-way match)

Figure2: Our one-waymatching algorithm.

keys drawn from a centralauthority. (In practicewe implement
theseassimple32-bit numbersand assumeout-of-bandcoordi-
nation of their values,just as Internetprotocol numbers are as-
signed.) Attributes implicitly have a data format (integersand
floating point valuesof differentsizes,strings,anduninterpreted
binarydataarecurrentlysupported).

Theoperationfield defineshow datamessagesandinterestsin-
teract.Operationsaretheusualbinarycomparisons(EQ,NE, LE,
GT, LE, GE,correspondingto equality, inequality, lessthan,etc.),
“EQ ANY” (which matchesanything), andIS. “IS” allows users
to specifyanactual(literal or bound) value,while all theotherop-
erationsspecifyformal (acomparisonor unbound)parametersfor
comparison. A one-waymatch comparesall formal parametersof
oneattributesetagainsttheactualsof theothers(Figure2). Any
formal parameterthat is missinga matchingactual in the other
attributesetcausestheone-way matchto fail (for example,“con-
fidenceGT 0.5” musthave anactualsuchas“confidenceIS 0.7”
andwould not match“confidence IS 0.3”, “confidenceLT 0.7”,
or “confidence GT 0.7”). Two setsof attributeshave a complete
match if one-way matchessucceedin both directions. In other
words,attribute sets � and � matchif the one-way matchalgo-
rithm succeedsfrom both � to � and � to � .

Thismatchingstyleis similarto therulesusedin otherattribute-
basedlanguages(for example,Linda [9] andINS [1]), but weadd
two-waymatchingandarangeof operatorsin additionto equality.
Whenmultiple attributesandoperatorsarepresentthey areeffec-
tively “anded” together;all formalsmustbesatisfiedfor a match
to besuccessful.This approach strikesa balancebetweeneaseof
implementationandflexibility . Thesimplebounded setof opera-
torscanbeimplementedin tensof linesof codeandyet supports,
for example,rectangular regions.



To seehow diffusion andattribute matchinginteract,we con-
tinue the example from Section3.1 wherea userasksa sensor
network to trackfour-leggedanimals.Theuser’s querytranslates
into an interestwith the attributes(type EQ four-legged-animal-
search,interval IS 20ms,durationIS 10seconds,x GE–100,x LE
200, y GE 100, y LE 400). Also, an implicit “classIS interest”
attribute is addedto identify this messageasan interest(asop-
posedto data).This interestspecifiesfive conditions:detectionof
animalsin aparticularregion specifiedby a rectangle.It alsopro-
vides informationabout how frequently datashouldbe returned
andhow long thequeryshouldlast.

Sensorsin thenetwork areprogrammedwith animalsearchrou-
tines(eitherby pre-programmingatdeploymenttimeor by down-
loading mobile code). Suchsensorswould watch for interests
in animalsby expressinginterestsabout interestswith attributes
(classEQ interest,type IS four-legged-animal-search, x IS 125,
y IS 220). Whentheuser’s interestarrivesat thesensorit would
activateits sensorusingtheparametersprovided(durationandin-
terval) andreply if it detectsanything.

Whenthesensordetectssomethingthedatamessagewould in-
clude attributes(type IS four-legged-animal-search, instanceIS
elephant,x IS 125,y IS 220,intensityIS 0.6,confidence IS 0.85,
timestampIS 1:20,classIS data).This messagesatisfiestheorig-
inal interest.It encodes asattributesadditionalinformationabout
whatwasseenandwhatconfidencethesenderhasin its detection.

Thisexampleillustratesthedetailsof a specificquery. It shows
how nameddataprovidesa convenientway of encoding informa-
tion, andhow geometryandwell-known attributesallow simple
matchingruleswork for this application. Although this example
usesseveralattributes,someapplicationsmayuseonly asubsetof
thesemethods,omitting geographic constraints(in a smallsensor
network) or usingasingleattribute(whenthereis only onesensor
type). We have found thattheseprimitivesprovide goodbuilding
blocksfor a rangeof applications;we describethesein Section5.

Althoughmatchingis reasonably powerful, it doesnotperfectly
cover all scenariosor tasks. Simplematchingin thesecasescan
approximatewhat is required,and application-specific codecan
furtherrefinethechoice.For example,perfectrectanglesaligned
with the coordinate systemare insufficient to describearbitrary
geometricshapes.Non-rectangular shapescanbe accomplished
eitherby multiplequeries,or by usingthesmallestbounding rect-
angleandhaving the applicationignorerequestsinsidethe rect-
anglebut outsidetherequiredregion. Similarly, applicationscan
usegeneralattributesthat areclarified with sub-attributesor pa-
rameters(type IS animal-search,subtypeIS four-legged). Filters
(describednext) alsoallow applicationsto influenceprocessing.

3.3 Filters
Filtersareourmechanismfor allowing application-specificcode

to run in thenetwork andassistdiffusion andprocessing.Appli-
cationsprovide filters beforedeployment of a sensornetwork, or
in principlefilterscouldbedistributedasmobilecodepackagesat
run-time. Filtersregisterwhat kinds of datathey handlethrough
matching;they arethentriggeredeachtime that kind of dataen-
tersthenode.Wheninvoked,afilter canarbitrarilymanipulatethe
message,cachingdata,influencinghow or whereit is sentonward,
or generatingnew messages in response.Filtershaveaccessto in-
ternalinformationaboutdiffusion,includinggradientsandlistsof
neighbornodes.

Filtersaretypically usedfor in-network aggregation,collabora-

tivesignalprocessing,caching,andsimilar tasksthatbenefitfrom
controlover datamovement.In additionto theseapplications,we
have foundthemvery usefulfor debugging andmonitoring.

