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Abstract

Modern shortest-path-algorithms are able to answer queries on road networks up to
six orders of magnitude faster than the algorithm of Dijkstra. The key ingredient to
this success is a preprocessing stage where additional data are generated to accelerate
the queries. A popular and successful approach of these techniques are Contraction
Hierarchies. In this work, we extend the approach of Contraction Hierarchies to be able
to handle arbitrary metrics. We use a recently found connection between Contraction
Hierarchies and the well studied elimination game to split the preprocessing into
a metric independent and a metric dependent stage. We present a set of simple
algorithms based on the idea of Weak Contraction Hierarchies [Col12] in a proof-of-
concept implementation. An extensive evaluation shows that these algorithms deliver
results comparable to other state-of-the-art methods and are able to incorporate
arbitrary metrics on continental sized networks in less then a minute.

Deutsche Zusammenfassung

Moderne Algorithmen können kürzeste-Wege-Anfragen auf Straßengraphen um bis
zu sechs Größenordnungen schneller beantworten als der Algorithmus von Dijk-
stra. Der Schlüssel dazu ist eine Vorberechnungsphase, in der zusätzliche Daten
zur Beschleunigung der späteren Anfragen berechnet werden. Ein bekannter und
erfolgreicher Ansatz sind Contraction Hierarchies. Diesen Ansatz entwickeln wir in
dieser Arbeit dahingehend weiter, dass beliebige Metriken verarbeitet werden können.
Dazu nutzen wir aktuelle theoretische Resultate, die eine Verbindung zwischen Con-
traction Hierarchies und Elimination Game aufgedeckt haben. Damit können wir
die Vorberechnungsphase in einen metrikunabhängigen und einen metrikabhängigen
Teil aufspalten. Basierend auf der Idee der Weak Contraction Hierarchies [Col12]
entwickeln wir eine Proof-of-Concept Implementierung einiger simpler Algorithmen.
Eine ausführliche Auswertung der Algorithmen zeigt, dass diese Resultate liefern
deren Peformance durachaus vergleichbar ist mit der anderer aktueller Methoden.
Unsere Algorithmen können auf einem Straßennetzwerk der Größe eines Kontinents
beliebige Metriken in weniger als einer Minute einführen.
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1. Introduction

One of the most popular problems of theoretical computer science is the point-to-point
shortest path problem. Most commonly known from routing in road networks, its appli-
cations go a lot further. Although the Dijkstra-Algorithm discovered more than 50 years
ago runs on road networks in almost linear time, the past decades have still seen a lot of
research on this topic – see [BFM09, GH05, SS06, GKW06, Lau04, GSSD08] for example.
Considering real world applications, the requirements often go somewhat further than only
to find the shortest path between two points. Travel times may be the most common
metric, but they are by far not the only one. Often enough multiple metrics for the same
road network need to be considered. Travel times by bike will differ a lot from travel times
by car. And even if one limits an application to one specific metric, this metric might
change over time.
This is a problem since most common approaches tackle the problem in two steps. In a
first step, the network will be preprocessed and some additional data will be collected.
These additional data are used to accelerate the second step, the actual query. Based on
this idea many speedup techniques were developed in recent years. The ninth DIMACS
implementation challenge [DGJ09] brought up and expedited many of the new techniques.
Some of them outperform a traditional Dijkstra by several orders of magnitude (up to
six in special cases). These methods work well as long as the information gathered by
preprocessing stays valid. But if this preprocessing is metric dependant, an everyday traffic
jam may invalidate the whole result of the costly preprocessing. For this reason, this work
considers metric independent preprocessing.
The algorithms presented in this work are based on Contraction Hierarchies which were
introduced by Geisberger et al. [GSSD08]. The approach of Contraction Hierarchies has
two phases. First, the nodes of the graph get successively contracted, ordered by a certain
node order, and some additional edges – shortcuts – will be generated. Second, actual
queries (accelerated by the additional edges) are run on the graph. To be able to use
Contraction Hierarchies without any given metric, one has to deal with two more problems.
To contract the graph, we need a node order based only on the graph’s topological features.
And as queries concern a certain metric, we need to be able to introduce arbitrary metrics
to our preprocessed data.

1.1 Related Work
Since the shortest path problem is a very common and popular problem in computer
science, there has been a lot of research on it. The oldest shortest-path-algorithms were
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1. Introduction

invented in the 1950’s, Dijkstra’s algorithm was proposed 1959 [Dij59], the Bellman-Ford-
Moore-algorithm between 1956 and 1959 [Bel58, For56, Moo59]. A lot of the traditional
approaches can be found in [AMO93]. During the past decade, especially boosted by
the ninth DIMACS implementation challenge [DGJ09], a lot of speedup techniques were
developed. A recent overview and evaluation of the different approaches can be found
in [Som12].

The fastest (considering query times) currently known approach is named hublabeling
[CHKZ03, ADGW11, ADGW12]. On a continental sized road network, hublabeling yields
distance query times in the average case only five times slower than a distance table lookup.
Among other problems, this speed is paid both in time and space with a very expensive
preprocessing.

Contraction Hierarchies were proposed in 2008 by Geisberger et al. [GSSD08]. Since then,
they have seen a lot of theoretical as well as practical development [GSSV12]. To gain a
better understanding of why techniques such as Contraction Hierarchies work so well, the
highway dimension was introduced by Abraham et al. [AFGW10, ADF+11]. In [BCRW13,
Col12], a theoretical framework to study Contraction Hierarchies was developed. It enables
proving upper bounds on the search space size for certain classes of graphs. This framework
delivers the theoretical basis for this thesis.

An important topic in this work is the ability of the algorithms to adept arbitrary
metrics. The currently most advanced approach to this topic is Customizable Route
Planning [DGPW13]. CRP utilizes multilevel overlay graphs and is thus a successor
to [HSW08, SWW00]. The preprocessing of SHARK [BD09] can also be modified to adapt
multiple metrics, but they must be known in advance. Considering Contraction Hierarchies,
some possibilities were explored in [GSSV12], to incorporate small changes to the metric
without having to repeat the whole contraction.

1.2 Outline
Throughout this work we design a simple three-step-approach similar to the one in [DGPW11]
which is able to adapt arbitrary metrics and changes to existing ones. For that we create a
proof-of-concept implementation of Weak Contraction Hierarchies and evaluate its potential
for real world application. The implementation of these algorithms is very close to the
theoretical idea behind them and still allows us to study their theoretical properties on
several real world examples.

As many of the algorithms used throughout this work are not new, we will not split this
work into a “related work” part and a part with our own results. Instead, we go through
the different stages of the method and explain important theoretical results, adapted known
algorithms and new algorithms in turn. We start by establishing some basic concepts and
algorithms in Chapter 2. Chapter 3, 4 and 5 each cover the details for one of the three
phases. For each of the phases we will recap already existing algorithms and methods. In
fact, quite a lot of the existing approaches can be reused for Weak Contraction Hierarchies.

Besides the algorithmic details of the contraction process, Chapter 3 contains a summary
of the theoretical research leading to the idea of Weak Contraction Hierarchies. Additional,
we will study the behavior of a contraction based on a nested dissection order. In Chapter 4
we will cover the details on how to apply arbitrary metrics or introduce changes to existing
ones. Chapter 5 considers query algorithms. Chapter 6, which is the core of this work,
contains an extensive experimental analysis of the algorithms. There we evaluate the idea
of Weak Contraction Hierarchies concerning its potential for real world applications.
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2. Preliminaries

In this chapter, we are going to establish notation and terms used in this work, introduce
basic theoretical concepts and recap important algorithms.

This work deals mostly with strictly positive weighted directed graphs. We denote such a
graph as G = (V,A, lenG), where V is the set of nodes, A the set of arcs and lenG an arc
metric. The metric is a function lenG : A 7→ R>0 and assigns a strictly positive number to
each arc. For non existing arcs lenG will be ∞. Arcs are ordered pairs (u, v) with u, v ∈ V ,
where the source node is u and the target node v. Multiarcs are not allowed. We apply set
operations componentwise to graphs.

Other types of graphs are unweighted graphs G = (V,A) or undirected graphs G = (V,E).
Unless stated otherwise, when talking of graphs we refer to weighted directed graphs. Edges
are represented as unordered pairs {u, v}. We denote with ∗G = (V, ∗A) the undirected
version of a directed graph. The set ∗A is defined as ∗A = {{u, v} | (u, v) ∈ A}. We
distinguish between arcs and edges: arcs are directed, edges undirected. Most of the
definitions in this chapter use only directed graphs, but unless stated otherwise, they also
apply to undirected graphs. We will refer to |V | with n and to |A| with m.

Paths in a graph will be represented as a list of nodes: p = (v1, v2, . . . , vn) with v1..n ∈ V
and (vi, vi+1) ∈ A. The number of arcs in a path p is |p| − 1. For technical reasons, we
allow paths with only one node. The length of a path p is the sum over the weights of all
arcs and is denoted by lenG(p). A shortest s-t-path is a path from s to t with minimal
length among all s-t-paths; the minimal length will be denoted by the distance dist(s, t).

Another important concept in this work is the one of node separators.

Definition 2.1. Let G = (V,A) be a graph. A subset of nodes S ⊆ V is called a node
separator, if it splits the graph into two distinct components X,Y ⊆ V so that X, Y and S
form a partition of the graph and that no two nodes of X and Y are adjacent.

Separators are widely used in divide-and-conquer algorithms. By removing the separator
from the graph, the algorithm can be applied recursively to the two distinct subgraphs.
We are going to use them to establish a metric independent order. To achieve good results,
one has to use “good” separators. That usually means small separators and similarily sized
components. Finding a separator of minimal size, where the subgraphs X,Y include each
less nodes than α ∗ n with α a constant ranging between 1/2 and 1 (commonly referred
to as the minimum balanced separator problem), is known to be a NP-hard on arbitrary
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2. Preliminaries

graphs [BJ92]. With some restrictions to the graph the problem gets somewhat easier. The
planar separator theorem [LT79] states that on planar graphs a 2/3-balanced separator
with |S| ∈ O(

√
n) can be found in linear time. Experiments in Chapter 6 and [DGRW11]

show that road networks admit even smaller separators.
In the point-to-point shortest path problem we are given a graph G and two of its nodes s
and t and we look for dist(s, t). A popular solution to this problem was given more than
50 years ago by Edgar Dijkstra in [Dij59]. He proposed algorithm 2.1, commonly known as
the Dijkstra algorithm. Despite its age, this algorithm is still an important component of
many approaches to the shortest path problem. Current implementations of that algorithm
need a few seconds to answer an average query on a continental sized road network. To find
the shortest s-t-path, the algorithm visits each node v of the graph ordered ascendingly
by dist(s, v). For this purpose, each node v has a tentative distance d(v) initialized to ∞.
The tentative distance of s is set to 0. Starting with s, the algorithm updates the tentative
distances of each neighbour node of the current node. This process is referred to as arc
relaxing. We call a node discovered, if its tentative distance was updated at least once.
This process is then repeated on the next node which is one of the unsettled nodes with
the lowest tentative distance. This settles the node and its distance from s. Keeping
track of the tentative distances requires some sort of priority queue. The algorithm’s
performance strongly depends on that queue. The theoretically best known data structure
considering arbitrary graphs is a Fibonacci heap as proposed in [FT87]. Such a heap
yields an asymptotic running time in O(n logn+m). Practical implementations mostly
use k-heaps because of better constants. On sparse graphs, they deliver a asymptotic
running time in O(n logn) as do Fibonacci heaps. For road networks, experimental suggest
a quasi linear running time.

