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1 Introduction

Clustering data sets into groups that are in some sense homogeneous and well separated
from each other is a problem that arises in many domains, e.g. the analysis of networks.
These data sets can often be represented as weighted graphs, where the vertices correspond
to the entities in the data sets and the edge weight between two vertices stands for the
similarity of the connected entities. In the context of graphs a clustering is a partition
of the vertices into disjoint vertex-induced subgraphs called clusters. The homogeneity of
the entities within one cluster can be measured by the density of edges between vertices
in this cluster. The more edges and the heavier they are the denser is the cluster. On the
opposite only little and light weight edges between the clusters are desired. Thus, graph
clustering conforms to the paradigm of intra-cluster density and inter-cluster sparsity.

In the last decades a lot of time and effort has been spent on building algorithms that
cluster graphs. Most of these algorithms rely on heuristics and they cannot offer any
guarantee on the shape, size and number of clusters they compute. However, Flake et
al. [1] presented a graph clustering algorithm which offers good quality bounds. Their
Cut Clustering Algorithm bases on minimum-cut trees developed by Gomory and
Hu [3]. Beside the graph the input to their algorithm consists of a parameter α whose choice
influences a lower bound for the weight of intra-cluster cuts and an upper bound for the
weight of inter-cluster cuts. The value of α is as well important for the number of clusters.
For a large α the Cut Clustering Algorithm returns small but many clusters and for a
small value it computes few but big clusters. Flake et al. build a hierarchy of clusterings by
basically running the Cut Clustering Algorithm iteratively for decreasing values of α
yielding one level of the hierarchy per run. They show that in this hierarchy the clusters on
lower levels are subsets of clusters on higher levels (see Figure 1a). This method is called
the Hierarchical Cut Clustering Algorithm. However, it is not clear how to choose
α in order to gain a clustering that fits to your application and your demands. Therefore,
one motivation to build a whole hierarchy of clusterings is that afterwards you can pick
one clustering out of a large number of different clusterings. Thus you can easily choose
one that satisfies your demands. Furthermore it might be interesting to have clusterings
of different granularity. Flake et al. clustered a citation network of scientific literature. In
this example on a high level there was a cluster that mainly contained papers in the field
of “Algorithms and Graphics”; on a lower level this cluster was separated into “Constraint
Satisfaction”, “Machine Learning” and clusters of similar granularity.

Hartmann et al. [4, 5] recently published a dynamic version of the Cut Clustering
Algorithm. It can be used to compute a new clustering of a graph after an edge has
been modified. Instead of recomputing the complete clustering they base on a clustering of
the previous graph but for the same parameter value. Then they only recompute the parts
that might change. Thus, their algorithm only covers the update for one single value of α,
i.e. a single level in the hierarchy of clusterings. Although they showed that their update
algorithms guarantee a certain smoothness, i.e. a similarity between the new clustering
and the old one, over a large number of edge modifications the clustering might get trivial.
In this case one would like to change the parameter used for the clustering algorithm. But
it is not clear how to choose the parameter that produces a clustering that fits best to the
demands of the user.

Inspired by the work of Hartmann et al. in this work we focus on a dynamic version of the
Hierarchical Cut Clustering Algorithm. After an edge or vertex in the underlying
graph has changed our algorithms can compute an updated hierarchy of the graph. We
show that this updated hierarchy is what the Hierarchical Cut Clustering Algo-
rithm would compute for the modified graph. Having a whole hierarchy of clusterings in
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each update step at hand makes it simple to handle the degeneration of a single cluster-
ing after a large number of modifications. After each edge modification you can pick the
clustering out of the hierarchy that fits best to your application and your demands (see
Figure 1).

α3

α1

α4

α2

(a) A hierarchy built using the
Hierarchical Cut Cluster-
ing Algorithm

⇒
α3

α1

α4

α2

(b) After an edge modification
the hierarchy is updated. An-
other level of the hierarchy now
satisfies the demands.

⇒
α3

α1

α4

α2

(c) Again the hierarchy is up-
dated. This time the previous
level still satisfies the demands.

Figure 1: One can pick one of the clusterings in the hierarchy in each step.

In this work we firstly develop a basic algorithm that updates the hierarchy after an edge
in the underlying graph has been deleted or inserted. We call this algorithm the Basic
Update Algorithm. Afterwards we refine this algorithm using advanced techniques
yielding two advanced update algorithms of which one deals with edge deletions and one
with edge insertions. All these algorithms build upon maintaining parts of the hierarchy
that stay valid. Therefore, one needs to check whether some minimum cuts in the old graph
stay minimum cuts in the modified graph. Furthermore, some parts of the hierarchy that
do not stay valid can only change in a specific way, e.g. some clusters may not be split
up. This can be exploited as well. We also discuss vertex modifications in the underlying
graph and how to change the granularity of the hierarchy.

This paper is organized as follows: In the next section we first describe the notation that we
use throughout the paper. In Sections 1.2 and 1.3 we introduce the reader to the algorithms
developed by Flake et al. and depict their basic ideas. In Chapter 2 we first present the
Basic Update Algorithm and then the advanced ones in Chapter 3. In Chapter 4 we
analyze the runtime of our algorithms and show their correctness. Chapter 5 contains a
discussion of updates after the vertices of the underlying graph have been modified and
how to change the hierarchy’s granularity. Finally we conclude our work in Chapter 6.