Continuingour example,a filter canbe usedto suppresscon-
currentdetectionsof four-leggedanimalsfrom differentsensors.
It would register interestin detectioninterestsanddatawith at-
tributes(type IS four-legged-animal-search).It could thenrecord
what the desiredinterval is, then allow exactly one reply every
interval units of time, suppressingrepliesfrom othersensors.A
moresophisticatedfilter couldcountthenumberof detectingsen-
sorsandadd that asan additionalattribute, or it could generate
somekind of aggregate“confidence” rating in someapplication-
specificmanner. In this examplefiltering maydiscardsomedata,
but by reducingunnecessarycommunicationit will greatlyextend
thesystem’s operationallifetime.

We describesomeapplicationof filters in Section5, andquan-
tify thebenefitsof aggregationin onescenarioin Section6.1.

4. IMPLEMENT ATIONS
Therearecurrentlythreeimplementationsof all or partof this

architecture.Our currentreferenceimplementationSCADDSdif-
fusionversion3 providesall components. MIT-Lincoln Labshas
implemented“declarative routing” that providesattribute match-
ing but nofilters[14]. Bothof theseimplementationsrunonLinux
on desktopPCsandPC/104-basedsensornodes[11] (embedded
x86 machines,ourswith a 66MHz CPUand16MB of RAM and
flash disk, Figure 3(a)), and on WINSng 1.0 sensornodes [29]
(Windows-CE-basednodeswith customlow-power radios,Fig-
ure3(b)). We have alsoimplementedmicro-diffusion, a baresub-
setof theseservicesdesignedto run on Moteswith tiny 8-bit pro-
cessorsandonly 8KB of memory(Figure3(c)).

Sourcecodeto our implementationscanbe found on our web
sitehttp://www.isi.edu/scadds.

All of our implementations build upona simpleradioAPI that
supportsbroadcastor unicastto immediateneighbors. Neighbors
must have somekind of identifier, but it is not requiredto be
persistent. We can usepersistentidentifiers(for example, Eth-
ernetMAC addresses)or operatewith ephermallyassignediden-
tifiers [16].

4.1 Basicdiffusion APIs
Our referenceimplementationincludesC++ NetworkRouting

APIs summarizedin Figure4 (see[13] for a completespecifica-
tionandexamplesourcecode).TheAPIsdefineapublish/subscribe
approachto datahandling. To receivedata,nodessubscribeto par-
ticular setof attributes. A subscriptionresultsin interestsbeing
sentthroughthenetwork andsetsup gradients.A callbackfunc-
tion is theninvoked whenever relevantdataarrivesat thenode.

Applications that generateinformation publish that fact, and
thensendspecificdata.Theattributesspecifiedin thepublishcall
mustmatchthesubscription.If thereareno active subscriptions,
publisheddatadoesnot leave thenode.As a furtheroptimization
sensornodesmaywishto avoid generatingdatathathasnotakers.
In this casetheapplicationwould subscribefor subscriptionsand
would beinformedwhensubscriptionsarrive or terminate.

Filter-specificAPIs areshown in Figure5. A filter is primarily
a callbackprocedure (thecb specifiedin addFilter)that is called
whenmatchingdataarrives.Ratherthanoperateonly on attribute
vectors,filters are given direct accessto messages that include
identifiersfor the previous andnext immediatedestinations.We



(a) Our PC/104node (b) WINSng1.0node (c) UCB ReneMote

Figure3: Diffusion operational platforms.

handle NR::subscribe(NRAttrVec *subscribeAttrs,
const NR::Callback * cb);

int NR::unsubscribe(handle subscription_handle);
handle NR::publish(NRAttrVec *publishAttrs);
int NR::unpublish(handle publication_handle);
int NR::send(handle publication_handle,

NRAttrVec *sendAttrs);

Figure4: Basicdiffusion API.

handle addFilter(NRAttrVec *filterAttrs,
int16_t priority, FilterCallback *cb);

int NR::removeFilter(handle filter_handle);
void sendMessage(Message *msg, handle h,

int16_t agent_id = 0);
void sendMessageToNext(Message *msg, handle h);

Figure5: Filter APIs.

are currently evaluatingusing this additional level of control to
optimizediffusion, for exampleusinggeographic informationto
avoid floodingexploratoryinterests.Weexpecttheseinterfacesto
beextendedaswe gainmoreexperiencewith how filtersareused
andwhatinformationthey require.

Finally, theseAPIshavebeendesignedto favor anevent-driven
programmingstyle,althoughthey have beensuccessfullyusedin
multi-threadedenvironments suchasWINSng 1.0. We have tar-
getedevent-driven programming to avoid synchronizationerrors
and to avoid the memoryand performance overheads of multi-
threading.Evidenceis growing thatevent-drivensoftwareis well
suitedto embeddedprogramming,particularlyon very memory-
constrainedplatforms[21].

Also we allow filtersandapplicationsto run in thesameor dif-
ferentmemoryaddressspacesfrom eachotherandthe diffusion
core. Single-addressspaceoperationis necessaryfor very small
sensornodes that lack memoryprotectionandasa performance
optimization.Multiple addressspacesmaybedesiredfor robust-
nessto isolatefiltersof differentapplicationsfrom eachother.

4.2 MIT -LL declarative routing
Dan Coffin helpeddefine the basicdiffusion APIs (Figure 4

and[13]) anddevelopedan independent implementationin MIT-
Lincoln Lab’s Declarative Routingsystem[14]. In principle all
applicationsthatdo not depend on filters will run over eitherim-
plementation.Thislevel of portabilityhasbeendemonstratedwith
Cornell’s queryproxy [5] thatrunsover bothimplementations.1

Declarative routinganddatadiffusionarefar moresimilar than
they aredifferent.Both namedataratherthanend-nodes.Differ-
encesarein how routesandtransmissionareoptimized,both by
applicationsandthe coresystem.The primary differenceis that
declarative routing doesnot include filters to allow applications
to directly influencediffusion. We seefilters as a critical nec-
essarycomponent to enablegeneralin-network dataprocessing.
Second,Lincoln Lab’s declarative routing includesdirectsupport
for energy andgeography-aidedroutingsothatroutesareselected
to avoid energy-poor nodesandgenerallymove “towards” a tar-
get geographicarea. In our currentimplementationinterestsand
exploratorymessagesarefloodedthroughthenetwork beforegra-
dientsaresetup for direct communication. We arecurrentlyex-
ploringusingfilters to optimizediffusion(avoidingflooding)with
geographic information[39].