Algorithm 2.1: Dijkstra’s Algorithm
Input: Graph G = (V,A, lenG), source node s
Data: Priority queue Q
Output: dist(s, v) for all v ∈ V
// Initialization

1 for each v ∈ V do
2 d(v)←∞
3 Q.insert(s, 0)
4 d(s)← 0

// Main loop
5 while Q is not empty do
6 u← Q.deleteMin()
7 for each (u, v) ∈ A do
8 if d(u) + lenG(u, v) < d(v) then
9 d(v)← d(u) + lenG(u, v)

10 if Q.contains(v) then
11 Q.decreaseKey(v, d(v))
12 else
13 Q.insert(v, d(v))

This algorithm not only computes the distance from s to t, but also the distance from s to
all nodes. Since this information is not required in most cases, there are some approaches
to reduce this unnecessary overhead. A first step is to introduce a stopping criterion. We
can safely stop the algorithm, if the current node u is equal to the target node t. Once we
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visit a node, the distance is settled and will not change anymore. Unfortunately, that does
not change anything concerning the asymptotic running time.

Note: the algorithm can be modified to obtain not only the distance but also the shortest
path from s to t. For this, the algorithm stores a predecessor for each node. When an arc
gets relaxed and yields an distance improvement, the current node will be assigned as the
predecessor of the arc’s target node. The path can then be obtained by following the chain
of predecessors backward starting at t.

A common improved version of the algorithm - which is in particular important to Contrac-
tion Hierarchies - is called bidirectional Dijkstra’s algorithm. In this algorithm, we run two
instances of Dijkstra’s algorithm: one starting from s and another one starting from t with
all arcs reversed. This can reduce the total number of settled nodes significantly compared
to the unidirectional version of the algorithm. But it is not possible to stop as soon as both
searches meet at some common node. The bidirectional variant of Dijkstra’s algorithm
requires a more sophisticated stopping criterion. The idea for the criterion as shown in
algorithm 2.2, is to stop as soon as all paths containing nodes not yet settled, are longer
than the shortest already discovered path.

One can run the two searches in parallel with two threads. When running both searches
sequentially, one has to decide in which search the next step should be performed. Our
implementation alternates the instances which is a common approach.

Algorithm 2.2: Bidirectional Dijkstra’s Algorithm
Input: Graph G = (V,A, lenG), source node s, target node t
Data: Priority queues Qs,Qt

Output: dist(s, t)
1 Run two Dijkstra instances, one from s and one on the reversed graph from t.

// Main loop
2 while Qs ∪ Qt 6= ∅ and minv∈V ds(v) + dt(v) > minu∈Qs

ds(u) + minw∈Qt
dt(w) do

3 Perform a single step of one instance with a non empty queue
4 return minv∈V ds(v) + dt(v)
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3. Contraction Hierarchies

Contraction Hierarchies are a speedup technique for the point-to-point shortest path
problem and were introduced by Geisberger et al. in [GSSD08]. Broadly speaking, the
main idea behind the technique is to exploit the fact that some roads (like highways) are
more important than others. A node order is established which models the “importance”
of each node. With that order it is possible to decrease the number of nodes (and arcs)
the search algorithm has to consider. One can remove “unimportant” nodes in a way that
preserves distances. This process is called contraction. In this chapter we are going to
examine the contraction process. The result of this process is called a contraction hierarchy.
With that hierarchy, an improved query can be run which will be explained in detail in
Chapter 5. In this chapter we start with an explanation of the traditional contraction
process. Then we discuss the necessary changes to run this process without a given metric.
Later on we will recap some theoretical properties of Contraction Hierarchies based on the
formal model of weak contraction hierarchies as first discussed in [Col12]. This leads us to
a good metric independent node order which we examine closely in the last section.

3.1 Algorithmic Approach
As mentioned above, the main idea for Contraction Hierarchies is to remove unimportant
nodes in a way that preserves the distances among all other nodes in the graph. Let us
suppose we want to remove the node v. The distance between two other nodes s and t
(s, t 6= v) might change through the removal of v if and only if v is part of all shortest
paths between s and t. Any such path p must contain arcs (u, v) and (v, w). Since p is a
shortest s-t-path, the path (u, v, w) must be a shortest u-w-path or we could shorten p by
flipping (u, v, w) for the supposed better path which is a contradiction. To preserve the
shortest paths, we need to insert a new arc (u,w) with weight lenG(u, v) + lenG(v, w). If
such an arc already exists, we need to update its weight. Such an arc is called shortcut. To
be able to safely remove a node v, we need to check its neighbourhood for shortest paths
containing v, and insert the necessary shortcuts to preserve the distances. This process is
called contraction. Algorithm 3.1 shows a pseudocode version of the routine.

The most difficult part of this routine is to check if (u, v, w) is a shortest path. To gain that
information, one can run a local version of Dijkstras’s algorithm (called witness search)
starting from each node u where an arc (u, v) exists. The local search can stop as soon as
all nodes w with an arc (v, w) are settled or if the current distance minx∈Q d(x) is greater
than len(u, v) + len(v, w). If the witness search is run completely for every node, one
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Figure 3.1: Contraction of vertex 1

Algorithm 3.1: Node Contraction
Input: Graph G = (V,A, lenG), node v
Output: Graph G without node v

1 for each u ∈ V with (u, v) ∈ A do
2 for each w ∈ V with (v, w) ∈ A do
3 if (u, v, w) is a unique shortest path then
4 A← A ∪ {(u,w)}
5 lenG(u,w)← lenG(u, v) + lenG(v, w)

6 return (V \ {v}, {(a, b) | a, b 6= v}, lenG)

obtains a minimal contraction hierarchy (minimal for the used node order). But executing
the whole witness search is often too slow. Thus, the search is sometimes stopped before
it is finished. It may occur that a path shorter than (u, v, w) was not discovered when
the local search gets aborted. But as this path still remains in the graph, we only insert
an unnecessary shortcut. As the shortcut is longer (or equal) to the actual shortest path
it will still preserve the graph’s distances. We obtain a valid yet suboptimal contraction
hierarchy. But one has to be careful not to insert too many shortcuts, because otherwise
the query slows down significantly.

This routine is executed on every vertex until the graph is empty. The result strongly
depends on the order in which the nodes are contracted. We are going to refer to this order
as α : V 7→ N. The result of this process is called a contraction hierarchy. A contraction
hierarchy Ḡα = (Ḡ∧α, Ḡ∨α) consists of two acyclic graphs, one containing arcs directed from
nodes with lower ranks to ones with higher and the other vice versa. Algorithm 3.2 shows
the whole preprocessing.

Algorithm 3.2: Contraction Hierarchy Preprocessing
Input: Graph G = (V,A, lenG), order α
Output: Contraction hierarchy Ḡα = (Ḡ∧α, Ḡ∨α)

1 G′ = (V ′, A′, len′G)← G
2 for each v ∈ V ordered ascending by α(v) do
3 G′ ← contract(G′, v)
4 A← A ∪A′

5 return ((V, {(u, v) ∈ A | α(u) < α(v)}), (V, {(u, v) ∈ A | α(u) > α(v)}))

There is still an open question and that is how to obtain α. Since many shortcuts might
slow down the query, one key goal of traditional Contraction Hierarchy implementations
is to produce as few shortcuts as possible. But finding an order which minimizes the
amount of added shortcuts is known to be NP-hard [BCK+10]. Another important target
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3.2. Metric Independent Contraction

is the minimization of the number of the nodes in the later search space. One has to use
heuristical approaches to obtain a good order. Instead of using a precomputed order, the
typical implementations usually decide on the fly which node to contract next. In most
cases, the key criterion for this decision is the number of shortcuts the contraction of a
node might cause, but several other values might be used as well [GSSV12].

3.2 Metric Independent Contraction
From the implementation point of view, contraction on an unweighted graph is actually
easier than on a weighted graph. Because it is not possible to decide whether some three
nodes make up a unique shortest path, one simply has to add every possible shortcut. Not
witness search is required. This creates some problems because as more nodes get contracted,
the graph quickly becomes very dense until it finally becomes a clique. Additionally, the
query has to deal with many, many arcs later on. Because less information is used, it is not
unexpected that the result is a little worse. The simplified algorithm can be found in 3.3.
This algorithm was already mentioned in [Col12]. There it has the purpose to construct
the maximum weak contraction hierarchy. The next section will explain that term and
how it is related to this algorithm.

Algorithm 3.3: Witnessless Node Contraction
Input: Unweighted graph G = (V,A), node v
Output: Graph G without node v

1 for each u ∈ V with (u, v) ∈ A do
2 for each w ∈ V with (v, w) ∈ A do
3 A← A ∪ {(u,w)}

4 return (V \ {v}, {(a, b) | a, b 6= v})

We would like to emphasize that the result of the whole contraction process strongly
depends on the order in which the nodes are contracted. The traditional heuristics to
choose the next node will not work as good as before because less structural information
is available. As every possible shortcut is inserted, the amount of new shortcuts will not
give as much information on the graph’s structure as before. So we have to obtain an
order through a different way. From the study of the Contraction Hierarchies’ theoretical
properties, a suggestion on such an order arose. We are going to have a look at these in
the next section.

3.3 Weak Contraction Hierarchies
This section gives a brief overview on the theoretical properties of Contraction Hierarchies
as discovered in [Col12, BCRW13]. We start by giving a formal definition of an algorithmic
contraction hierarchy as developed in the preceding section. Recall that the result of
Contraction Hierarchy preprocessing is a pair of graphs, one containing all upward arcs and
the other one all downward arcs. They contain arcs from the original graphs and shortcut
arcs inserted during the contraction of nodes. For a given graph G = (V,A, lenG) and an
order α we define Pα(s, t) = {v ∈ V | α(v) > α(s) ∨ α(v) > α(t) ∧ dist(s, v) + dist(v, t) =
dist(s, t) <∞} the set of nodes on a shortest path between s and t which have an higher
rank than the minimum rank of s an t. In conclusion algorithmic contraction hierarchies
can be characterized as following:
Definition 3.1. Let G = (V,A, lenG) be a graph and let α be an order of its nodes. The
arcs of an algorithmic contraction hierarchy Ḡα = (Ḡ∧α, Ḡ∨α) = ((V, Ā∧α), (V, Ā∨α)) are then

Ā∧α = {(u, v) ∈ A | α(u) < α(v)} ∪ {(u, v) | α(u) < α(v) ∧ Pα(u, v) = {u, v}}

9



3. Contraction Hierarchies

Ā∨α = {(u, v) ∈ A | α(u) > α(v)} ∪ {(u, v) | α(u) > α(v) ∧ Pα(u, v) = {u, v}}
Furthermore, shortcut arcs have the length of the distance between their nodes: lenα(u, v) =
dist(u, v).