1.1 Notation and preliminaries

Throughout this work we consider an undirected, weighted graph G = (V,E, c) with ver-
tices V , edges E and a non-negative edge weight function c, writing c(u, v) as a shorthand
for c({u, v}) with {u, v} ∈ E.

In this work dynamic modifications of G will concern vertices and edges. An edge modi-
fication of G always involves edge {b, d}, with c(b, d) = ∆, yielding G⊕ if {b, d} is newly
inserted into G, and G	 if it is deleted from G. For simplicity we will not handle changes
to the weight of an edge, since this can be emulated by a deletion and an insertion. We
further assume G to be connected; if that is not the case one can work on each connected
component independently and the results still apply. For the modifications of vertices we
postpone the introduction of notation to the corresponding section.

Furthermore we define a cut (S, V \S) to partition V into disjoint sets S and V \S. The
weight of a cut is the sum of the weights of all edges that cross the cut. We will denote it
by c(S, V \S) :=

∑
{u,v}∈E,u∈S,v∈V \S c(u, v). Beyond that we use c(S) as an abbreviation
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for c(S, V \S). A cut is a minimum s-t-cut for a pair of vertices s, t ∈ V if it (1) separates
s and t, i.e. s ∈ S and t ∈ V \S or the other way round and (2) it is the cut with smallest
weight among the cuts satisfying (1).

A minimum-cut tree M(G) = (V,EM, cM) of G is a tree on V and represents for any
vertex pair {u, v} ∈

(
V
2

)
a minimum u-v-cut in G by the cheapest edge on the unique path

between u and v in M(G). Deleting this edge decomposes the minimum-cut tree into two
connected components which represent the partitions of the cut. The weight of this cut
is the weight of the edge that has been deleted. Neither must this edge be unique, nor
M(G). For details on minimum-cut trees, see the pioneering work by Gomory and Hu [3]
or the simplifications by Gusfield [6].

A contraction in G of N ⊆ V means replacing set N by a single super-node and leaving it
adjacent to all former adjacencies u of vertices of N , with edge weight equal to the sum
of all former edges between N and u.

In the context of graphs, our understanding of a cut clustering C(G) of G is a partition
of V into subsets Ci, which define vertex-induced subgraphs, called clusters, conforming
to the paradigm of intra-cluster density and inter-cluster sparsity. If we want to further
specify the parameter α used to compute a clustering we write Cα(G) and Ciα, respectively.
However, if there is no need to determine the cluster exactly we omit the upper index i.
We use the shorthands C for C(G), C⊕ for C(G⊕) and C	 for C(G	) and can optionally
add a lower index α to these shorthands in order to define which value of α has been used
to compute the cut clustering. Regarding a dynamic graph G we particularly designate
Cb and Cd containing b and d, respectively, but not both, where b and d are the vertices
incident to the modified edge. A cluster containing both b and d will be denoted by Cb/d.

A hierarchy of cut clusterings consists of multiple cut clusterings of the same graph G.
The clusterings differ in the choice of the parameter α. In this work we assume a sequence
α1 > α2 > . . . > αmax to be given. For each αi there is exactly one level in the hierarchy
which we call level αi. As clusters on lower levels are subsets of clusters on higher levels
one can look at this hierarchy as a tree-like structure by interpreting the relation “is a
subset of” as “is a child of”. In this tree structure we denote the subtree whose root is the
cluster Cα, i.e. a cluster on level α, with T(Cα). Note that T(Cα) contains Cα as well.

1.2 Cut Clustering Algorithm

Flake et al. proposed two algorithms that are based on minimum-cut trees, the Cut
Clustering Algorithm and the Hierarchical Cut Clustering Algorithm. In
this section we will cover the Cut Clustering Algorithm that computes a single cut
clustering for a specific parameter α (see Algorithm 1). In the following section we present
their Hierarchical Cut Clustering Algorithm (see Algorithm 2) that computes a
hierarchy of clusterings based on the Cut Clustering Algorithm.

The Cut Clustering Algorithm performs the following steps: First of all an artificial
vertex t is added to the graph. Then all vertices are connected to t by weight α (see
Figure 2a and 2b). Throughout this work we will denote a graph G expanded by t and
the edges connecting t with all v ∈ V by Gα. We split the algorithm into two subroutines
for an easier reuse in the context of the update algorithms presented in the next chapters.
The first subroutine, ExpandGraph, implements the steps described so far. The second
subroutine, Cluster, computes a minimum-cut tree for the expanded graph Gα. After-
wards the recently added vertex t is removed from the tree. This decomposes the tree
in several connected components. The algorithm returns these connected components as
clusters of G (see Figure 2c-2e).
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Algorithm 1: Cut Clustering Algorithm

Input: G(V,E, c), α

1 Gα ← ExpandGraph (G,α)
2 Return Cluster (Gα)

Procedure ExpandGraph(G, α)

1 Vα ← V ∪ t
2 For all vertices v ∈ V do
3 Connect t to v with edge of weight α
4 Gα(Vα, Eα, cα)← the expanded graph after connecting t to V
5 Return Gα

The following Definition 1.1 and Lemmas 1.2, 1.3 have been presented in the work of
Flake et al. [1]. We recapitulate them because they are necessary to understand the steps
performed by the update algorithms we present in the next chapters. For the proofs see [1].