4.3 Micr o-diffusion
Micro-diffusion is a subsetof our approachimplementedon

very small processors(8-bit CPU, 8KB memory). It is distin-
guishedby its extremelysmall memoryfootprint anda comple-
mentaryapproachfor deploymentto our full system.

Micro-diffusion is a subsetof our full system,retainingonly
gradients,condensing attributes to a single tag, and supporting
only limited filters. As aresultit addsonly 2050bytesof codeand
106 bytesof datato its hostoperatingsystem. (By comparison,
our full systemrequiresa daemonwith staticsizesof 55KB code,
8KB data,andalibrary at20KB code,4KB data.)Micro-diffusion
is implementedasa componentin TinyOS [21] that adds3250B
codeand144B of data(including supportfor radio anda photo
sensor),so theentiresystemrunsin lessthan5.5KB of memory.
Micro-diffusion is staticallyconfiguredto support 5 active gradi-
entsanda cacheof 10 packetsof the2 relevantbytesperpacket.
�
No changeswererequiredto our diffusion implementation,al-

thoughtheport requiredonechangeto theapplicationto accom-
modatea casewhereMIT’ s implementationwaslessstrict about
attributematching.



Although� reducedin size,thelogical headerformat is compatible
with that of the full diffusion implementationandwe areimple-
mentingsoftware to gateway betweenthe implementations.Al-
thoughwedonotcurrentlyprovidefilters in micro-diffusion,they
areanessentialcomponentof enablingin-network aggregationin
diffusion,andwe plan to addthem.We intendto leverageon the
ability to reprogrammotesover theair [21] to programfilters dy-
namically.

Motesandmicro-diffusioncanbeusedin regionswherethereis
needfor densesensordistribution,suchasdistributing photosen-
sorsin a roomto detectchangein light or temperaturesensorsfor
fine grainedsensing.They provide thenecessarysensordatapro-
cessingcapability, with theability to usediffusionto communicate
with lessresource-constrainednodes (for example,PC/104-class
nodes). Motescanalsobe usedto provide additionalmulti-hop
capabilityunderadversewirelesscommunication conditions.

We thusenvisagedeploymentof a tieredarchitecturewith both
larger and smallernodes. Lessresource-constrainednodeswill
form the highesttier andact asgatewaysto the secondtier. The
secondtier will be composed of motesconnected to low-power
sensorsrunning micro-diffusion. Most of the network “intelli-
gence”is programmed into the first tier. Second-tiernodeswill
becontrolledandtheir filters programmed from thesemorecapa-
blenodes.

4.4 Implementation discussion
We draw two observationsfrom our experienceswith theseim-

plementations.First, therangeof diffusion implementationssug-
geststhat both the ideasand the code are portablesince there
arethreeindependent implementations(ourmainimplementation,
micro-diffusion, and MIT-LL’s declarative routing) and our pri-
mary implementationruns on multiple platforms (PC/104sand
WINSng 1.0 asof June2001,with ports in progressto two new
radiosand platforms). The requirements for diffusion are quite
modestin termsof CPUspeed(a 15MHz 32-bit processoris suf-
ficient),memory(a few megabytessupportsdiffusion,anOS,and
applications),andradio(10–20kb/sbandwidthis sufficient). Sev-
eral low-power radio designshave packet sizesassmall as30B.
We requiremoderatesizepackets (100B or more)andusecode
for fragmentationandreassemblywhennecessary. Second,micro-
diffusiondemonstratesthatit is possibleto implementa subsetof
diffusion on an embeddedprocessor. A common preconception
is that fully customprotocols areneededfor embeddedsystems;
theseobservationssuggest thatuseof diffusionshouldnotbepre-
cludeddueto sizeor complexity.

5. APPLICATION TECHNIQ UES FOR
SENSORNETWORKS

We next considerapplicationtechniques in moredetail. These
techniquesillustratehow topology-independent low-level naming
andin-network processingcanbe usedto build efficient applica-
tionsfor sensornetworks.Thefirst approachweexamineis filter-
drivendataaggregation, anexampleof how in-network processing
canreducedatatraffic to conserve energy. We alsoconsider two
approaches to provide nestedquerieswhereonesensorcuesan-
other. Finally, we briefly describeseveral otherapplicationsthat
have beenimplemented.

5.1 In-network data aggregation
An anticipatedsensorapplicationis to querya field of sensors

andthentakesomeactionwhenoneor moreof thesensorsis acti-
vated.For example,asurveillancesystemcouldnotify a biologist
if an animalentersa region. Coverageof deployed sensorswill
overlap to ensurerobust coverage,so oneevent will likely trig-
germultiple sensors.All sensorswill reportdetectionto theuser,
but communicationandenergy costscanbereducedif thisdatais
aggregatedasit returnsto the user. Datacanbe aggregatedto a
binary value(therewasa detection),an area(therewasa detec-
tion in quadrant 2), or with someapplication-specificaggregation
(seismicandinfraredsensorsindicate80%chanceof detection).

Althoughdetailsof aggregationcanbeapplication-specific, the
commonsystemsproblem is the designof mechanismsfor es-
tablishingdatadisseminationpathsto the sensorswithin the re-
gion, and for aggregating responses. Considerhow one might
implementthis kind of datafusion in a traditionalnetwork with
topologically-assigned low-level nodenames. First, in order to
determinewhich sensorsarepresentin a given region, a binding
servicemust exist which, given a geographical region, lists the
nodeidentifiersof sensorswithin that region. Oncethesesensors
are tasked, an electionalgorithmmust dynamicallyelectoneor
morenetwork nodes to aggregatethedataandreturntheresultto
thequerier.