A detailed proof of the equivalence of this definition to the result of the algorithms can
be found in [BCRW13]. A closer look reveals that we can omit the first subset of the arc
sets without changing distances. If an arc (u, v) is no unique shortest path, removing it
will preserve the distances. If it is, then Pα(u, v) = {u, v} and the arc is contained in the
second subset. This leads us to the definition of a formal contraction hierarchy.
Definition 3.2. Let G = (V,A, lenG) be a graph and let α be an order of its nodes. The
arcs of a formal contraction hierarchy Gα = (G∧α, G∨α) = ((V,A∧α), (V,A∨α)) are then

A∧α = {(u, v) | α(u) < α(v) ∧ Pα(u, v) = {u, v}}

A∨α = {(u, v) | α(u) > α(v) ∧ Pα(u, v) = {u, v}}
Shortcut lengths are the same as in definition 3.1.

Although algorithmic and formal contraction hierarchies are equivalent concerning distances,
the arc sets may differ. Furthermore, actual implementations will produce arc sets different
from the ones defined as algorithmic contraction hierarchies. Since only heuristics are used
to decide whether a shortcut is necessary, more shortcuts than needed may be inserted. The
concept of weak contraction hierarchies aims to cover all those slightly differing contraction
hierarchies.
Definition 3.3. A weak contraction hierarchy Hα of a graph G = (V,A) and an order α
is a pair of graphs (H∧α , H∨α ) = ((V,B∧α), (V,B∨α)) fulfilling the following three conditions.

1. Gα ⊆ Hα

2. α(u) < α(v) for all (u, v) ∈ B∧α and all (v, u) ∈ B∨α
3. If (u,w) is an arc in Hα but not contained in A, then there exists one (or more) pair

of arcs (u, v) ∈ B∨α and (v, w) ∈ B∧α

This definition is not concerned with the metric but only the structure of contraction
hierarchies. We are going to take the arc lengths into consideration in Chapter 4. Property 1
of definition 3.3 makes clear that a formal contraction hierarchy is the smallest possible
weak contraction hierarchy. On the other, hand one could ask how big a weak contraction
hierarchy can become. For that we are going to define the maximal weak contraction
hierarchy

Definition 3.4. A weak contraction hierarchy Hα is maximal if, and only if it satisfies
the following conditions:

1. Each arc of A is contained in Hα.

2. For any two arcs (u, v) ∈ B∨α and (v, w) ∈ B∧α , Hα contains also (u,w).

This definition exactly matches the result of the metric independent (witnessless) contraction
algorithm. Algorithm 3.3 was proposed in [Col12] to compute the maximal weak contraction
hierarchy. Moreover, it is very similar to a different (and well studied) problem in theoretical
computer science – the so called elimination game. It works almost like witnessless
contraction but on undirected graphs. That is, nodes are removed by a given order. For
each removed node, edges are inserted - a clique between all its neighbours. We denote
the set of all additional inserted edges with Fα. In [Col12], the similarities between the
elimination game and the maximum weak contraction hierarchy were discovered and stated
in the following theorem.

10



3.3. Weak Contraction Hierarchies

Theorem 3.5. Let G = (V,A) be a graph, (H∧α , H∨α ) = ((V,B∧α), (V,B∨α)) the maximum
weak contraction hierarchy of it, based on the node order α. The contraction hierarchy
(and with that any weak contraction hierarchy) is a subgraph of the result of the elimination
game.

∗(H∧α ∪H∨α ) ⊆ ∗Gα = (V, ∗A ∪ Fα)

With the elimination game, another concept is introduced: the elimination tree.

Definition 3.6. Given an undirected graph G = (V,E), a node order α and a set of edges
inserted during the elimination game Fα, the arcs of the elimination tree T (G,α) = (V,ATα)
are defined as follows:

ATα = {(u, v) | {u, v} ∈ E ∪ Fα | α(u) < α(v) ≤ α(w) : ∀{u,w} ∈ E ∪ Fα}

The root of the tree is the node with maximum rank.

The elimination tree is constructed from the result of the elimination game. For each node
it contains only the arc to the lowest higher node. The node with the highest rank is the
tree’s root. In [Col12], it was discovered that the elimination tree and the search space in
Contraction Hierarchies are closely related to each other. Theorem 3.8 states this result.
We are going to give slightly different proof than the one given in [Col12] for that result in
this work. But first we need a formal definition of search space.

Definition 3.7. The search space S of a node v in a given graph G = (V,A) is the set of
all nodes w, where a path from v to w exists. The reverse search space R of a node v is
the set of all nodes w where a path from w to v exists.

S(v, (V,A)) = {w ∈ V | ∃p = (v, . . . , w)})

R(v, (V,A)) = {w ∈ V | ∃p = (w, . . . , v)})

The reverse search space is equivalent to the normal search space when all arcs are reversed.
Now we can prove the following theorem.

Theorem 3.8. Let G = (V,A) be a graph, (H∧α , H∨α ) = ((V,B∧α), (V,B∨α)) some weak
contraction hierarchy of it based on the node order α. For any node v ∈ V

S(v,H∧α ) ⊆ S(v, T (∗G,α))

R(v,H∨α ) ⊆ S(v, T (∗G,α))

Proof. First note that the second case is equivalent to the first with reversed arcs. So we
are going to prove only the first. We use induction over the nodes of V starting with the
highest ranked node.

Basis: Let v be the node with maximum α(v). By definition B∧α will not contain any
outgoing arcs from v. So S(v,H∧α ) must be empty. For that, it is trivially a subset of
whatever S(v, T (∗G,α)) might be. One may note that S(v, T (∗G,α)) is empty as well,
since the elimination tree also contains only upward arcs.

Inductive step: We assume that the theorem holds for all nodes with rank greater than n.
We will prove that that concludes that it also holds for the node with rank n. Let v be
that node. Due to Theorem 3.5, all arcs from H∧α are also present in ∗Gα. If there is only
one outgoing arc from v in H∧α to the target node w, then S(v,H∧α ) = {v} ∪ S(w,H∧α ).
This arc exists in ∗Gα (as an edge), too. If it is the only arc, w is the lowest higher
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3. Contraction Hierarchies

node and the arc is included in the elimination tree, too. If there are additional edges
in {v, x} ∈ ∗Gα with α(x) < α(w), then the edge {x,w} was inserted during the removal
of v. There still could be another node y above x and below w, but then again a
shortcut must exist. Since the ranks are only integers, the number of nodes between v
and w is finite and there exists a path from v to w in the elimination tree. We conclude
that {v} ∪ S(w, T (∗G,α)) ⊆ S(v, T (∗G,α)) and since S(w,H∧α ) ⊆ S(w, T (∗G,α)), the
theorem holds true due to the inductive condition.

Let us suppose that there is more than one outgoing arc v in H∧α . We denote the targets
of each of those arcs with w1 to wi. Let α(wn) < α(wn+1). As w1 to wi are all included
in S(v,H∧α ), we must prove that they are in S(v, T (∗G,α)), too. Since w1 is the lowest
higher node, it is in S(v, T (∗G,α)), due to the same reasons used in the case of only one
arc. As both edges {v, w1} and {v, w2} exist in ∗Gα, the edge {w1, w2} was inserted during
removal of v, if it did not exist earlier on. If w2 is the lowest higher connected node to w1,
it is reachable in the elimination tree and thus also included in the search space. If there
is another connected node u with α(w1) < α(u) < α(w2), then the removal of w1 causes
the insertion of the edge {u,w2} (again if it did not exist before). If there is still a node
between u and w2 the argument applies again until finally w2 is reached in the elimination
tree. So we conclude w2 ∈ S(w1, T (∗G,α)). If we apply this argument inductively, we
get wj+1 ∈ S(wj , T (∗G,α)). We finally conclude that for all j ∈ N with j ranging between
1 and i, wj is in S(v, T (∗G,α)). Due to the inductive condition, that proves the theorem’s
statement.

As the search space in any contraction hierarchy is a subset of the search space in the
elimination tree, the height of the tree limits the size of any contraction hierarchy search
space. No search space can become larger than the longest path from any leaf to the root
in the elimination tree. Earlier studies of the elimination game came up with heuristics
to obtain node orders yielding elimination trees with small height. One of them is nested
dissection [BGHK92]. Since a separator based order is metric independent, it is probably a
good order for the metric independent contraction. The next section will cover it in detail.

3.4 Nested Dissection Order
As mentioned before, the node orders of traditional Contraction Hierarchies are obtained
by fast heuristics. Thus it is very hard to define them in a formal way – not to mention
proving any non-trivial statements about their properties. As for nested dissection orders,
things work out slightly better. In this section we are going to define nested dissection
orders, and then study their behaviour on an extensive example.

We get a nested dissection of the graph if we, using a node separator, cut the graph in
two halves, and then repeat the process recursively on each of the halves. The process
is stopped when the node sets get smaller than a certain value n0. For the following
considerations we will assume n0 is 1, although in practice on would use a bigger constant.

Definition 3.9. A nested dissection for a given graph G = (V,A) is a tupel N = (R,L, S).
The halves R and L are either nested dissections again or sets of nodes of G; S is always a
set of nodes. If either R or L is a node set, then the number of nodes in the set must be
smaller than n0.

We define:

nodes(N) :=
{
nodes(R) ∪ nodes(L) ∪ S if N = (R,L, S) a nested dissection
N if N ⊆ V

No arcs between nodes(R) and nodes(L) are allowed.
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3.5. Behavior of Contraction Ordered by Nested Dissection
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Figure 3.2: The grid graph Grid(3, 2) and its separator.

For a node order α constructed from a nested dissection N = (R,L, S), we demand that
the nodes in the separator S have higher ranks than the nodes in the halves R and L. More
formal:

∀s ∈ S, x ∈ nodes(R) ∪ nodes(L) : α(s) > α(x) (3.1)

Nodes within the separator or inside the final node sets may be ordered arbitrarily.
One may note that there are still multiple possibilities to rank the nodes even without
considering the separators and final sets. For example, if we have the nested dissec-
tion ((RR,RL,RS), (LR,LL,LS), S), both (RR, RL, RS, LR, LL, LS, S) and (RR, RL,
LR, LL, RS, LS, S) would fulfill the condition of (3.1). But as the halves are independent
of each other, the resulting contraction hierarchy will be the same. As the tool we used to
obtain our orders gave us the first type of orders - where each separator comes immediately
after the sets in which it splits the graph - we are going to consider these orders in the
examples. For any properties of the orders we will only rely on condition (3.1).

3.5 Behavior of Contraction Ordered by Nested Dissection
To get a better impression of the behavior of a nested dissection order, we closely examine
the contraction of simple idealized road graphs - which are still not far away from the
reality of certain American cities. We investigate the contraction of a grid graph.