In order to compute the minimum-cut tree of Gα in Line 1 of Procedure Cluster one needs
to compute minimum cuts for pairs of vertices in V . In general minimum cuts between
two vertices are not unique. Thus, Flake et al. introduce communities. Using communities
yields unique clusterings (see Theorem 1.5). Furthermore, it offers the possibility to build
hierarchies of clusterings.

Definition 1.1 (Community) Let G(V,E) be an undirected graph and let s, t ∈ V be
two vertices of G. Let (S, T ) be a minimum s-t-cut, where s ∈ S and t ∈ T , that minimizes
the size of S. We call S a community of s in G with respect to t. For a given community
S of s in G we will call s =: r(S) the representative of S. If t is not specified S denotes
the community of s in the expanded graph Gα with respect to the artificial vertex t.

Lemma 1.2 (Communities are unique) The community of s in Gα with respect to t
is unique.

Lemma 1.3 (Communities do not overlap) Let v1, v2 ∈ V , and S1, S2 be their com-
munities with respect to t in Gα. Then either S1 and S2 are disjoint or one is a subset of
the other.

The previous lemma shows that communities are either disjoint or they are nested. This is
one type of nesting of communities that occur in the context of hierarchical cut clustering.
We will introduce the second type of nesting later. Flake at al. show how the first type
of nesting of communities can be used to avoid computing the whole minimum-cut tree
M(Gα) and try to only identify those edges of M(Gα) incident to t. Thus, in line 1
of Procedure Cluster, such a partial minimum-cut tree, which is in fact a star, would
suffice (see Figure 3). Procedure Simplified Cluster uses this idea and represents a

Procedure Cluster(Gα)

1 Compute minimum-cut tree M(Gα)
2 Remove t from M(Gα)
3 Return all resulting connected components
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(a) G

⇒

(b) Gα

⇒

(c) M(Gα)

⇒

(d) Deletion of t

⇒

(e) Clusters of G

Figure 2: Illustration of Algorithm 1.

simplification of Procedure Cluster. In the remaining part of this work we will not use
Procedure Cluster any more but replace it by Procedure Simplified Cluster.

The Procedure Simplified Cluster gradually separates communities of vertices in V
from the artificial vertex t. When all vertices in V are separated from t these communities
yield a partitioning of V of which each partition represents a cluster of G. In order to store
the separated communities Simplified Cluster uses the variable Cαwhose initial value
is the argument S of the procedure. It can either be an empty set or a set of communities.
This feature will be used by the update algorithms. In some cases the update algorithms
know that some communities will stay valid after the modification. Using the argument
S they can hand over this information to the Procedure Simplified Cluster and it does
not need to recompute these communities. However, in the context of Algorithm 1 the
value of S is always ∅.
Procedure Simplified Cluster iteratively picks one vertex v ∈ V that is not yet in a
community in Cα. Flake et al. suggest to start with vertices that have a high degree. In
Line 3 the community Cv of v in Gα with respect to t is computed. The community Cv

is then added to Cα (see Line 4) which will finally be the set of clusters. Afterwards it is
checked whether Cv covers any other community that has already been computed earlier.
According to Lemma 1.3 it is sufficient to check whether a representative of a community
in Cα is in Cv. These covered communities are deleted from Cα as they are no clusters in
G. Finally after all vertices in V has been separated from t the clustering Cα is returned.

Observation 1 We want to call attention to the clusterings that result from the described
method. The clusters in these clusterings are all communities of a specific vertex v ∈ V .
On the one hand they do not overlap each other according to Lemma 1.3. On the other
hand they cover all vertices in V . Thus, a cut clustering is a partition of the vertices of a
graph into inclusion-maximal communities.

In the context of the update algorithms we need to access the representatives of these
inclusion-maximal communities. Therefore, we store the representative of each inclusion-
maximal community.

As already mentioned clusterings built with the method described above are unique. We
want to state this with Theorem 1.5. But for its proof we firstly need one more lemma.

Lemma 1.4 Consider a community C in Gα and a vertex v ∈ C. The community C ′ of
v in Gα is a subset of C.

Proof Assume that C ′ is not a subset of C. As communities do not overlap according
to Lemma 1.3 it holds that C and C ′ are either disjoint or one contains the other as a
subset. Obviously C and C ′ share at least v excluding the first case. Furthermore, we
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Procedure Simplified Cluster(Gα, S)

1 Cα ← S
2 For v ∈ V, v not yet in a community in Cα do
3 Cv ← community of v in Gα
4 Cα ← Cα ∪ {Cv}
5 For C ∈ Cα, r(C) ∈ Cv do
6 Cα ← Cα\{C}
7 Return Cα

t

(a) A minimum-cut tree of Gα

⇒

t

(b) A “minimum-cut star” of Gα

Figure 3: The sets in the star are the sets returned by Procedure Simplified Cluster.

assumed that C ′ is not a subset of C leading to C ⊂ C ′. As C ′ is the community of v we
can state that cα(C ′) < cα(C). As the two cuts inducing C and C ′ separate r(C) and t,
and cα(C ′) < cα(C) we found that C could not be the community of r(C) in Gα.