Instead,our architectureallows us to realizethis usingoppor-
tunisticdataaggregation.Sensorselectionandtaskingis achieved
by naming nodesusing geographic attributes. As data is sent
from the sensorsto the querier, intermediatesensorsin the re-
turn path identify and cacherelevant data. This is achieved by
runningapplication-specific filters. Theseintermediatenodescan
thensuppressduplicatedataby simply not propagatingit, or they
mayslightly delayandaggregatedatafrom multiple sources.We
arealsoexperimentingwith influencingthe dynamicselectionof
aggregationpointsto minimizeoverall datamovement.

Opportunistic dataaggregationbenefitsfrom severalaspectsof
our approach. Filtersprovide a naturalapproachto inject applica-
tion-specificcodeinto thenetwork. Attributenamingandmatch-
ing allow thesefiltersto remaininactiveuntil triggeredby relevant
data.A commonattributesetmeansthatfilters incur no network
coststo interactwith directoryor mappingservices.

In prior work we analyzedthe performanceof diffusion with
andwithout aggregation throughsimulation[23]. In Section6.1
weevaluateour implementationof thisover realsensornodesand
validateour initial resultswith laboratorytests.

5.2 Nestedqueries
Real-world eventsoftenoccurin responseto someenvironmen-

tal change.For example,a personenteringa roomis oftencorre-
latedwith changesin light or motion,or a flower’s opening with
thepresenceor absenceof sunlight.Multi-modal sensornetworks
canusethesecorrelationsby triggeringa secondary sensorbased
onthestatusof another, in effectnestingonequeryinsideanother.
Reducingthe duty cycle of somesensorscanreduceoverall en-
ergy consumption(if thesecondarysensorconsumesmoreenergy
thantheinitial sensor, for exampleasanaccelerometertriggeringa
GPSreceiver)andnetwork traffic (for example,atriggeredimager
generatesmuchlesstraffic thana constant video stream).Alter-
natively, in-network processingmight choosethebestapplication
of a sparseresource(for example,a motion sensortriggering a
steerablecamera).
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Figure 6: Two approachesto implementing nestedqueries.
Squaresare initial sensors,gray circlesare triggered sensors,
and the large circle is the user. Thin dashedlines represent
communication to init ial sensors;bold lines are communica-
tion to the triggered sensor.

Figure6 shows two approachesfor a userto causeonesensor
to triggeranother in a network. In bothcaseswe assumesensors
know their locationsandnot all nodescancommunicate directly.
Part (a)shows adirectway to implementthis: theuserqueriesthe
initial sensors(smallsquares),whenasensoris triggered,theuser
queriesthe triggeredsensor(the small gray circle). The alterna-
tive shown in part (b) is a nested,two-level approachwherethe
userqueriesthe triggeredsensorwhich thensub-tasksthe initial
sensors.This nestedqueryapproachgrew out of discussions with
PhilippeBonnetandembeddeddatabasequeryoptimizationin his
COUGARdatabase[5].

Theadvantageof anestedqueryis thatdatafrom theinitial sen-
sorscanbeinterpreteddirectlyby thetriggeredsensor, ratherthan
passingthroughthe user. In monitoring applicationsthe initial
andtriggeredsensorswould oftenbequitecloseto eachother(to
cover thesamephysicalarea),while theuserwould be relatively
distant. A nestedquery localizesdatatraffic nearthe triggering
event ratherthansendingit to thedistantuser, thusreducingnet-
work traffic and latency. Sinceenergy-conservingnetworks are
typically low-bandwidth andmay be higher-latency, reductionin
latency canbesubstantial,andreductions in aggregatebandwidth
to the usercan meanthe differencebetweenan overloadedand
operationalnetwork. Thechallengesfor nestedqueriesarehow to
robustly matchthe initial andtriggeredsensorsandhow to select
a goodtriggeredsensorif only oneis desired.

Implementationof directqueriesisstraightforwardwith attribute-
addressedsensors.The usersubscribesto datafor initial sensors
andwhensomethingis detectedherequeststhestatusof thetrig-
geredsensor(eitherby subscribingor askingfor recentdata).Di-
rectqueriesillustratetheutility of predefinedattributesidentifying
sensortypes.Diffusionmayalsomake useof geography to opti-
mizerouting.

Nestedqueriescanbe implementedby enablingcodeat each
triggeredsensorthat watchesfor a nestedquery. This codethen
sub-tasksthe relevant initial sensorsand activatesits local trig-
geredsensoron demand.If multiple triggeredsensorsareaccept-
ablebut thereis a reasonabledefinitionof which oneis best(per-
haps,the most centralone), it can be selectedthroughan elec-

tion algorithm.Onesuchalgorithmwould have triggeredsensors
nominatethemselvesaftera randomdelayasthe “best”, inform-
ing their peersof their locationandelection(this approach is in-
spiredby SRM repairtimers[17]). Betterpeerscanthendispute
the claim. Useof locationasan external frameof referencede-
finesa bestnode andallows timersto beweightedby distanceto
minimizethenumberof disputedclaims.

In Section6.2 we evaluatenestedquerieswith experimentsin
our testbed.

5.3 Other applications
In addition to theseapproacheswe have explored at ISI, our

systemhasbeenusedby severalotherresearchefforts.
ResearchersatCornellhaveusedoursystemto providecommu-

nicationbetweenanend-userdatabaseandapplicationthatrepre-
sentsandvisualizesa sensorfield andqueryproxiesin eachsen-
sor node [5]. This applicationusedattributesto identify sensors
runningqueryproxiesandto passquerybyte-codesto the prox-
ies. They alsooriginatedthe ideaof usinga nestedapproachfor
nestedqueries.Futurework includesunderstandingwhatnetwork
information is necessary for databasequeryoptimizationandal-
ternative approachesfor nestedqueries.