Definition 3.10. In a (undirected) grid graph G = (V,E), each node v ∈ V can be
identified with a pair of integer coordinates: v = (x, y). With that edges are defined as
follows:

E := {{(x1, y1) , (x2, y2)} | (|x1 − x2| = 1 ∧ y1 = y2) ∨ (|y1 − y2| = 1 ∧ x1 = x2)}

To get minimal and perfectly balanced separators, we only consider grid graphs of a certain
size. We demand the existence of a small perfectly balanced separator and recursively for
each subgraph. For example, a chain of three nodes is such a graph since we could take the
middle node as a minimal perfectly balanced separator. A chain of seven nodes could be
separated by the middle node into two chains of three. And so on. The valid grid sizes form
a sequence of numbers fulfilling the following condition: gridsize(n) = 2∗gridsize(n−1)+1.
With gridsize(1) := 1 this is (as can be shown by induction) equivalent to the following
closed function:

gridsize(n) := 2n − 1

And, of course, we can extend the graphs not only into the first dimension but also into
the second. Thus, we can introduce the following definition:

Grid(width, height) :=
({

(x, y) | x ∈ N≥0, x < 2width − 1, y ∈ N≥0, y < 2height − 1
}
, E
)

where E are the induced grid graph edges. Let us assume that width is greater or equal
to height; if not, we just flip the graph by 90 degrees.
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3. Contraction Hierarchies
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Figure 3.3: A smaller but unbalanced sep-
arator.
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Figure 3.4: Another perfectly balanced
separator.

In a grid graph Grid(width, height), the set S = {(gridsize(width− 1), y) | y ∈ N≥0, y <
gridsize(height))} (less formal: the nodes which cut the graph into two halves along the
longer side) is a small perfectly balanced separator. We want to point out that S is neither
a minimal separator nor the only perfectly balanced. Figure 3.3 shows a smaller separator
and Figure 3.4 a different perfectly balanced separator.

Nevertheless, S is a good separator and its size is within O(
√
n). Thus it is absolutely

sufficient for our purposes. So we will base the node order on such separators. An example
of a contraction using such an order can be seen in Figures 3.5 to 3.15. They show the
contraction of the grid graph Grid(3, 2). The darker the color of a node, the higher its
rank.

We can observe some interesting facts from this example: When separators are contracted,
they are fully connected and form a clique. Contracting a clique with n nodes yields a
running time in O(n3) assuming constant edge lookup and constant node removal. We
conclude that the size of the final separator, which is expected to be the largest, will have
significant impact on the contraction’s performance.

The final clique is not only composed of the topmost separator, but up to three topmost
separators, but no more. The leftmost node in Figure 3.11 is a separator for the three
leftmost nodes. If this separator consisted of more than one node and would be positioned
between the other two separators, all three separators would form a clique (after the
contraction of the first node of the lowest separator). But it is not possible to add a fourth
separator to this clique, only to parts of it. It would always be separated from some or
many of the nodes of the original clique.

In this example, the original graph has 32 edges and during contraction 33 edges are inserted.
A traditional Contraction Hierarchy usually creates less or about as many shortcuts as
there were original edges. Although the amount of shortcuts for this concrete example
seems to fit to that behaviour, the final clique suggests that this might change for larger
graphs. Figure 3.16 shows the number of added shortcuts for all grid graphs Grid(x, y)
with x between 1 and 7 and y between 1 and 6. The number of edges in the graph is roughly
limited by 2n (one edge up and on to the right). Different to traditional Contraction
Hierarchies, the number of shortcut edges grows faster then the number of original edges.
This is no big surprise since we are using much less information. In our experiments, we
also tried to use a traditional Contraction Hierarchy order in a witnessless contraction.
This yields even more shortcuts – see Section 6.2.2. Tobias Columbus proved that the total
number of edges in a weak contraction hierarchy on a graph of a minor-closed class based
on a nested dissection order with good separators is in O(n logn) [Col12]. Our results fit
into that theorem pretty well.
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3.5. Behavior of Contraction Ordered by Nested Dissection
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Figure 3.5: First two nodes contracted

[ \includegraphics optimized away because it does not contribute
to exported PDF]

[ \includegraphics optimized away because it does not contribute
to exported PDF]

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Figure 3.6: First separator and two more
nodes contracted
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Figure 3.7: Two separators form a clique
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Figure 3.8: The next two nodes con-
tracted - no new shortcuts
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Figure 3.9: Right side completely con-
tracted
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Figure 3.10: First two nodes on the left
contracted
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Figure 3.11: Both pairs of separators
form a clique
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Figure 3.12: The final clique
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Figure 3.13: No new shortcuts were
added anymore
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Figure 3.14: Toplevel separator - a clique
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Figure 3.15: The last remaining node
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4. Customization

In this chapter, we discuss the process of applying a metric to our preprocessed data.
This process is denoted with customization. The idea to split preprocessing into a metric
independent and a metric dependant phase was originally developed in [DGPW11]. Also,
the term customization was introduced there. But the idea is not entirely new. [GSSV12]
mentions an approach to incorporate small changes to an existing metric without rerunning
the whole contraction. The node order is kept and a subset of possibly affected nodes
is identified. For these the contraction is run again. We will explore, how this idea is
applicable to Weak Contraction Hierarchies. The first section covers the introduction of
an arbitrary metric, the second the incorporation of small changes. The performance of
these algorithms is crucial to the customizable route planning problem. Contrary to the
contraction process, they might be run quite often, probably even multiple times an hour
to incorporate real time traffic changes. Their performance is one of our key priorities.

4.1 Basic Approach
In Chapter 3 we discuss the idea of Contraction Hierarchies and a metric independent version
of the contraction routine, the witnessless contraction. The result of customization should be
equivalent to the contraction hierarchy we would get if we applied the traditional contraction
process (but without witness search) to the graph with its metric. So whatever we remove
from contraction to be metric independent, we have to make up for in customization.

We start with the results of the witnessless contraction: A graph G = (V,A), an order α,
a weak contraction hierarchy Gα. We have to introduce the metric lenG which defines
lengths for all arcs in A. Customization includes three things:

First of all, we must calculate the lengths of the shortcuts inserted by contraction. Second,
we also have to shorten already existing arcs in A if necessary. Third, we need the
information, which node caused the insertion (or update) of an arc length. We will refer to
this node as the supporting node sup(u,w). (If an arc is no shortcut and was not updated
at all, sup will be some null value.) We need this information for some optimizations, and
to unpack shortcuts and to turn a shortest path in the extended graph into a shortest path
in the original graph.

Algorithm 4.1 shows a pseudocode variant of the emerging algorithm. Since it carries
out the parts we removed in metric independent contraction, it looks quite similar to the
contraction algorithm.
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4. Customization

Algorithm 4.1: Customization
Input: Graph G = (V,A), order α, metric lenG, weak contraction

hierarchy Gα = (G∧α, G∨α)
Output: Metric lenα

1 lenα ← lenG
2 for each v ∈ V ordered ascending by α(v) do
3 for each u ∈ V with (u, v) ∈ A∨α do
4 for each w ∈ V with (v, w) ∈ A∧α do
5 if len(u,w)α > len(u, v)α + len(v, w)α then
6 len(u,w)α ← len(u, v)α + len(v, w)α
7 sup(u,w)← v

8 return lenα

4.1.1 Microinstructions and Macroinstructions

One may note that the algorithm’s operations on the given data are rather simple. Looking
up three arc weights, calculating a sum of two of those and possibly assigning an arc
weight and a supporting node. This leads to the idea of implementing customization on a
simpler data structure than a graph. This idea was proposed in [DW13] under the name of
microinstructions.

Rather than having a graph data structure, one can store all arc lengths in an array.
During contraction, a list of triples is generated. Each triple represents one step of the
customization and consists of three arc indices. To execute the step, all three arc lengths
must be looked up. Then the sum of the first two is calculated and assigned to the third
arc’s length if it yields an improvement. This allows to avoid all unnecessary overhead of a
complicated graph structure.

Although the approach yields significant speedups for customization, it raises two issues
for us. First, for large graphs it produces an enormous amount of data (the number of
triples is within O(n3)). If the triple data exceeds the capabilities of the main memory,
the whole process slows down extremely due to the I/O. The second problem is that we
have no information about the node of which contraction caused the insertion (or the
update) of a shortcut. Of course, we could simply store this information in between the
microinstructions but that would only increase the already gigantic amount of microcode
further. Due to the immense amount of generated microcode we discarded this approach –
the experiments in Chapter 6 use only macrocode.

To reduce the size of the instructions, we can use macroinstructions. Instead of listing all
triples, one can represent the contraction of a node by listing the indices of all incoming arcs,
all outgoing arcs and for each pair of those the index of the potential shortcut arc. Iterating
over these pairs of arcs takes a little longer but is still reasonably fast. And because we are
simulating the contraction of a certain node, the supporting node of all updated arcs can
be set to the current node. We will have a closer look at the implementation in Chapter 6.

4.2 Incremental Metric Updates
In this section we are going to explain the algorithms used to incorporate incremental
changes to a metric. A typical use case for this would be the occurrence of a traffic jam,
which increases the travel time for a certain road. Of course, one could rerun the whole
customization, but especially considering metrics like travel times, such small changes may
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occur quite often. Therefore, they should be as fast as possible. Even though customization
is only a matter of some seconds, it may be worth the effort to accelerate small changes.

We will only consider changes to the metric, but not the deletion or introduction of new
arcs, since that would force us to rerun parts of the contraction. In [GSSV12], Geisberger
et al. explored the possibilities of introducing small structural changes to a graph without
rerunning the whole contraction. It is probably possible to combine the approaches and
extend these algorithms to handle new or deleted arcs as well, but that is beyond the scope
of this work.

The general idea is to limit customization to the parts of the graph which might actually
change. An important thing we should note is that a change to an arc’s weight can only
affect arcs “above” (with respect to the node order) the changed arc. Another important
observation is that the customization of a node v (the two inner loops in algorithm 4.1)
does not consider arcs coming from or going to nodes with a lower rank than α(v). This
leads us to the conclusion that if we change the length of an arc (u, v), the set of directly
affected arcs is a subset of the set of arcs which is affected if we contract the lower ranked
node of the both endpoints of (u, v).

When an arc length changes, we have to distinguish between two cases: Either the new
length is larger or smaller than the current length. The current length may differ from
the one defined in the metric due to shortcuts. If the new length is shorter than the
current, we can apply the new weight at once, remove the supporting node if present
and propagate the change to other arcs. For that we can reuse the customization process
(and the macroinstructions) and apply it to the lower of the two nodes of the changed
arc. Since the arc was shortened, shortcuts can only become shorter, too. So if another
arc changes, we can repeat the process on that arc. Since probably multiple arcs may be
affected, we maintain a priority queue with the lower ranked endpoint of the changed arcs
and recustomize the nodes in ascending order of their ranks. Algorithm 4.2 shows the
resulting algorithm.

One may note that we do not need to repeat the whole customization of the node. Since only
the arc (a, b) is changed, we merely need to reconsider shortcuts containing that arc. As a
result, we can drop either the inner or the outer for-each-loop, depending on whether (a, b)
is in A∨α or in A∧α. But this would prevent us from reusing the macroinstructions. Thus we
would need a graph data structure rather than an array of weights. So this optimization
would most likely have a negative impact to running time, and because of that we execute
the whole customization of each node.