Theorem 1.5 The clustering returned by Procedure Simplified Cluster applied to an
expanded graph Gα and a (possibly empty) set S of communities in Gα is unique.

Proof Assume that Procedure Simplified Cluster returns two different clusterings
Cα and C′α for a graph G. Now consider a vertex v ∈ V and the clusters C,C ′ containing
v in Cα and C′α, respectively, such that C 6= C ′. We will now distinguish three exhaustive
cases:
Case (a): C and C ′ are disjoint. Since both C and C ′ contain v we can exclude this case.
Case (b): C and C ′ overlap but none is a subset of the other one. Remember that C and
C ′ are communities in G. However according to Lemma 1.3 communities do not overlap.
Thus, we can exclude this case as well.
Case (c): One is a subset of the other one, w.l.o.g. C ⊆ C ′. Let r′ := r(C ′) be the
representative of C ′. If r′ ∈ C this contradicts Lemma 1.4 as C ′ is no subset of C. Thus
C may not contain r′, i.e. r′ 6∈ C. Now consider the cluster Cr

′
in Cα that contains r′.

According to Lemma 1.4 the community of r′ must be a subset of Cr
′
. But this contradicts

to the fact that C ′ is the community of r′ as C ′ 6⊆ Cr
′
. Therefore, this case cannot occur

as well.
We saw that all three exhaustive cases cannot occur. Thus, there cannot be two different
clusterings for one graph, i.e. the clustering computed by Procedure Simplified Cluster

applied to an expanded graph Gα and a set S of communities in Gα is unique
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1.3 Hierarchical Cut Clustering Algorithm

In the foregoing section we did not cover the choice of the parameter α but only discussed
scenarios with one fixed α. In this section we will present Flake’s results for a sequence
of parameter values α1 > α2 > . . . > αmax. The parameter α influences number, size and
shape of the clusters returned by Algorithm 1. Especially the guaranteed quality bounds
for inter-cluster and intra-cluster cuts depend on α. The quality measure Flake et al.
use for intra-cluster cuts is the so called expansion. The expansion of a cut (S, S) with
S

.∪ S ⊆ V has been introduced by Kannan et al. [7] and is defined as:

Ψ(S, S) =
c(S, S)

min{|S|, |S|}

In this context S and S together do not need to cover V . We measure the weight of the
(partial) cut (S, S) by c(S, S) :=

∑
{u,v}∈E,u∈S,v∈S c(u, v). Note that for S = V \S this

definition is compatible with the definition of the cut weight given in Chapter 1.1.

The expansion of a (sub)graph is the minimum expansion over all cuts in the (sub)graph.
The quality of a clustering C of G can be measured by the expansion of its clusters regarded
as subgraphs of G: the expansion of a clustering C is the minimum expansion over all
clusters C ∈ C. The larger the expansion of the clustering the better it is as there are
intra-cluster cuts with higher weights conforming to the intra-cluster density paradigm.

For inter-cluster cuts they use a similar measure which is the better the lower it is. Thus,
it is compatible with the paradigm of inter-cluster sparsity. For a clustering C returned by
Algorithm 1 the following equation holds. It offers an upper bound for inter-cluster cuts
and a lower bound for intra-cluster cuts depending on α.

c(C, V \ C)

|V \ C|︸ ︷︷ ︸
inter-cluster cuts

≤ α ≤ c(P,Q)

min{|P |, |Q|}︸ ︷︷ ︸
intra-cluster cuts

∀C ∈ C ∀P,Q 6= ∅ P
.∪Q = C

Flake et al. show how one can even build a hierarchy of different clusterings of G by
varying α. If α is big enough Algorithm 1 returns a clustering that consists of singletons,
i.e. each vertex forms a single cluster. If α is small enough all vertices together form
a single cluster. For values in between we get a clustering between these two extremes.
Flake et al. state that clusters on lower levels are subsets of the clusters on higher levels
(see Figure 4).
Before we come to the nesting of clusters we firstly introduce Lemma 1.6 from Flake et
al. that discusses the second type of nesting of communities. It states that for one vertex
v ∈ V the communities for different αi are nested. We will call the property described in
the following lemma the nesting property.

Lemma 1.6 (nesting property) For a vertex s in Gαi, where αi ∈ {α1, . . . , αmax},
such that α1 > α2 > . . . > αmax, the communities S1, S2, . . . , Smax are such that S1 ⊆
S2 ⊆ . . . ⊆ Smax where Si is the community of s with respect to t in Gαi.

Proof This lemma is a direct implication of Lemma 2.4 in a work by Gallo et al. [2]. In
this lemma set λl := α1, . . . , λ1 := αmax and use s as the sink, t as the source. Then for
each λi there exists a minimum cut (Xi, Xi) that minimizes the sink’s side Xi such that
X1 ⊆ X2 ⊆ . . . ⊆ Xl. Thus in reverse Xl = S1 ⊆ Xl−1 = S2 ⊆ . . . ⊆ X1 = Smax.

Flake et al. extend the statement of the foregoing lemma about communities to a similar
statement about clusters. This lemma is the very basic idea of the work of Flake et al.
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Lemma 1.7 (Clusters are nested) Let α1 > α2 > . . . > αmax be a sequence of pa-
rameter values that connect the vertices in V to t in Gαi. Let αmax+1 ≤ αmax be small
enough to yield a single cluster in G by applying Simplified Cluster and α0 ≥ α1 be
large enough to yield all singletons. Then all αi+1 values, for 0 ≤ i ≤ max, yield clusters
in G that are supersets of the clusters produced by each αi, and all clusterings together
form a hierarchical tree over the clusterings of G.