ResearchersatBAE SystemsandPennsylvaniaStateUniversity
have usedour systemfor collaborative signal processing. BAE
systemscontributedsignalprocessingcodeandsystemsintegra-
tion, while PSUprovided sensorfusionalgorithms[8]. Thecom-
binedsystemusedour systemto communicatedatabetweensen-
sorsusingnameddataanddiffusion. At the time our filter archi-
tecturewasnot in place;interestingfuturework is to evaluatehow
sensorfusionwould bedoneasa filter.

6. EVALUATION
The approachesdescribedin this paperareuseful if they can

be efficiently implementedandimprove the energy-efficiency of
distributedsystemssuchassensornets.In Section5 wedescribed
severalapplicationsthatemploy thesetechniques. In this section,
we measurethe benefitsof aggregation and nestedqueriesand
verify raw matchingperformance.

6.1 Aggregationbenefits
In Section5.1,we arguedthat it is relatively easyto build sen-

sor network applicationsusing attribute-basednaming, and in-
network filters. In earlierwork, we have observedthatin-network
aggregationis importantto theperformanceof datadiffusion[23].
In this section,wevalidatetheseresultswith anactualimplemen-
tation of a simple surveillanceapplicationusing attribute-based
namesandfilters.

Weexaminedin-network aggregationin ourtestbedof 14PC/104
sensornodesdistributedontwo floorsof ISI (Figure7). Thesesen-
sorsareconnectedby RadiometrixRPCmodems (off-the-shelf,
418MHz, packet-based radiosthatprovide about13kb/s through-
put) with 10dB attenuatorson the antennasto allow multi-hop
communicationsin our relatively confinedspace.Theexacttopol-
ogy variesdepending on the level of RF activity, andthenetwork
is typically 5 hopsacross.

To evaluatethe effect of aggregationwe placeda sink on one
sideof thetopology(“D” atnode28)andthenplaceddatasources
ontheotherside(“S” atnodes25,16,22,and13),typically 4 hops
apart. All sourcesgenerateeventsrepresentingthe detectionof



Figure 7: Node positions in our sensortestbed. Light nodes
(11, 13, 16) are on the 10th floor; the remaining dark nodes
areon the 11th floor. Radio rangevaries greatly depending on
nodeposition,but the longeststablelink wasbetweennodes20
and 25.

someobject at the rate of one event every 6 seconds. For ex-
perimentrepeatabilityeventsareartificially generated,ratherthan
taken from a physicalsensorandsignalprocessing.Eachevent
generatesa 112 bytesmessageand is given sequence numbers
that aresynchronized at experiment start.2 All nodeswerecon-
figuredwith aggregationfilters thatpassthefirst uniqueeventand
suppresssubsequent eventswith identicalsequencenumbers.Al-
thoughthis scenarioabstractssomedetailsof a completesensor
network (for example,real signalprocessingmay have different
sensingdelays),webelieve it capturestheessenceof thenetwork-
ing component of multi-sensoraggregation.

We would like to comparethe energy expended per received
event.Unfortunately, wecannotmeasurethatdirectly for two rea-
sons.First, we do not have hardware to directly measureenergy
consumptionin a running system. Second,we have previously
observed that choiceof MAC protocol cancompletelydominate
energy measurements.In low power radios,MAC protocolsthat
do not sleepperiodically are dominatedby the amountof time
spentlistening, regardlessof choiceof protocol. Thus energy-
consciousprotocolslikePAMAS [32] or TDMA arenecessaryfor
long-livedsensornetworks. We arecurrentlyexperimenting with
power-awareMAC approaches.

Althoughwe currentlycannotmeasureenergy consumption on
anappropriateMAC, we canestimatetheeffectiveness of reduc-
ing traffic for MACs with differentduty cycles. A simplemodel
of energy consumption is:

����� ���"!$#%!'&(�*)+#$),&(�*-.#/-
where � and # define the relative power and time spentlisten-
ing, receiving, and sendingand � is definedas the requiredlis-
tenduty cycle (the fractionof time theradiomustbe listeningto
receive all traffic destinedto it). We found our sensornetwork
containedpockets of severecongestion,but in the aggregate,ra-
dios listen:receive:sendtimeswereabout1:3:40. Relative energy
0
An operationalsensornetwork would usetimestampsinsteadof

sequencenumbers. Both requiresynchronization, but time can
be synchronized globally with GPS or NTP. We use sequence
numbersbecauseat the time of this experiment we hadnot syn-
chronizedour clocks.Experimentally, otherthansynchronization
overhead,sequencenumbersandtimestampsareequivalent.
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Figure8: Bytessentfr om all diffusion modules,normalized to
the number of distinct events,for varying numbersof sources.

consumptionof listen:receive:sendhasbeenmeasuredat ratios
from 1:1.05:1.4to 1:2:2.5 [37]. For simplicity, assumeenergy
consumptionratiosof 1:2:2. With theseparameters,energy us-
agefor nodeswith a duty cycle of 1 arecompletelydominatedby
energy spentlistening.At duty cycle of 22%half of theenergy is
spentlistening.Duty cyclesof 10%begin to bedominatedby send
cost.Duty cycle for mostradiostodayis 100%, but TDMA radios
suchasin WINSng nodes [29] mayhave duty cyclesof 10–15%
for non-base-stations.This analysisillustratesthe importanceof
energy-conserving MAC protocols.