If the arc length gets longer, things are a little more complicated. Although length changes
only affect higher arcs, still lower arcs might affect the changed one. For example, if the
changed arc is a shortcut (including original arcs with updated length), we can safely
ignore the change since the shortcut length remains valid. If not, still shortcut paths which
are longer than the old length but shorter than the new length might exist. So we must
reconsider all possible shortcut paths for the changed arc. If the arc length changed after
those checks, we must propagate these changes upwards. For that, we can also use the
customization algorithm (and the macroinstructions) but we have to modify it slightly. If
we encounter any shortcut with a supporting node different from the one we are customizing
right now, we can safely leave the arc as it is. The shortcut path over the other node
was shorter before and the shortcut path via the current node only got longer. When
encountering a shortcut arc caused by the current node, we mark it for a possible length
increase and go on. The marked arcs are stored into a priority queue and extracted in
ascending order of their lower node. When we extract an arc from the priority queue, we
repeat the whole process as before. That is resetting the length to the original one given by
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Algorithm 4.2: Shorten Arc
Input: Graph G = (V,A, lenα), order α, base metric lenG, weak contraction

hierarchy Gα = (G∧α, G∨α), changing (original) arc (a, b) ∈ A, new length l
such that l < lenα(a, b)

Data: Priority queue Q
Output: Updated metric lenα

1 lenG(a, b)← l
2 lenα(a, b)← l
3 sup(a, b)← null
4 if α(a) < α(b) then
5 Q.insert(a)
6 else
7 Q.insert(b)

8 while Q is not empty do
9 v ← Q.extractMin

10 for each u ∈ V with (u, v) ∈ A∨α do
11 for each w ∈ V with (v, w) ∈ A∧α do
12 if lenα(u,w) > lenα(u, v) + lenα(v, w) then
13 lenα(u,w)← lenα(u, v) + lenα(v, w)
14 sup(u,w)← v
15 Q.insert(arg minx∈{u,w} α(x))

16 return lenα

the metric, reconsidering all potential shortcut paths, picking the shortest (or the original
length if it is shorter than any shortcut) and propagate the change.

When considering practical implementations, some further modifications are necessary. The
algorithm as stated above, stores arcs in the priority queue and extracts them ordered by
their lower node. But since one node has many arcs, that might lead to the problem that
the process is repeated several times on the same node. To avoid this problem, we actually
maintain two queues. One only stores the lower nodes of each arc with raised length. For
these nodes, we invalidate all shortcuts caused by this node. The second queue contains all
nodes which lie on potential shortcut paths for the changed arcs. After the first queue is
empty, we apply the customization process to each of the nodes in the second queue in
ascending order of their ranks. Algorithm 4.4 shows a pseudocode outline. Actually lines
five and six are in a typical contraction hierarchy implementation non trivial to implement.
Normally one only stores the arcs going to higher ranked nodes or coming from higher
ranked nodes. But in line five we are iterating over arcs going to a lower ranked node.
Luckily, we can obtain this list of arcs to lower ranked nodes in advance when we read in
the graph (by iterating over all arcs in A∨α and storing them additionally at the starting
node).
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4.2. Incremental Metric Updates

Algorithm 4.3: Slow Lengthen Arc
Input: Graph G = (V,A, lenα), order α, base metric lenG, weak contraction

hierarchy Gα = (G∧α, G∨α), changing (original) arc (a, b) ∈ A, new length l
such that l > lenα(a, b)

Data: Priority queue Q
Output: Updated metric lenα

1 lenG(a, b)← l
2 lenα(a, b)← l
3 sup(a, b)← null
4 Q.insert((a, b))
5 while Q is not empty do
6 (x, y)← Q.extractMin
7 for each v ∈ V with (x, v) ∈ G∨α and (v, y) ∈ G∧α do
8 execute-macro-code (v)
9 v ← arg minx∈{a,b} α(x)

10 for each u ∈ V with (u, v) ∈ A∨α do
11 for each w ∈ V with (v, w) ∈ A∧α do
12 if sup(u,w) = v then
13 lenα(u,w)← lenG(u,w)
14 sup(u,w)← null
15 Q.insert((u,w))

16 return lenα

21



4. Customization

Algorithm 4.4: Efficient Lengthen Arc
Input: Graph G = (V,A, lenα), order α, base metric lenG, weak contraction

hierarchy Gα = (G∧α, G∨α), changing (original) arc (a, b) ∈ A, new length l
such that l > lenα(a, b)

Data: Priority queues QtoCustomize and QtoInvalidate

Output: Updated metric lenα
1 lenG(a, b)← l
2 lenα(a, b)← l
3 sup(a, b)← null
4 QtoInvalidate.insert(arg minx∈{a,b} α(x))
5 for each (a, v) ∈ A∨α do
6 QtoCustomize.insert(v)

7 while QtoInvalidate is not empty do
8 v ← QtoInvalidate.extractMin
9 for each (u,w) ∈ A∧α ∪A∨α with sup(u,w) = v do

10 lenα(u,w)← lenG(u,w)
11 sup(u,w)← null
12 QtoInvalidate.insert(arg minx∈{u,w} α(x))
13 for each (u, x) ∈ A∨α do
14 QtoCustomize.insert(x)

15 while QtoCustomize is not empty do
16 v ← QtoCustomize.extractMin
17 customize (v)
18 return lenα
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5. Query

In this chapter, we discuss query algorithms. The algorithms are based on Dijkstra’s
algorithm but use additional data gathered from contraction and customization to accelerate
the search. First, we are going to take a look at the basic original Contraction Hierarchy
query algorithm as introduced by Geisberger et al. in [GSSD08]. We are not going to
consider any acceleration techniques. In particular, stall-on-demand is not covered (and
not implemented) in this work. Second, we are going to introduce a different algorithm
special for weak contraction hierarchies which can not be applied to traditional contraction
hierarchies. The idea behind this algorithm was originally developed by Tobias Columbus
but never published. This chapter delivers the theoretical ideas behind the algorithms and
a few theoretical results on their performance. An extensive experimental evaluation is
given in in Chapter 6.

5.1 Basic Traditional Contraction Hierarchy Query
In Chapter 3, the motivation for constructing Contraction Hierarchies is to be able to
remove unimportant nodes from the search space while preserving distances. We can use
this for an efficient query algorithm by removing all nodes with lower ranks than s or t
from the search space. Since they were contracted during preprocessing, shortest paths
containing them were replaced with shortcuts. To limit the query to nodes higher than s
or t, we can use the bidirectional variant of Dijkstra’s algorithm on the graphs of the
contraction hierarchy. Algorithm 5.2 shows the procedure (as it was proposed in [GSSV12])
in pseudocode.

The algorithm differs in two points from the bidirectional variant of Dijkstras’s algorithm.
The first is that the two searches do not run on the whole graph but only on parts of it.
The forward search contains only arcs to higher ranked nodes, the backward search space
only arcs from higher ranked nodes. If we reverse the backward search space, all arcs point
upwards, too. The paths the algorithm finds,1 can be split into two parts of which the first
consists only of upwards and the second only of downwards arcs. The second difference is
the stopping criterion. Instead of comparing the length of the shortest found path to the
sum of the minimum keys, the length is compared to the minimum key of both queues. To
prove its correctness, we would have to prove two things: First, there is a shortest path
in the search space which can be split up into an up and a down part, and second, the

1As before, we can obtain paths by storing a predecessor for each node.
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5. Query

Algorithm 5.1: Basic Contraction Hierarchy Query
Input: Contraction hierarchy Ḡα = (Ḡ∧α, Ḡ∨α), metric lenα, order α
Data: Priority queues Qs,Qt

Output: dist(s, t)
1 Run two Dijkstra instances, one from s on Ḡ∧α and one from t on Ḡ∨α (with reversed
arcs).
// Main loop

2 while Qs ∪ Qt 6= ∅ and minv∈V ds(v) + dt(v) > min{minu∈Qs
ds(u),minw∈Qt

dt(w)}
do

3 Perform a single step of one instance with a non empty queue
4 return minv∈V ds(v) + dt(v)

algorithm finds that (or one of those) path(s). For both, very extensive proofs can be found
in [Col12].

When trying to bound the algorithm’s running time, one notices that it depends mainly on
the number of nodes and arcs inside the search space. Sadly, it is difficult to prove any bound
on these numbers when using a traditional Contraction Hierarchy order. In [AFGW10],
certain guarantees on the performance for graphs with low highway dimensions were given.
Although it seems reasonable that road networks have a low highway dimension and
experimental results support this idea, it is very difficult to compute the actual highway
dimension of a concrete graph. On the other hand, node orders such as nested dissection
allow proofs on the search space size for graphs with bounded separator sizes. The discussion
of these results is part of the next section.

5.2 Weak Contraction Hierarchy Query

Applying the basic Contraction Hierarchy query to a weak contraction hierarchy, is always
a valid approach. Any weak contraction hierarchy contains at least all the arcs of the
algorithmic contraction hierarchy. The search space gets only additional arcs, the distances
stay valid. The problem is that these additional arcs may slow down the query significantly.
And in the weak contraction hierarchy we get from the witnessless contraction (the maximum
weak contraction hierarchy), there are quite a lot of these additional arcs. The weak query
algorithm aims to reduce the overhead of those arcs.

The algorithm uses the same search space as the traditional query but obtains it before the
actual distance computation using the elimination tree. Since we need to run a witnessless
contraction to obtain the elimination tree, the algorithm is not applicable to contraction
hierarchies based on traditional node orders (see Section 6.2.2). Theorem 3.8 guarantees
that the traditional search space of a node is included in the path from the node to the root
of the elimination tree. By ascending in the tree, starting from s and t, we can compute
the search space. Afterwards we can limit the graph to the nodes in the search space and
run the bidirectional variant of Dijkstra’s algorithm.

Tobias Columbus developed (but never published) an idea to reduce the overhead of the
additional shortcuts by utilizing the availability of the search space during the actual search.
It aims to temporarily deactivate shortcuts which are not necessary to preserve distances.
We recall from Chapter 3 that shortcuts are inserted to preserve distances from shortest
paths via nodes removed from the search space. That means, if a node is included in the
search space, we can deactivate all shortcuts caused by this node. During customization we
store this information. And contrary to the basic query algorithm, we obtain the complete

24



5.3. Performance

Algorithm 5.2: Weak Contraction Hierarchy Query
Input: Graph with shortcuts Gα = (V,Aα, lenα), order α, elimination

tree T = (V,AT )
Output: dist(s, t)

1 S ← {s, t}
2 for each v ∈ {s, t} do
3 while ∃parentT (v) do
4 S ← P ∪ {parentT (v)}
5 v ← parentT (v)

6 return BiDijkstra((V ∩ S,Aα, lenα))

search space before the actual query. With this information, we can deactivate unnecessary
arcs.