Note that in this work we do not require that the hierarchy ranges from all singleton
clusters on the lowest level to one single cluster on the highest level. We use any arbitrary
sequence α1 > α2 > . . . > αmax of parameter values.

We further present the following lemma which supports the proceeding in the Hierar-
chical Cut Clustering Algorithm by Flake et al. (see Algorithm 2 which we will
introduce shortly). Furthermore, it is very important for the update algorithms we present
in the following chapters as well.

Lemma 1.8 Let C ′ be a subset of a community C ⊇ C ′ in Gα. The contraction of
C ′ in Gα does not change the result of calling Procedure Simplified Cluster with the
contracted graph as first argument in comparison to applying it to the uncontracted graph
Gα, independently of the value of S.

Proof Firstly consider the Clustering C which we obtain by applying Procedure Sim-

plified Cluster to the uncontracted graph Gα. Due to the nesting property there
is a cluster C in this clustering with C ⊇ C ′. Let r := r(C) be the representative of C.
We now show that in the contracted graph there is still a vertex whose community is C.
Therefore, we distinguish two cases:
Case r ∈ C ′: In this case the super-node C ′ is the representative of C in the contracted
graph. Assume that the community of the super-node C ′ would differ from C. Neither
its size nor the weight of the cut inducing it would have changed due to the contraction.
Therefore, it would have already been the community of r in the uncontracted graph Gα,
what yields a contradiction. Thus, there is still a vertex whose community in the con-
tracted graph is C.
Case r ∈ C\C ′: Obviously no cut separating r and t might get cheaper due to the con-
traction of C ′. Thus, C stays the community of r in the contracted graph.
We already showed that C stays a community in the contracted graph. As all the cuts
not cutting through C ′ are not affected by the contraction no other community in the
contracted graph will cover C. Otherwise it would have already covered it in Gα. Thus,
the clustering does not change due to the edge modification.

We now introduce the method of Flake et al. to compute a hierarchy of cut clusterings as
described in Lemma 1.7. The so called Hierarchical Cut Clustering Algorithm
(see Algorithm 2) achieves an algorithmic speedup in comparison to recomputing the
clusterings from scratch for each αi as follows: It starts to compute the clustering for the
biggest parameter value α1 by basically applying Algorithm 1. For the computation of all
following levels the algorithm can use the result of the previous one. The computation
of Cαi is accelerated by using Cαi−1 . Remember that the clusters of a cut clustering are
communities. According to Lemma 1.6 the clusters on level αi−1 are subsets of communities
on level αi. Thus, the contraction of clusters in Cαi−1 in Gαi (in Line 4) is feasible due
to Lemma 1.8. Contracting them still yields a valid clustering but Simplified Cluster

is applied to a smaller instance. After the contraction of a cluster C ∈ Cαi−1 the edge
connecting the resulting super-node with t in Gαi has weight |C| · αi.
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Algorithm 2: Hierarchical Cut Clustering Algorithm

Input: G(V,E, c), α1 > . . . > αmax

1 For i = 1, . . . ,max do
2 Gαi ← ExpandGraph (G,αi)
3 If i > 1
4 Contract all clusters of Cαi−1 in Gαi
5 Cαi ← SimplifiedCluster(Gαi , ∅)
6 Return Cα1 , . . . , Cαmax

α3

α1

α4

α2

Figure 4: A hierarchy of clusterings returned by Algorithm 2.

Similar to the uniqueness of a single clustering returned by Algorithm 1 we can show that
even the whole hierarchy computed by Algorithm 2 is unique.

Corollary 1.9 The hierarchy of clusters returned by Algorithm 2 is unique.

Proof As the clusterings on all levels of the hierarchy are unique (see Theorem 1.5) the
whole hierarchy is unique as well.

2 Basic update techniques

In the foregoing chapter we introduced the algorithms Flake et al. developed in order to
build a hierarchy of clusterings. They are restricted to static graphs. In the remainder of
this work we want to discuss cut clustering methods that deal with a dynamic scenario.
First of all we cover the modification of edges, i.e. edge deletions and insertions. Vertex
modifications will be discussed in Chapter 5. The idea of handling edge modifications is to
update the previous hierarchy to a valid hierarchy of the modified graph. In this chapter
we present our basic update techniques which will be used for a simple but efficient update
algorithm. Firstly in this section we cover the theory of updates without distinguishing
between edge insertions and deletions. In the Sections 2.1 and 2.2 we discuss these two
cases, edge deletion and edge insertion, separately. In both cases we gain similar results
that are used for an algorithm which we will call the Basic Update Algorithm. This
algorithm is presented at the end of this chapter. In the following chapter we present
advanced update techniques that are more complex but more efficient as well.
Firstly we present two lemmas that lead to Theorem 2.3 which states an important idea
we will need for the Basic Update Algorithmand the advanced update algorithms as
well.
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Lemma 2.1 Consider a cluster Cαk on level αk. In the hierarchy on the levels α1 > . . . >
αk−1 all vertices contained in Cαk are clustered independently of V \Cαk , i.e. there is no
cluster C ′αi in one of the clusterings Cα1 , . . . , Cαk−1

that contains a vertex x 6∈ Cαk and a
vertex y ∈ Cαk at the same time.