Sincewe cannotdirectly measureenergy per event, Figure 8
measuresbytessentfrom diffusionin all nodesin thesystemnor-
malizedto the numberof distinct eventsreceived. Eachpoint in
thisgraphrepresentsthemeanof five30-minuteexperimentswith
95% confidence intervals. Performancewith onesourceis basi-
cally identicalwith andwithout suppression(this form of aggre-
gation).As expected,suppression requireslessdatapereventwith
multiplesourcesthanexperimentswithoutsuppression. With sup-
pressionthe amountof traffic is roughly constantregardlessof
thenumberof sources.This application-specific dataaggregation
shows thebenefitof in-network processing. It alsoshows thatdif-
fusionis usefulfor point-to-multipointcommunication, sincetraf-
fic representsbothdataandcontroltraffic. Comparingtraffic with
andwithout suppressionshows thatsuppressionis ableto reduce
traffic by up to 42% for four sources.The network exhibits very
highlossratesatthatlevel of traffic. OurcurrentMAC is quiteun-
sophisticated,performingonly simplecarrierdetectionandlack-
ing RTS/CTS or ARQ. Sinceall messages arebroken into several
27-bytefragments,lossof a singlefragmentresultsin lossof the
whole message,andhiddenterminalsareendemic to our multi-
hoptopology, thisMAC performsparticularlypoorly athigh load.
Wearecurrentlyworking on a betterMAC protocol.

We canconfirm theseresultswith a simpletraffic model. We
approximateall messagesas127B long andaddtogetherinterest
messages(sentevery 60sandfloodedfrom eachnode),reinforce-
mentmessages(senton thereinforcedpathbetweenthesink and
eachsource),simpledatamessages(9 out of every 10 datames-
sages,sentonly on the reinforcedpath,andeitheraggregatedor
not), andexploratorydatamessages(1 out of every 10 datames-
sages,sentfrom eachsourceandfloodedin turn from eachnode,



again	 possiblyaggregated). If datamessagesarenot aggregated,
eachsourceincursthecostof thefull path,while if datamessages
areaggregatedafter the first hop eachincursonehop costto the
aggregationpoint andthenonemessagewill travel on to thesink.
Summingthe messagecostandnormalizingper event we expect
aggregationto provide a flat 990B/event independentof thenum-
berof sources,andweexpectbytessentpereventto increasefrom
990to 3289B/eventwithout aggregationasthenumberof sources
risefrom 1 to 4.

The shapeof this predictionmatchesour experimental results,
but in absolutetermsit underpredictsthe B/event of aggregation
and overpredicts the 4-source/no-aggregation case. We believe
thesedifferencesaredue to MAC-layercollisions in the experi-
ment that tend to drive bytes-per-event to the middle. Only 55–
80% of events generatedin the experimentweredeliveredto the
sink, so bytes-per-event in lesscongestedportionsof the exper-
iment (with onesourceor aggregation) is high becausetraffic is
normalizedoverfewerevents. Ontheotherhand, with foursources
and no aggregation, we believe collisions happenvery near the
datasourcesand so the aggregateamount of datasent is lower
thatpredicted.In addition,we sometimesobserve longerpathsin
experimentthanwe expected.

Theseexperimentalmeasurements of aggregationarealsouse-
ful to validateourprevioussimulationexperimentsthatconsidera
wider rangeof scenarios.Previoussimulationstudieshave shown
thataggregationcanreduceenergy consumptionby a factorof 3–
5 3 in a largenetwork (50–250nodes)with fiveactivesourcesand
five sinks(Figure6b from [23]). Although caremustbe usedin
comparingenergy to bytessent,a 3–5-fold energy savings with
fivesourcesis muchgreaterthanthe42%(or 1.7-fold)traffic sav-
ings we observe with four sources.The primary reasonfor this
differenceis differencesin ratio of exploratory to datamessages
in thesesystems.Exploratorymessages(calledlow-dataratemes-
sagesin [23]) areusedto selectgood gradientsandsoareflooded
to all nodes. Datamessages(calledhigh-ratemessagesin [23])
aresentonly on reinforcedgradientsforming a pathbetweenthe
sourcesandsinks. In simulationthe ratio of exploratory to data
messagessentfrom a sourcewasabout 1:100(exploratorymes-
sagesweresentevery 50s,dataevery 0.5s,messagesweremod-
eled as 64B packets). In our testbedthis ratio was about 1:10
(exploratory messages every 60s, dataevery 6s, with messages
of roughly the samesize). Increasingthis ratio in experiment
wasnot possiblegiven our small radio bandwidth (13kb/srather
than1.6Mb/sin simulation)while keepingreasonableexperimen-
tal runningtimes.This largedifferencein ratiosis consistentwith
thelargedifferencein energy or traffic savings.

A potentialdisadvantageof dataaggregation is increasedla-
tency. Theeffect of aggregationon latency is stronglydependent
onthespecific,application-determinedaggregationalgorithm.The
algorithmusedin theseexperimentsdoesnot affect latency at all,
sincewe forward uniqueeventsimmediatelyuponreceptionand
thensuppressany additionalduplicates(incurring only the addi-
tional negligible costof searchingfor duplicates). Otheraggre-
gationalgorithms,suchasthosethat delay transmittinga sensor
readingwith thehopeof aggregatingreadingsfrom othersensors,
canaddsomelatency. Understanding aggregationandsensorfu-
sionalgorithmsis animportantareaof futurework.

Althoughwe have quantifiedthe benefitsof in-network aggre-
gation in a specificapplication,aggregation is one example of
in-network processing. Otherexamplesrangefrom simpledata
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Figure 9: Percentageof audio eventssuccessfullydelivered to
the user.

cachingto collaborative signal processing. As our experiments
show, not only do attributematchingandfiltersmake aggregation
andsimilar serviceseasyto provide, they alsoenablenoticeable
performance improvements.

6.2 Nestedquery benefits
In Section5.2 we suggestedthat nestedqueriescould reduce

network costsandlatency, andwearguedthatnestedqueriescould
beimplementedusingattributesandfilters. To validateour claim
about the potentialperformance benefitsof this implementation
we measurethe performanceof an applicationthat usesnested
queriesagainstonethatdoesnot.