The bigger problem is to technically deactivate the arcs per query in a way that they can
be skipped during arc iteration in sublinear time. For this, we order each node’s arcs by
their supporting node and generate an additional array containing the count of arcs with
the same supporting node. Utilizing this additional information, we can jump one block of
arcs with common supporting node in constant time.

5.2.1 Partial Contraction and Customization

One approach to accelerate contraction and customization of Contraction Hierarchies is to
apply the process only to a part of the graph. In the case of a nested dissection order, one
could try to omit the top level separator due to its influence on performance. This approach
was already tried out on traditional Contraction Hierarchies. The query algorithm has to
switch to the original graph as soon as it reaches the uncontracted nodes. Research has
shown that this has significant negative impact on the performance of the query [BDS+08].
But for Weak Contraction Hierarchies, the approach might be worth reconsidering. Since
we are already performing a bidirectional Dijkstra’s algorithm on the graph, we only need
to include the uncontracted nodes in the search space of every query. And there are
nodes which are in the search space of almost every query, anyway. Take for example the
nodes of the top level separator. Thus contracting (and customizing) them, is probably
an unnecessary overhead. We evaluate in Chapter 6 whether this approach yields any
significant improvements.

5.3 Performance
As proved in Section 3.8 the height of the elimination tree and the search space size are
closely related to each other. In [Col12], these results are used to apply upper bounds
found in studies of the elimination game to search space size. The following theorem was
stated and proven in [Col12] in a slightly different variant. As it is stated here, it leads us
more directly to the conclusions we want to draw.

Theorem 5.1. Let G = (V,A) be a graph of a class of graphs which admits small balanced
node separators such that the separator size is in O(

√
n) and each of the node subsets

has less nodes than b ∗ n with 0.5 < b < 1. Furthermore, let α be a node order based
on a nested dissection utilizing such separators, Gα = (G∧α, G∨α) a contraction hierarchy
and T = T (∗G,α) an elimination tree. The maximum number of nodes inside a search
space maxv∈V |S(v, T )| (and for that, both parts of the contraction hierarchy, too) is
in O(

√
n).
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5. Query

Proof. First let us recall that in a separator based node order, nodes from the separator
always have a higher rank than nodes from both halves of that separator (3.1). That means
that in a graph with only upward arcs it is impossible to find a path from one side of a
separator to the other. Since no nodes of both sides are adjacent to each other, all potential
paths would lead trough the separator but the nodes from the separator have higher ranks
than the nodes in the halves.

Recall that the elimination tree, the upward part of the contraction hierarchy and the
reversed downward part contain only upward arcs. So a node’s search space is quite limited.
It may contain all nodes in the node’s final cell (we limited this number to an arbitrary
constant n0 in definition 3.9), their separator, the next higher separator and so on up to the
root separator. The root separator’s maximum size is O(

√
n). The next lower separator

has a maximum size of O(
√
b ∗ n), the following one O(

√
b2 ∗ n) and so on. With h as the

maximum depth of the nested dissection, the search size thus is limited by the term

n0 +
h∑
h=i

√
bi ∗ n = n0 +

√
n ∗

h∑
h=i

√
b
i

If we let h go to infinity, we can use the geometric sum formula

n0 +
√
n ∗

∞∑
h=i

√
b
i = n0 +

√
n

1−
√
b
∈ O(

√
n)

We can use this result to give performance bounds for the query algorithms when run with
a nested dissection order. Due to the inserted shortcuts, we must assume that the graph is
quite dense. So the running time of Dijkstra’s algorithm is in O(nS lognS +mS) (with nS
denoting the number of nodes and mS the number of arcs inside the search space). We
consider O(

√
n) nodes at most. In the basic query algorithm, all arcs we encounter during

a query lead to nodes which are in the search space, too. Thus mS is in O(√nS2) = O(nS).
So the overall running time of the basic query algorithm is in O(

√
n logn+ n) = O(n).

In contrast to that, the weak query will encounter (but not relax) arcs to nodes outside the
search space. Each node may have at most n arcs, so mS is limited to O(n

√
n) in this case.

The total running time is then within O(
√
n logn+ n

√
n) = O(n

√
n) which is in theory

actually slower than Dijkstra’s algorithm on sparse graphs. Nevertheless, the experiments
in Chapter 6 show that it still yields significant improvements over Dijkstra’s algorithm.
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6. Results

In this chapter, we are going to present an extensive experimental evaluation of the
algorithms and methods discussed in the chapters before. The code is written in C++11
and was compiled with GCC 4.7.1 with flag -O3. We use the traditional Contraction
Hierarchy preprocessing implementation and priority queues - we use 4-heaps - from a graph
framework of the department this thesis was written at. All time critical experiments were
run on a dual 8-core Intel Xeon E5-2670 clocked at 2.6 GHz, with 64 GiB of DDR3-1600
RAM, 20 MiB of L3 and 256 KiB of L2 cache. Some of the experiments which gather
only statistics were run on the author’s private computer. We ran all experiments single
threaded. We split our experiments into several programs, but the running time never
includes any IO - the times were taken as if the data structures were passed through the
main memory. For queries, we ran 10 000 point-to-point queries (except for the plain
algorithm of Dijkstra, there we ran only 1 000 due to time limitations) with start and end
node each picked uniformly at random.

The graphs used throughout these experiments were made available for the 9th DIMACS
Implementation Challenge [DGJ09, dim09]. We used three graphs from the USA; New
York (NY), Florida (FLA) and the Western USA (W). Our main testing instance is the
DIMACS Europe graph (EU) which was not available online anymore at the time of this
writing. It was originally made available by PTV AG. For each of the graphs, we use
both travel times and distance metrics. Since there was no distance metric available for
the Europe graph at the department, we calculated one based on the node’s coordinates.
Table 6.1 summarizes their properties. The USA graphs are undirected in the sense that
for each forward arc (u, v) there also exists an arc (v, u) with the same length.

As mentioned before, the Weak Contraction Hierarchy and the traditional Contraction
Hierarchy approach have quite a lot of similarities. In fact, it is possible to mix the
approaches. For example, one can run the basic query algorithm on any weak contraction
hierarchy. In this “methodspace”, we basically have three parameters: the order, the
contraction algorithm and the query algorithm. We explored the different combinations as
far as possible but it turns out that some of them do not work well together.

The experiments are structured as the work before. We start with a short section on nested
dissection orders. Afterwords we explore contraction, customization and queries in turn.
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6. Results

Table 6.1: Test graphs
separators

instance directed nodes arcs top level maximum
New York (NY) no 264 346 730 100 5 47
Florida (FLA) no 1 070 376 2 687 902 46 46
Western USA (W) no 6 262 104 15 119 284 87 87
Europe (EU) yes 18 010 173 42 188 664 428 428
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Figure 6.1: Separator size found by METIS against nodes in the graph. The input contains
the separators from all our test graphs and also recursively includes their
subgraph’s separators. Separators smaller than fifteen nodes were omitted. The
line is the function n4/11.

6.1 Nested Dissection Order

We use the general purpose partitioner METIS [met13] in version 5.1.0 to obtain the nested
dissection orders. METIS has the program ndmetis exactly for that purpose. Although
there are partitioners available (for example PUNCH [DGRW11] or KaHip [SS13]) which
are known to deliver smaller separators on road networks by using natural cuts, we decided
to limit our research to the orders generated by METIS. Incorporating these other tools
was unfortunately not possible due to the time limits for this thesis. The investigation of
the impact of other orders with smaller separators is probably a topic worth more research
and a promising approach to further optimizing Weak Contraction Hierarchies. However,
METIS delivers reasonable small separators. Figure 6.1 shows the development of the
separator sizes. They grow slower than

√
n (the plotted function is n4/11). The very small

top level separator of the New York graph most likely cuts Manhattan out of the rest of
New York. Note that the largest separators of New York and Florida are of about the same
size. In the following experiments, we can often see that the performance of the algorithms
on these two graphs is very similar.

METIS finds these orders quite quickly. The longest run on the Europe graph takes less
than three minutes. Since the metric independent preprocessing time is no key priority to
us, optimizing the quality of the order for the cost of more preprocessing time might be
an option. METIS has some parameters which would allow us to do so, but as mentioned
before, this is beyond the scope of this thesis.

28



6.2. Contraction

Table 6.2: Contraction by nested dissection order. The weak contraction hierarchy is com-
puted on a directed graph representation, the elimination tree on an undirected
one. The undirected representation is more space efficient as each edge needs
only to be stored once (versus twice for the directed representation). That causes
some speedup even on the actual undirected USA graphs. One could theoretically
join both algorithms for undirected graphs, but real world road networks are
most unlikely undirected. We include the original number of (undirected) edges
for comparison.

weak ch elimination tree
time shortcut time shortcut original
[s] arcs [s] edges edges

NY 1.26 1 940 762 0.90 970 381 365 050
FLA 3.03 4 388 056 2.23 2 194 028 1 343 951
W 21.48 26 268 682 15.36 13 134 341 7 559 642
EU 176.69 88 621 755 157.87 47 680 211 21 094 332

6.2 Contraction

In this section, we cover the result of the contraction process both in the metric dependent
and the metric independent variant.

6.2.1 Metric Independent Contraction

During the contraction, we have to obtain three things: the weak contraction hierarchy, the
elimination tree and the macroinstructions for the customization. Constructing the weak
contraction hierarchy and the elimination tree works very similar manner. In both cases,
we have to contract the graph, except for that we have to use the undirected graph for the
elimination tree. For contraction, we need a dynamic graph data structure which allows us
to create and delete arcs (or edges). Furthermore, we need both, efficient iteration over
the arcs of a node and efficient random access to the arcs. For that reason, and as the
graph is unweighted in this stage, we use a different graph data structure than for query
and customization. Instead of one large adjacency array for all nodes as used later for
query and customization, each node has a set storing the adjacent nodes (two sets in the
directed case, one for incoming arcs, one for outgoing). We used arrays for these sets in
the beginning, but as more nodes get contracted and the graph grows denser, the arrays
soon grow impractical. To overcome this problem, we use hash sets.1 Table 6.2 shows
our results. The contraction on an undirected graph is somewhat faster as we only need
to store each edge once. So we could omit the directed contraction if the input graph is
undirected but as it is very unlikely to encounter a undirected graph in real world data,
we run it anyway. This is also the reason why the USA graphs have exactly half as many
shortcut edges as they have shortcut arcs in the directed contraction. For a directed graph,
there are slightly more shortcut edges (one edge - two arcs) than there are shortcut arcs as
is shown in the Europe graph.

In Section 3.5, we observe that separators form a clique during contraction and that the final
clique may have significant influence on the performance of contraction. This behaviour
can also be observed on our test graphs. The following example is from contraction of the
Europe graph. Figure 6.2 shows that the last few nodes have an extremely high degree. In

1 We also tried switching over to a matrix based representation when the graph is sufficiently dense, but
hash sets solved the problem much better.
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6. Results

Figure 6.2: The development of the current node’s number of outgoing arcs considering
only arcs to nodes not yet contracted. As the current node is the lowest
uncontracted, these arcs will always go to higher ranked nodes and thus be part
of the resulting contraction hierarchy. The instance is the Europe graph. IDs
increase from left to right. The sheer amount of nodes (18M) (and the printing
resolution limits), often lets appear multiple nodes as on one line, but in fact,
each node has a different point.