Proof Assume that there is a cluster C ′αi on a level αi ∈ {α1, . . . , αk−1} that contains
at least one vertex x 6∈ Cαk and one vertex y ∈ Cαk . Due to the nesting property on
level αk the community C ′αk of r(C ′αi) is a superset of C ′αi . Because of Lemma 1.3 cluster
Cαk and community C ′αk must either be disjoint or one is a subset of the other one. Since
Cαk and C ′αi share y, it follows that Cαk and C ′αk also share y and thus, they cannot
be disjoint. Furthermore C ′αk contains a vertex x 6∈ Cαk what excludes that C ′αk ⊆ Cαk .
Thus, it holds that Cαk ⊂ C ′αk . But this contradicts the premise that Cαk is a cluster, i.e.
it is not a subset of any other community in Gαk as described in Observation 1.

The foregoing lemma did not yet cover any dynamic scenario where an edge has been
modified. However, the next lemma and the next theorem deal with modified graphs
covering the cases of the deletion and the insertion of an edge {b, d} at the same time.
Theorem 2.3 states that given that a specific part of the hierarchy stays valid one can
conclude that other parts of the hierarchy stay valid as well. This is a very central idea of
the Basic Update Algorithmand enables us to compute the updated hierarchy faster
than applying the Hierarchical Cut Clustering Algorithm from scratch.

Lemma 2.2 Consider a community Cαk in Gαk such that after the modification Cαk is

still the community of its representative in G
⊕/	
αk . If Cαk neither contains b nor d, it holds

that for a vertex v ∈ Cαk the community of v in Gαi is still the community of v in G
⊕/	
αi

for αi ∈ {α1, . . . , αk−1}.

Proof For v ∈ Cαk let Cαi be the community of v in Gαi and C ′αi its community in G
⊕/	
αi

for an αi ∈ {α1, . . . , αk−1}. The community of v in G
⊕/	
αk is a subset of Cαk according to

Lemma 1.4. Thus, C ′αi ⊆ Cαk holds due to the nesting property.
Since b, d 6∈ Cαk the subsets Cαi and C ′αi do neither contain b nor d. Thus, the weights
of the cuts inducing the two communities Cαi and C ′αi do not change due to the edge
modification. If cαi(C

′
αi) < cαi(Cαi) or cαi(C

′
αi) = cαi(Cαi) and |C ′αi | < |Cαi | then Cαi

cannot be the community of v in Gαi . Thus, we conclude that Cαi = C ′αi .

Theorem 2.3 Consider a cluster Cαk on level αk that after the edge modification is still
a valid cluster. If Cαk neither contains b nor d, then all clusters in the subtree T(Cαk) of
Cαk in the hierarchy, stay valid clusters on their respective levels of the hierarchy.

Proof Using Lemma 2.1 we know that the vertices in Cαk are clustered independently
of the other vertices. Furthermore by Lemma 2.2 all communities of vertices in Cαk stay

communities of their corresponding representative in the updated graphs G
⊕/	
α1 , . . . , G

⊕/	
αk−1 .

Thus, the whole subtree T(Cαk) in the hierarchy stays valid.
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2.1 Edge deletion

In the previous section we introduced statements that are not specific to the deletion
or insertion of an edge. In this section we present statements that only hold for the
deletion of edges. Firstly we introduce Lemma 2.4 about how cuts in the modified graph
may differ from cuts in the original graph. Then we use this lemma to deduce stronger
statements in Lemma 2.5 and Theorem 2.6 which is the central idea of the Basic Update
Algorithmregarding edge deletions.

Lemma 2.4 If the community C of a vertex v in Gα is not the community of v in G	α
any more then the cut inducing the community C ′ of v in G	α separates b and d.

Proof Assume that the cut inducing C ′ does not separate b and d. Then the cut weight
does not change due to the edge modification, i.e. cα(C ′) = c	α (C ′). Furthermore it holds
that c	α (C) ≤ cα(C). Since C ′ is the community of v we know that c	α (C ′) < c	α (C) or
c	α (C ′) = c	α (C) and |C ′| < |C|. We will now distinguish these two cases and will see that
both contradict the correctness of C as v’s community in Gα.
(a) c	α (C ′) < c	α (C): Then cα(C ′) < cα(C) and C cannot be the community of v in Gα.
(b) c	α (C ′) = c	α (C) and |C ′| < |C|: Then cα(C ′) ≤ cα(C) and |C ′| < |C| and again C
cannot be the community of v in Gα.

Lemma 2.5 If in the case of an intra-cluster edge deletion the cluster Cb/d in C stays
the community of its representative in the modified expanded graph G	α then the whole
clustering of G stays valid for G	.

Proof Consider a cluster C 6= Cb/d in Gα that is not the community of its representative
in G	α any more. According to Lemma 2.4 the cut inducing the community in G	α needs
to separate b and d and thus, cut through the cluster Cb/d. However, this is forbidden by
Lemma 1.3 as communities do not overlap. Thus, all clusters in Gα stay communities for
their representatives in G	α and the clustering of G is also valid for G	.