The applicationis similar to that describedin Section5.2 and
Figure6: a userrequestsacousticdatacorrelatedwith (triggered
by) light sensors. We reuseour PC/104testbedshown in Fig-
ure 7 placing the user“U” at node39, the audio sensor“A” at
node20, andlight sensors“L” at nodes16, 25, 22, and13. It is
onehop from the light sensorsto theaudiosensor, andtwo hops
from thereto theusernode.To provide areproducible experiment
we simulatelight datato changeautomaticallyevery minuteon
the minute. Light sensorsreport their stateevery 2s (no special
attemptis madeto synchronizeor unsynchronizesensors).Audio
sensorsgeneratesimulatedaudiodataeachtime any light sensor
changesstate.Light andaudiodatamessagesareabout100bytes
long.

Figure9 shows the percentageof light changeevents that suc-
cessfullyresult in audiodatadeliveredto the user. (Datapoints
representthemeanof three20-minuteexperimentsandshow 95%
confidence intervals.) Thetotal numberof possibleeventsarethe
number of times all light sourceschange stateand a successful
event is audio datadelivered to the user. Thesedelivery rates
do not reflect per-hop messagedelivery rates(which are much
higher),but ratherthecumulativeeffectof sendingbest-effort data
acrossthreeor five hopsfor nestedor flat queries,respectively.

This systemis very congested,and as describedabove (Sec-
tion 6.1), our primitive MAC protocolexaggeratesthe impactof
congestion. Missing eventstranslateinto increaseddetectionla-
tency. Althoughasensornetwork couldafford to missafew events
(sincethey would be retransmittedin the next time the sensoris
measured),theseloss ratesare unacceptably high for an opera-



SetA: interest SetB: data
classIS interest classIS data
taskEQ“detectAnimal” taskIS “detectAnimal”
confidenceGT 50 confidence IS 90
latitudeGE10.0 latitudeIS 20.0
latitudeLE 100.0 longitudeIS 80.0
longitudeGE5.0 target IS “4-leg”
longitudeLE 95.0
target IS “4-leg”

Figure10: Attrib utesusedfor matching experiments.

tionalsystem.
However, this experimentsharplycontraststhe bandwidthre-

quirementsof nestedandflat queries. Even with onesensorthe
flat query shows significantlygreaterloss than the nestedquery
becauseboth light and audiodatamust travel to the user. Both
flat andnestedqueriessuffer greaterlosswhenmoresensorsare
present,but the one-level query falls off further. Comparingthe
delivery ratesof nestedquerieswith one-level queriesshows that
localizing the datato the sensorsis very important to parsimo-
nious useof bandwidth. In an uncongestednetwork we expect
that nestedquerieswould allow operationwith a lower level of
datatraffic thanone-level queriesandsowould allow a lower ra-
dio duty cycle anda longernetwork lifetime.

6.3 Run-time costsof matching
Attribute matchingis usedin all communication betweensen-

sors,filters, and applicationsin our system. Although technol-
ogy trendssuggestrapid improvementin processorperformance,
price,andsize,sensornodesmaychoseto hold performancecon-
stantandleveragetechnology throughreducedprice andsize,so
run-timeperformancemustbeconsidered. A secondconstraintis
memorystorage,particularlyin very smallimplementations.

To evaluatematchingperformancewe examinedthe cost of
matchingdatafrom asensor. Thebasicmatchingin thatcasecom-
paresan8-elementinterestagainsta6-elementdata(attributesare
shown in Figure10). To evaluatethe costof larger dataobjects
we increasedthenumberof attributesin thedatafrom 6 to 30 at-
tributes. This experimentwasdoneon our PC/104sensornode
with a66MHzAMD 486-classCPU.To evaluatethecostof asin-
glematchwe measuredcostof many matches(5000for matching
or 10,000for thenon-matchingcase)in a loopandnormalized,re-
peatingthis experiment 1000 timesto avoid unduesystemeffects
suchasinterrupts.The orderof attributesin eachsetis random-
izedeachexperiment.Wealsoshow 95%confidence intervals,al-
thoughthey arealwayslessthan5%of themean.Althoughmem-
ory cachingwill causethis approachto underestimatethecostof
amatch,thebasictrendsit identifiesshouldbeapplicableto oper-
ationalsystems.

Our expectationis that the costof matchingis linear with the
numberof elements.This is confirmedin Figure11 that shows
the costof matchingasthe numberof attributesin oneattribute
setincreasesin differentways.Thetwo lowestlines(no-match/IS
and no-match/EQ)show the casewhereone of the attributesin
setA is notmatchedby thosein setB (specifically, theconfidence
valuein setB is changed from 90 to 10). Becausethe two-way
matchingalgorithmteststheformalsin setA first, theincremental
costof additionalattributesin set B is fairly small in this case,
and it is insensitive to the type of attribute added. If the failing
formal wasin setB we would expectthe costto be higher(mid-
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Figure11: Matching performanceasthe number of attrib utes
grow.

way betweenthemeasureddata).
The two higher lines (match/ISandmatch/EQ)show the cost

of matchingwhenall attributessucceed.The differencein cost
of additionalattributesin theselinesshows thecostof additional
matching. In the match/EQline all additionalattributesare for-
mals(additionsof the “classEQ interest”attribute),soeachnew
attributemustbematchedagainstsetA. For match/IS,additional
attributesareactuals(repetitionsof ‘extra IS “foo” ’) thatmustbe
examinedbut do not requiresearching.

Althoughourcurrentimplementationiscompletelyunoptimized,
theabsolute performanceof theseoperationsis quite reasonable.
At 5005 s/match for small attribute setsour quite slow PC/104
canmatch2000setsper second. Although quite slow by Inter-
netrouterstandards,this is reasonablefor sensornetworkswhere
we expecthigh-level eventsto happen with frequenciesof 10Hz
or less.

Finally, thesemeasurementssuggestseveralpotentialoptimiza-
tionsto matchingperformance. Segregatingactualsfrom formals
canreducesearchtime(sinceformalscannotmatchotherformals
thereis noneedto comparethem).Attributescouldbestaticallyor
dynamicallyoptimizedto move theattributesleastlikely to match
to thefront. Weplanto explorethesekindsof optimizationsin the
future.

6.4 Experiment Discussion
Theseexperimentshave provided new insight into sensornet-

work operation,buildingsubstantially onourprior simulationstud-
ies[23].