Figure 6.3: The same experiment as in Figure 6.2 but plotted against time (taken after
each node was contracted) instead of node IDs. Demonstrates the influence on
performance of the last few nodes. The last bow shows the final clique including
the top level separator.

a traditional Contraction Hierarchy, the degrees stay about the same during contraction
except for the last very few nodes. But the density increase is never as strong as for Weak
Contraction Hierarchies. If we take Figure 6.3 into consideration, we can observe that
the contraction of these last about 1 000 to 2 000 nodes takes about one fifth of the whole
contraction time.

After the actual contraction, we still need to obtain the macroinstructions. For that,
we need to build up the graph data structure so we can find out the arc indices for the
instructions. The graph data structure consists of two static adjacency arrays, one for
outgoing and one for incoming arcs. After contraction, we know all arcs which will exist
in the graph. So the graph has no need for any dynamic operations beyond arc length
adjustments. The costly part of the generation of the instructions is to find out the actual
indices for each arc. We have to iterate through all the arcs of one node, and especially for
high ranked nodes the graph is quite dense (the final clique on Europe has more than 500
nodes. Recall Section 3.5 – the final clique may be composed of up to three of the topmost
separators).

We also have to consider that the graph is different, depending on which query we plan
to use later. If we want to use the weak query, each node has to know all incident arcs
including those to lower ranked nodes. If we are using a basic query, we only need arcs
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6.2. Contraction

Table 6.3: Metric independent preprocessing results. Split by the targeted query algorithm.
Shows the time and space necessary for the macrocode. The total columns
show time for the whole preprocessing including computation of the order and
buildup of necessary data structures. Both queries require the weak contraction
hierarchy, but only the weak query needs the elimination tree.

weak query basic query
macro generation total macro generation total

time space prepro. time space prepro.
[s] [MB] [s] [s] [MB] [s]

NY 7.3 163 9.63 2.38 88 3.75
FLA 7.44 237 13.21 4.54 136 7.9
W 69.17 2 042 109.30 37.01 1 124 60.43
EU 3 221.66 20 139 3 717.16 430.48 10 388 613.14

to higher ranked nodes. This reduces the number of arcs we need to store by 2 and thus
also the amount of generated macrocode. One could reduce the amount of necessary
macrocode for the weak query, too, by executing the customization only on forward arcs
and copying over the weights to the backward arcs after the customization is finished. This
could be an improvement for future implementations. Another improvement could be to
compress the macrocode. Especially for Europe, a huge amount of macrocode is generated.
Simply zipping the macrocode reduces its size (for both querys) to about 60%. Table 6.3
shows an overview over the different results. It also sums up the total metric independent
preprocessing times (including times not mentioned explicitly before e.g. the graph data
structure building time and the time for the generation of the node order). The macro
generation for the weak queries takes on Europe by far more than twice the time than the
generation for the basic query. Most likely, the reason is that for the weak query for each
step both forward and backward arc indices must be obtained. Thus the execution is very
cache inefficient.

6.2.2 Metric Dependent Contraction

For the metric dependent contraction we use the Contraction Hierarchy implementation of
the department this thesis was written at. This implementation performs a witness search
and obtains its node order on the fly. For that it requires a given metric. Still, it would be
interesting to combine this metric dependent contraction with the nested dissection order.
Sadly, the on-the-fly computed order is a core feature of this implementation. We had
no opportunity to replace it with a nested dissection order and examine how they would
perform together. Investigating this would be an interesting topic for future research on
Weak Contraction Hierarchies.

But the other way around is interesting, too. We can obtain the node order of a traditional
contraction by contracting the graph and extracting the order afterwards and trying to use
it for the weak contraction. But this attempt fails miserably. Even on our smallest test
graph (NY), the witnessless algorithm is not quite done after one full hour. The traditional
order works quite fine for the first 90% of the nodes, but afterwards the graph gets very
dense and the contraction slows down extremely. As this is quite unsatisfactory, we tried
again on an even smaller graph - a road network of Luxembourg with 30 087 nodes and
69 433 arcs. Even on this graph, the witnessless contraction with traditional order takes two
orders of magnitude longer (about 2.5s compared to 0.05s) than the witnessless contraction
with the nested dissection order. With the nested dissection order, 112 694 shortcuts are
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6. Results

Table 6.4: Traditional contraction results. A metric is required and the node order is
computed on the fly. The implementation was taken from a graph framework of
the department this thesis was written at.

travel times distances
time shortcut time shortcut
[s] arcs [s] arcs

NY 6.03 1 035 593 7.65 1 092 825
FLA 9.78 2 559 495 12.33 2 732 097
W 79.99 15 248 138 122.27 16 005 214
EU 457.53 40 743 209 7 355.26 52 102 939

inserted, with the traditional order 437 508. So using traditional orders for witnessless
contraction on larger graphs, will lead to some serious performance problems.
We still can combine a traditional order with a traditional contraction (the metric dependent
contraction process with witness search) for comparison with our methods. Table 6.4 shows
the results. Admittedly, the framework’s implementation is based on a general purpose
graph and may be not as purposefully optimized as our own. Additionally, the traditional
contraction process does not only contract the graph, but computes the order, too. As
discussed in [GSSV12], obtaining the order is actually the more complicated part. We
definitely observe that the traditional Contraction Hierarchy slows down significantly when
applied to distance metrics.

6.3 Customization
In this section, we are going to examine the performance of the customization algorithms.
Table 6.5 contains all the data. The results are split up into a part for the weak query and
a part for the basic query. Besides from operating on the full graph instead of only the
upward arcs, the customization for the weak query algorithm must also generate additional
information and reorder the arcs of the graph. The arcs must be ordered by their supporting
node and the meta information which counts the arcs with the same supporting node must
be gathered. This information is necessary for the efficient arc deactivation (see Chapter 5).
The time for these additional computations is noted in the apply columns.
Furthermore, we measured times for each algorithm for both the full customization and
incremental updates. For the incremental updates we (successively) picked 1 000 arcs a
at random and assigned a new random weight out of the range 1 to 2len(a). The most
important thing we can observe on this data is that the process is mostly metric independent
(contrary to the traditional Contraction Hierarchy). With maximal up to 3 seconds for
incremental updates, it is definitely fast enough to incorporate real time traffic updates.
Surprisingly, for all graphs except Europe, the customization time for the weak query is
faster than the one for the basic query, although the customization for the basic query only
has to execute about half the macrocode. The reason is that in the basic query case we
additionally must decide whether the potential shortcut arc is in the forward arc array or
in the backward arc array.

6.4 Query
6.4.1 Search Space Properties
In Section 5.3, we discussed the bounds for the search space size found in [Col12]. However,
the impact of these bounds for the asymptotic running time is limited as we have to take
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6.4. Query

Table 6.5: Customization results. Split up by the targeted query algorithm.
weak query basic query

full customization incremental update
custom. apply custom. apply full incremental

metric [s] [s] [ms] [ms] custom. [s] update [ms]
NY time 0.12 0.18 6.102 0.775 0.16 5.153

distance 0.12 0.18 5.194 0.755 0.16 5.228
FLA time 0.21 0.47 4.210 0.405 0.26 4.798

distance 0.21 0.48 3.949 0.456 0.26 5.066
W time 1.59 2.79 70.134 5.517 1.95 58.876

distance 1.57 2.81 68.762 5.210 1.94 57.828
EU time 19.64 35.46 2 434.890 283.402 16.23 1 681.712

distance 19.27 26.61 2 210.980 264.578 16.43 1 485.355

the density of the graph after contraction into account. In our first query experiment,
we investigated the relationship between the search space size and the number of arcs
inside the search space. Figure 6.4 shows the development of the number of arcs with both
endpoints inside the search space. These are the arcs the basic query might potentially
encounter. But most likely, the basic query will encounter even less arcs. The chart gives
the numbers for the joined search space but it is unlikely that the search space of s and t
each consists of that complete search space. In most cases there will be some parts of the
search space which belong either to the search space of s or t but not in both. In those
parts, the query will encounter only either upward or downward arcs.

Furthermore, we observe that the search space seems to be quite dense. About 2 million
arcs for 2 000 nodes is as half as many as a clique would have. Nevertheless, the growth
does not seem to be quadratical. The reason for this is probably that the higher ranked
and therefore denser parts of the graphs are included in most search spaces, the top level
separator in almost every one. So the search space can only grow to lower ranked nodes
with smaller degrees. Figure 6.5, which additionally includes the arcs which leave the
search space, shows almost a linear correlation between the number of arcs and nodes. The
weak query algorithm might encounter all these arcs.

It is interesting to note that there are about as many arcs to nodes outside the search
space as there are to nodes within. Actually, the weak query algorithm has the intention to
reduce the number of arcs which are considered during the search. For that it deactivates
unnecessary shortcuts. Figure 6.6 shows the number of arcs we can omit from the search (in
red) since their supporting node is part of the search space. Unfortunately, those are even
less than the additional arcs going out of the search space. Especially for small search
spaces, the number of unnecessary arcs is very small. The reason for that may be again
that a small search space consists mostly of very high ranked nodes. The shortcuts between
those are most likely caused by nodes with lower ranks. This already gives us a strong hint
that the weak query might not perform as well as the basic query. Nevertheless, we are
going to examine some details of the algorithm in the next section.

If we draw the conclusion from these charts that the number of arcs encountered by the
query algorithm grows linear with the number of nodes in the search space, we can conclude
much better asymptotic running times for both query algorithms. If we assumemS ∈ O(nS),
and apply these values to the running time of Dijkstra’s algorithm, both algorithms have
an asymptotic running time in O(

√
n logn).

33



6. Results

500 1,000 1,500 2,000 2,500 3,000

0

1

2

3

4

5
·106

Nodes in search space

A
rc

s
in

si
d
e

se
a
rc

h
sp

a
ce

Figure 6.4: Number of arcs with both
endpoints in the search space
by nodes inside the search
space for 10 000 random
query search spaces on Eu-
rope

500 1,000 1,500 2,000 2,500 3,000

1

2

3

4

5
·106

Nodes in search space

A
rc

s
st

a
rt

in
g

in
si

d
e

se
a
rc

h
sp

a
ce

Figure 6.5: Number of arcs with at least
one endpoint in the search
space by nodes inside the
search space for 10 000 ran-
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Table 6.6: Weak query details with different distance data structures (hashmap, distance
array, distance array with timestamp) and with or without arc deactivation.

arc hash array timestamp settled relaxed
deactivation metric time [ms] time [ms] time [ms] nodes arcs
no time 16.751 4.732 4.467 1 074.6 603 712.7

distance 18.902 4.915 4.567 1 164.8 695 710.1
yes time 9.787 4.910 4.410 1 074.6 212 335.3

distance 11.593 5.433 5.158 1 164.8 268 334.6

6.4.2 Weak Contraction Hierarchy Query Details

During the development of the weak query algorithm we evaluated several internal details.
Table 6.6 shows the results. One particularly interesting option is the choice of the data
structure to store the distances. For implementations of Dijkstra’s algorithm, typically an
array containing the distances is maintained. To avoid reinitializing the whole array for
each query, one stores an additional timestamp for each distance. When setting a distance,
the timestamp is set to the current time. When accessing the distance and the timestamp
is not equal to the current time, an infinity value is returned. To clear the array, the
timestamp is incremented. The column timestamp contains the results for this approach.
Since the Contraction Hierarchy query visits only very few nodes, it might be more efficient
to avoid the timestamp comparisons and reset the visited nodes distances after each query
by hand (column array). Finally, one can store the distances in a hash data structure and
clear that hash after each query (column hash). The other important decision is whether
to deactivate unnecessary arcs or not. Doing so, adds some overhead to the iteration of
a node’s arcs since one has to take the additional array with the block information into
account.