Lemma 2.5 is a very important statement in the context of an update after an edge deletion:
Recalculating only one minimum cut can be sufficient in order to know that a whole level
of the hierarchy does not change. This already allows a massive computational speedup.
In the following theorem we extend the last lemma together with Theorem 2.3 to the very
central idea of the Basic Update Algorithm.

Theorem 2.6 In the case of an edge deletion let αk denote the lowest level such that on
the levels αi ∈ {αk, . . . , αmax} the vertices b and d lie in the same cluster and the cluster

C
b/d
αi stays the community of its representative in the modified graph. Then apart from the

subtree T(C
b/d
αk ) of C

b/d
αk the hierarchy does not change (see Figure 5).

Proof Immediate by combination of Lemma 2.5 and Theorem 2.3 applied to all other
clusters on level αk.
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(a) The previous hierarchy

⇒
Cb/dαk
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αmax

?

(b) The updated hierarchy

Figure 5: Illustration of Theorem 2.6: Apart from the subtree T(C
b/d
αk ) the hierarchy does

not change.

2.2 Edge insertion

After covering the case of an edge deletion in detail we now introduce some lemmas that
are specific to edge insertions. Again we start with a lemma which is only necessary for the
following statements in Observation 2 and Corollary 2.8 that gradually lead to Theorem 2.9
which is the correspondent to Theorem 2.6.

Lemma 2.7 Consider the community C of a vertex v in the graph Gα. If the cut θ
inducing this community stays a minimum v-t-cut in G⊕α , then C is the community of v
in G⊕α .

Proof Assume that C is no longer the community of v in G⊕α . We know that cα(θ) =
c⊕α (θ) and cα(θ′) ≤ c⊕α (θ′) as the cut weight may only increase by the insertion of an edge.
Then there exists a cut θ′ separating v and t that is easier than θ or a cut θ′ that is of at
most the same weight but v’s side is smaller than before.
First we cover the case c⊕α (θ′) < c⊕α (θ): Together with the formulas stated above we can
derive cα(θ′) ≤ c⊕α (θ′) < c⊕α (θ) = c⊕α (θ), simplified cα(θ′) < c⊕α (θ). Thus θ′ induces a
community of v in Gα that is easier than C. This is a contradiction.
In the other case c⊕α (θ′) = c⊕α (θ) but v’s side of θ′ is smaller than v’s side of θ. Then by
transitivity cα(θ′) ≤ cα(θ). Thus, θ′ induces a community of v in Gα that may be easier
and is definitely smaller than C. Again this is a contradiction

Using this lemma it is easy to deduce the following observation and corollary about com-
munities and levels of the hierarchy that stay valid.

Observation 2 A community C in Gα that neither contains b nor d stays a valid com-
munity for its representative in G⊕α as c⊕(C) = c(C). Analogously, a community C in
Gα that contains both, b and d, stays a valid community for its representative in G⊕α as
c⊕(C) = c(C).

Corollary 2.8 In the case of an intra-luster edge insertion, i.e. b and d lie in the same
cluster, the clustering Cα of G stays a valid clustering of G⊕ in respect to α.

Proof Using Observation 2 we know that all clusters in Cα stay valid communities.
Thus, Cα is as well a valid clustering of G⊕.

We combine all the foregoing statements in Theorem 2.9 which is the correspondent to
Theorem 2.6.
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Theorem 2.9 In the case of an edge insertion let αk be the greatest αi (the lowest level
in the hierarchy) where b and d lie in the same cluster. Then in the updated hierarchy only

the clustering in the subtree of C
b/d
αk may change (see Figure 5).

Proof Immediate by combination of Corollary 2.8, Lemma 2.1 applied to C
b/d
αk and

Theorem 2.3 applied to all other clusters on level αk.

In the next section we present the Basic Update Algorithm that bases on the ideas
presented in Theorem 2.6 and Theorem 2.9.

2.3 Basic update algorithm

In the foregoing two sections we have shown very similar results for the both cases, edge
deletion and edge insertion. Theorem 2.6 and 2.9 state that under specific circumstances
some levels on the top of the hierarchy stay valid and that parts of the lower levels stay
valid. We now present the Basic Update Algorithm.

Algorithm 3: Basic Update Algorithm

Input: G⊕/	(V,E⊕/	, c⊕/	), α1 > . . . > αmax, Cα1 , . . . , Cαmax
1 If an edge has been inserted // Case ⊕
2 Let k be the smallest index such that in Cαk b, d are in the same cluster
3 Else // Case 	
4 Let k be the smallest index such that in Cαk b, d are in the same cluster and

C
b/d
αk stays the community of its representative in G

⊕/	
αk

5 For i = k, . . . ,max do

6 C⊕/	αi ← Cαi // Theorem 2.6 or Theorem 2.9

7 Compute C⊕/	αi , i = 1, . . . , k − 1 using that parts of the clustering do not change

Algorithm 3 first of all computes the level that is denoted by level αk in Theorem 2.6
and 2.9. This can be done by going top down and checking the condition on each level.
Then all levels above level αk (including level αk) do not change according to the theorems.
Thus, the clusterings for these levels are directly carried over in Line 6. For the lower
levels the pseudo code does not specify how to compute the updated clusterings but states
that one should exploit the fact that only parts of the previous clusterings may change.

