1. Übungsblatt

Abgabe: Mittwoch, 29. Oktober 2003, zu Beginn der Vorlesung

Aufgabe 1 (4 Punkte)

Gegeben ein ungerichteter ungewichteter zusammenhängender Graph G(V,E) mit $V=\{s,v_1,\ldots,v_n\}$ und kürzeste Wege W_i von s nach v_i für $i=1,\ldots,n$. Sei $\operatorname{vorg}(v_i)$ der letzte Knoten vor v_i in W_i . Zeigen Sie, dass die Menge B_s aller gerichteten Kanten $(v_i,\operatorname{vorg}(v_i))$ (a) einen Baum bildet, (b) der Baum V aufspannt und (c) alle Kanten im Baum in Richtung s gerichtet sind.

Aufgabe 2 (4 Punkte)

Wieviele Kanten kann ein Graph G mit n Knoten höchstens besitzen, wenn er

- (a) ungerichtet ist, (a') gerichtet ist,
- (b) ungerichtet und *d*-regulär ist, das heißt, wenn alle Knoten Grad *d* haben, (*Bemerkung*: es gibt *d*-reguläre Graphen nicht für alle Kombinationen von *n* und *d*.)
- (c) ungerichtet und planar ist, das heißt, wenn man ihn so in der Ebene zeichnen kann, dass sich keine zwei Kanten schneiden.

Tipp: Benützen Sie Eulers Formel, die besagt, dass |F| - |E| + |V| = 2, wobei V die Knotenmenge von G, E die Kantenmenge von G und F die Menge der Flächen in einer beliebigen planaren Zeichnung von G bezeichne. Bei F wird die äußere Fläche mitgezählt, das heißt, dass etwa ein Dreieck zwei Flächen bildet und ein Baum eine. Schätzen Sie |F| mithilfe von |E| ab.

Geben Sie jeweils einen Graphen mit mindestens drei Knoten an, der zeigt, dass Ihre Schranke scharf ist.

Aufgabe 3 (4 Punkte)

Ordnen Sie die angegebene Folge f_1, f_2, \ldots von Funktionen entsprechend ihres asymptotischen Wachstums so um, dass für die geordnete Folge f'_1, f'_2, \ldots gilt: $\mathcal{O}(f'_1) \subseteq \mathcal{O}(f'_2) \subseteq \ldots$ (ohne Beweis).

$$n^2 + 10\sqrt{n}$$
, $200 \log n$, n^n , $\binom{n}{\lfloor n/2 \rfloor}$, e^n , $n!$, $n^2 + n^3$, $2 + n$, \sqrt{n} , 10^{80} , $n^2\sqrt{n}$, $\sqrt[4]{7n}$

Aufgabe 4 (4 Punkte)

Gegeben sei die Adjazenzmatrix $M=(m_{ij})_{1\leq i,j\leq n}\in\{0,1\}^{n\times n}$ eines gerichteten Graphen G(V,E) mit $V=\{1,2,\ldots,n\}$. Für $k\in\mathbb{N}_0$ sei M^k die k-te Potenz von M, also die Matrix, die man erhält, wenn man M k-mal mit sich selbst multipliziert.

- (a) Zeichnen Sie das "Haus des Nikolaus". Orientieren Sie die Kanten so, wie Sie sie (in einem Zug!) gezeichnet haben. Stellen Sie die Adjazenzmatrix M dieses Graphen auf und berechnen Sie M^0 , M^2 sowie M^4 .
- (b) Zeigen Sie, wie man M^k mit höchstens $2|\log_2 k|$ Matrizenmultiplikationen berechnen kann.
- (c) Zeigen Sie, dass für beliebige gerichtete Graphen G(V,E) mit $V=\{1,2,\ldots,n\}$ der Eintrag m_{ij}^k in Zeile i und Spalte j von M^k die Anzahl der Wege der Länge k vom Knoten i zum Knoten j angibt.