Theseexperimentsarefirst examinationof nestedqueriesand
matchingperformance. They suggestthat the CPU overhead of
matchingshouldnot bea constraintfor reasonablypowerful sen-
sornodesandthatnestedqueriescangreatlyreducecontention by
localizingdatamovement.

Theseexperimentshaveexploredlow-bandwidthoperation.Pre-
vious simulationstudiesof sensornetworks often have not used
the low-bandwidth radioswe seein actualsensor-network hard-
ware. Protocolsand scenariosbehave qualitatively different at
10–20kb/sfor sensor networksratherthanthe3–12Mb/scommon
to wireless802.11LANs. Even with our early operationalexpe-
riencein small-scaledemonstrationsandtesting,we did not ap-



preciate� thedifficulty of operatinga 14-nodesensornetwork at a
relatively high utilization. Our observationssuggesttwo areasof
futurework: first, sensornetworks mustadaptto local nodeden-
sities(we arebeginning to explore this area[11]). Second,more
work is neededto understandhow diffusion’s parametersmapto
differentneeds,particularlythe trade-offs betweenoverheadand
reliability presentin the frequency of exploratory messages,in-
terests,andreinforcements. Finally, thediffusionapplicationswe
currentlyuseoperatein an openloop; feedbackand congestion
controlareneeded.

Two aspectsof radiopropagationprovedunexpectedlydifficult.
First, someexperimentsseemedto show asymmetriclinks (com-
municationwas fine in one direction but poor or impossiblein
theother).Diffusiondoesnot currentlywork well with asymmet-
ric links; we areconsideringhow to bestrevise it. Second,some
links provided only intermittentconnectivity. A future direction
for diffusion might sendsimilar dataover multiple pathsto gain
robustnesswhenfacedwith low-quality links. Currentsimulation
models,evenwith statisticalnoise,do notadequatelyreflectthese
observedpropagationcharacteristics.

Finally, weweregenerallyhappy with ourapproach to attribute
namingandfilters. It wasreasonablyeasyto build andadaptour
sampleapplicationsanddebuggingsoftware.

7. FUTURE WORK
Thiswork describesourcurrentapproachto constructingrobust

distributedsensornetworksfor afew applications.It suggestssev-
eralareasfor futurework includingenhancingourtestbedandpro-
tocols,applyingthemto additionalapplications,andunderstand-
ing how to build sensornetworks.

Wehaveseveralplanned changesto ourtestbedhardware.Most
importantly, we plan to move to a different radio by RF Mono-
lithicsandtouseaUCBMoteasthepacket controller. Thepacket-
level controllerof ourRadiometrixRPCwasveryhelpful for rapid
development,but this revisedapproachwill giveuscompletecon-
trol over theMAC protocol.

We have now exploreddiffusion performanceboth in simula-
tion andwith testbedexperiments. In-network aggregationshows
qualitatively thesameresultsin bothevaluations(Section6.1). A
next stepis to usetheexperimentsto parametrizethesimulations.

In this work we were repeatedlychallenged by the difficulty
in understanding what was going on in a network of dozens of
physicallydistributednodes.Our currentenvironment augments
the radio network with a separatewired network for experimen-
tal datacollection,but muchmorework is neededin developing
analysistools for thesenetworks. Tools areneededto report the
changing radio topology, observe collision ratesandenergy con-
sumption,permit moreflexible logging, andaccuratelysynchro-
nizenodeclocks.We have begunwork on in-network monitoring
tools[40], but morework is needed.

AppropriateMAC protocolsfor sensornetworks is a continu-
ing challenge. In spiteof publishedwork in this area[3, 33] and
ongoing activities,a freelyavailable,energy awareMAC protocol
remainsneeded. We andothersarecurrently exploring alterna-
tiveshere;we hopesolutionswill beforthcoming.

A balanceof controlanddatatraffic is particularlyimportantin
bandwidth-constrainedsystemssuchassensornetworks. Several
known techniques to constraincontrol traffic exist for soft-state
protocolsin wired networks [24, 31, 36]; theseapproachesneed

to beappliedto our system.
Wehave exploredtwo applicationsof sensornetworksandcol-

laboratedon other applications,but many other applicationsre-
main. One interestingdirection is to explore how collaborative
signalprocessing interactswith in-network processingandfilters.

Finally, althoughwe focus on wirelesssensornetworks, the
techniqueswedeveloparealsorelevantto wiredsensornetworks.
Wired connections greatlyreducebandwidth constraintsandand
eliminatepower constraints,but attribute-basednamingcan re-
ducesystemcomplexity by decouplingdatasourcesandsinks,and
in-network processingmay reducelatency andimprove scalabil-
ity. Although prior systemshave separatelyusedtheseabstrac-
tionsfor virtual informationsystems,a futuredirectionis to apply
them to large, wired sensornetworks that are coupledwith the
physicalworld.

8. CONCLUSION
This paper has describedan approachto distributed systems

built around attribute-nameddataandin-network processing. By
using attributeswith externalmeaning(suchas sensortype and
geographic location)at the lowest levels of communication, this
approach avoidsmultiple levelsof namebindingcommonto other
approaches.Attribute-nameddatain turn enablesin-network pro-
cessingwith filters, supporting dataaggregation, nestedqueries
and similar techniquesthat arecritical to reducenetwork traffic
andconserveenergy. Weevaluatedtheeffectivenessof thesetech-
niquesby quantifying the benefitsof in-network processingfor
dataaggregationandnestedqueries.In oneexperiment we found
that aggregationreducestraffic by up to 42% andnestedqueries
reducesloss ratesby 15–30%. Although aggregationhasprevi-
ously beenstudiedin simulation,theseexperiments are the first
evaluationof thesetechniques in an operational testbed. These
approachesareimportantin theemergingdomainof wirelesssen-
sor networks wherenetwork andpower resourceconstraintsare
fundamental.
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