It turns out that the arc deactivation significantly reduces the number of relaxed arcs.
But the same nodes are settled (which confirms that the shortcuts are truly unnecessary).
Anyway, the impact to performance is limited except in the case of distances in a hashmap.
The cause for this is that the distance lookups on the hashmap are very expensive compared
to just looking up an value inside an array. The less arcs are relaxed, the less distance
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Figure 6.6: Total amount of arcs vs. arcs which can be deactivated (red) by the number of
nodes in the query search space on Europe

lookups are necessary. But due to the expensiveness of the lookups, the hashmap is no
competitor for the other two. The arc deactivation actually has a small negative impact
on most of the other cases. A closer analysis of the arc deactivation data reveals that in
the average case there are only 2.3 arcs in a block with the same supporting vertex. That
makes the approach somewhat ineffective. In a future implementation, one could try to
gather the arc deactivation information only for sufficiently large blocks. The timestamp
variant is only slightly superior to the plain array. In all cases, the algorithms perform
somewhat slightly worse on the distance metric. For the following experiments, we always
use the timestamp variant with arc deactivation enabled.

In Section 5.2.1, we discuss the possibility to contract and customize only parts of the
graph. This option was explored before for traditional Contraction Hierarchies in [BDS+08].
Contracting only 95% of the graph shortened the preprocessing by about factor 2 but slowed
down the queries by about two orders of magnitude. We explore partial preprocessing on a
somewhat smaller scale. Table 6.7 shows the results. We start by omitting only the top
level separator and continue by stepwise doubling the size of the uncontracted core. It turns
out that the impact of such small uncontracted areas is very limited for both preprocessing
and queries. Still, for queries it is larger than what we hoped for. Preprocessing has too
many parts (like generating the macroinstructions and generating the arc deactivation
information) which are not influenced as strongly as contraction by the final dense parts of
the graph. Nevertheless, we can accelerate preprocessing down to two thirds of the original
time by omitting only about 7 000 nodes without slowing down queries by more than 2ms.
The customization time for 428 uncontracted nodes seems to be a heavy outlier. A closer
look reveals that the actual customization took as long as expected but the generation of
the arc deactivation information took about 20s less than expected. A reason may be that
by chance the graph’s arcs were in a very good constellation for the generation of the arc
deactivation information. If we repeat the experiment, e.g. with 429 uncontracted notes,
the applying time is still too fast but only about 10s. We note that the query slowdown is
very small between the three largest uncontracted cores. Weak Contraction Hierarchies
seem to be more robust to uncontracted areas in the graph than traditional Contraction
Hierarchies. We conclude that it would be probably worth the effort to investigate the
behaviour of the Weak Contraction Hierarchy query with even larger uncontracted cores.
Still all times (contraction, customization and query) are respectively slower than the ones
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Table 6.7: Partial contraction for different numbers of uncontracted nodes on the Europe
graph with time metrics. Contraction times including times for computing the
weak contraction hierarchy, the elimination tree and the macrocode. We use
the weak query so customization times include the actual metric introduction
and the generation of the information for arc deactivation. The query uses
timestamps and arc deactivation.

contraction customization weak query
uncontracted time macros time time settled relaxed
nodes [s] [MB] [s] [ms] nodes arcs
0 3 565.17 20 139 55.10 4.410 1 074.6 212 335.3
428 3 214.26 19 943 25.81 4.667 1 072.8 233 862.8
856 2 840.56 18 786 50.04 5.097 1 109.4 309 078.1
1 712 1 911.11 16 146 44.21 5.932 1 310.0 419 165.0
3 424 1 915.02 16 145 43.00 5.947 1 342.4 413 661.1
6 848 1 932.48 16 145 39.67 6.109 1 380.2 414 443.3

achieved, when using the basic query algorithm. As the graph for the traditional query
stores only upward arcs, macrocode generation time and customization time are much
faster than what we can achieve with partial contraction.

6.4.3 Comparison to Traditional Contraction Hierarchies

In this section, we summarize the results on the performance of the query algorithms and
how they relate to traditional Contraction Hierarchies. As we mentioned in the beginning of
this chapter, we can combine several parts of weak and traditional Contraction Hierarchies.
We had to omit several combinations because either they did not work out together or
we had no possibility to implement them. The combinations we can actually run are a
traditional order with a metric dependent contraction and the basic query and a nested
dissection order with a witnessless contraction and both queries. All the numbers can be
found in Table 6.8. One may note that the query times for the traditional Contraction
Hierarchy are quite a bit slower than the ones presented by Geisberger et al. in [GSSV12].
The implementation of Geisberger et al. has several optimizations, not implemented in the
basic query algorithm. The most important one of them is stall-on-demand. Furthermore,
the node order used for the best results by Geisberger et al. was obtained using extreme
parameter tuning which we did not do at all.

The first thing to note on our own algorithms is that the traditional query outperforms
the weak query by more than factor 2 on the larges graph and even larger factors on the
smaller graphs. Thus, it is the better choice for the graphs we considered in terms of both
query and customization time. This confirms our presumptions made from the observation
of the amount of arcs in the search space (see Section 6.4.1). Still, it would be interesting
to explore whether the weak query algorithm might become faster on even larger graphs.
As observed before, the traditional Contraction Hierarchies perform poorly on distance
metrics. The Weak Contraction Hierarchies perform slightly worse on the distance metric,
too. But the drawbacks are by far not as strong as for the traditional approach. It is really
surprising to see that the basic query on the weak contraction hierarchy was actually faster
than the basic query on the traditional contraction hierarchy even on the time metric,
too. A closer look reveals that the basic query on the traditional order settles more nodes
than the basic query on the nested dissection order but relaxes less arcs. This behaviour,
especially with optimizations like stall-on-demand, should be examined closer in future
research.
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Table 6.8: Comparison of different query algorithms on different graphs and metrics. Weak
Contraction Hierarchy uses a nested dissection order and witnessless contraction,
the traditional Contraction Hierarchy a traditional order and a metric dependent
contraction. Dijkstra’s algorithm is run on the original graph.

Weak CH
weak query basic query trad. CH Dijkstra

metric time [ms] time [ms] time [ms] time [ms]
NY time 0.238 0.055 0.130 13.570

distance 0.274 0.054 0.148 11.355
FLA time 0.238 0.050 0.101 75.017

distance 0.257 0.051 0.151 58.310
W time 0.943 0.180 0.467 517.808

distance 1.065 0.195 0.809 401.412
EU time 4.410 1.922 2.638 1 783.155

distance 5.158 2.050 15.820 1 275.642

In the real world, most queries are local. To investigate the performance of our algorithms
for queries of different ranges, we compute Dijkstra ranks. Figure 6.7 and Figure 6.8 show
the results. To construct the ranks, we run Dijkstra’s algorithm on 10 000 randomly picked
source nodes and store the first, the second, the fourth and so on (all powers of two) node
the algorithm settles. We then run queries on these pairs of nodes and sort the results by
the rank of the target node.

The plots reveal some interesting facts. All queries with ranks lower 219 have average query
times of less then 1ms. Most of the time, the algorithms perform very well on local queries.
But on the other hand, both algorithms have heavy outliers with very slow queries for
almost every rank. As both charts use the same scale, the weak chart shows these outliers
better, but they are present in the basic query chart, too. Because of the nested dissection
order, nodes close to each other might lie on different sides of an high ranked separator. In
that case, the search space is very large despite the locality of the query.

37



6. Results

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1
10

1
10

0.
01

0.
1

0.
1

0.
01

time travel distance

Rank

R
u
n
n
in

g
T

im
e

[m
s]

Figure 6.7: Dijkstra ranks for the weak query algorithm (with timestamps and arc deacti-
vation) on a nested dissection order on Europe with travel time metric
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Figure 6.8: Dijkstra ranks for the basic query algorithm on a nested dissection order on
Europe with travel time metric
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7. Summary

Our Contribution

In this work, we apply the separation of metric independent and metric dependent pre-
processing proposed in [DGPW13] to Contraction Hierarchies. For this purpose, we use
the theoretical results of [Col12] in which a connection between Contraction Hierarchies
and the well studied elimination game was observed. In Section 3.3 we recapitulate these
theoretic foundations. Regarding that link, we apply nested dissection orders to Contraction
Hierarchies. We analyze the behaviour of contraction based on nested dissection orders on
grid graphs in Section 3.5. In Chapter 3, 4 and 5, we discuss the Contraction Hierarchy
algorithms and their adaptions to Weak Contraction Hierarchies. Additionally, we picked
up a previously unpublished idea by Tobias Columbus to prune the arcs in the search
space. We documented and refined the approach in Section 5.2. All these algorithms were
implemented and evaluated in Chapter 6.

The algorithms which emerged from the studies can incorporate arbitrary metrics on
continental sized road networks in less than one minute. Applying changes to these metrics
is a matter of seconds. The query algorithms run in very few milliseconds and are thus
applicable for real time scenarios. Despite their power, conceptually they are still very
simple algorithms.

Future Work

Still, there is space for improvements. Recent research brought up specialized partitioners
for road networks which could be used for the nested dissection orders. One could engineer
the algorithms further. A lot of the optimizations for traditional Contraction Hierarchies
could be carried over to Weak Contraction Hierarchies. And additionally, as nested
dissection splits the graph into several unconnected subgraphs, especially parallelism could
deliver great improvements.

Another interesting future research might be the application of local modifications of the
node order as proposed in [Col12]. We observe that the search space of Weak Contraction
Hierarchies is significantly less dense than feared. That suggests that it might be possible
to prove tighter worst case bounds for the query running time. And as nested dissection
orders worked quite well in this thesis, it might also be interesting to combine them with
other approaches such as Hublabeling.
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Conclusion

Weak Contraction Hierarchies work – that is the title of this thesis and its most important
result. Utilizing a nested dissection order, we can contract continental sized road networks
without witness search and achieve reasonable results which even outperform existing
node orders on less well-behaved metrics such as distance metrics. All in all, this work
incorporates recent theoretical results on Contraction Hierarchies to deliver a set of simple
algorithms to make Contraction Hierarchies customizable and thus better applicable to
real world scenarios.
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