According to Theorem 2.6 and 2.9 these are the clusters in the subtree T(C
b/d
αk ). In this

work we present two possibilities how to proceed Line 7 of Algorithm 3.

The first possibility is to use the Hierarchical Cut Clustering Algorithm presented
by Flake et al. in a very basic manner. One could replace Line 7 of Algorithm 3 by the
call Hierarchical Cut Clustering Algorithm(G⊕/	, α1 > . . . > αk−1). In this ba-
sic version the fact that some clusters stay valid on the lower levels would not be used.
But one can extend the Hierarchical Cut Clustering Algorithm such that it uses
this information. Therefore, after Line 4 in Algorithm 2 all clusters that stay valid need
to be contracted into one single super-node in the expanded graph. This contraction does
not affect the clustering of the remaining part (the part of the graph whose clustering
may change) as no cluster in the contracted part can be covered by any community in the
remaining part of the graph. Therefore, the contracted super-node will form a singleton in
the clustering and we can already add it to S. The updated clustering can then be com-
posed of the parts of the previous clustering that stay valid and the clustering computed
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by the modified Hierarchical Cut Clustering Algorithm. The Basic Update
Algorithm is already more efficient in terms of minimum cut calculations than recom-
puting the whole hierarchy using the Hierarchical Cut Clustering Algorithm. For
a runtime analysis see Chapter 4.

The second possibility is to use the advanced techniques we present in the next chapter.

3 Advanced techniques

In this chapter we refine the Basic Update Algorithm we presented in Chapter 2. As
these advanced techniques differ for the two cases, edge deletion and edge insertion, we
developed two algorithms of which each is specific to one case. They extend the Basic
Update Algorithm by discussing how to proceed Line 7 of Algorithm 3. However
there are procedures that are used by both update algorithms. These are the Procedures
Prepare and Rework which are covered in the following section about edge deletion.

3.1 Edge deletion

In this section we present lemmas that only hold for the deletion of edges. Afterwards we
depict the algorithm that updates the hierarchy of clusters after an edge has been deleted.
The first lemma states that in the case of an inter-cluster edge deletion the communities
containing either b or d stay valid communities of their representatives. This will later
be exploited in two ways. On the one hand one can contract these communities in the
expanded graph. On the other hand the Procedure Simplified Cluster does not need
to recompute these communities, i.e. we can add them to S.

Lemma 3.1 In the case of an inter-cluster edge deletion communities in Gα containing
either b or d stay communities of its representative in G	α .

Proof Consider a community C in Gα with w.l.o.g. b ∈ C and its representative v :=
r(C). Furthermore assume that there is an easier or smaller community C ′ of v in G	α .
First we assume c	α (C ′) < c	α (C) = cα(C) −∆. We distinguish the two cases that either
b ∈ C ′ or d ∈ C ′ and that none of them or both are in C ′. If either b ∈ C ′ or d ∈ C ′

then c	α (C ′) = cα(C ′) −∆ and thus, cα(C ′) < cα(C). However, this contradicts the fact
that C was the community of v in Gα. Otherwise if none of them or both are in C ′

then c	α (C ′) = cα(C ′) and cα(C ′) < cα(C) − ∆ < cα(C), and again C could not be the
community of v in Gα.
Now let us assume that c	α (C ′) = c	α (C) = cα(C)−∆ but |C ′| < |C|. Again we distinguish
the two cases mentioned above. If either b ∈ C ′ or d ∈ C ′ then c	α (C ′) = cα(C ′) − ∆
and thus, cα(C ′) = cα(C). In this case |C ′| < |C| contradicts the fact that C is the
community of v in Gα. If none of them or both are in C ′ then c	α (C ′) = cα(C ′) and
therefore, cα(C ′) = cα(C) −∆, i.e. cα(C ′) < cα(C). Again this contradicts the fact that
C is the community of v in Gα.

Furthermore we need the following lemma that is similar to Lemma 5 in Hartmann et
al. [5]. This lemma states that the communities neither containing b nor d stay subsets of
communities after the modification. According to Lemma 1.8 we can contract these sets of
vertices as well. In contrast to the foregoing lemma the Procedure Simplified Cluster

needs to recompute their communities, i.e. we cannot add them to S.
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Lemma 3.2 Let C be the community of a vertex v in Gα (solid black in Figure 6) and
C ′ its community in G	α . If C neither contains b nor d then C ′ is a superset of C (blue
dotted).

Proof Assume that C ′ (red dashed in Figure 6) is not a superset of C. We show that C
cannot be the community of v in Gα because C ∩C ′ is induced by a cut of at most weight
cα(C) in Gα but is smaller than C.

Since C ′ is induced by a minimum v-t-cut in G	α we know that c	α (C ′) ≤ c	α (C ∪ C ′).
Furthermore it certainly holds that c	α (C ′\C, Vα\C ′) ≥ c	α (C ′\C, Vα\(C ∪C ′)) and c	α (C ∩
C ′, C ′\C) ≤ c	α (C,C ′\C) as the cut weight may only increase by cutting more edges.

Now we express cα(C ∩C ′) and cα(C) in terms of other partial cut weights. As both cuts
do not separate b and d their weights are not affected by the edge deletion and thus, we
can use the weight function c	α on the right sides of the following two equations whereas
we use cα on the left side:

cα(C ∩ C ′, Vα\(C ∩ C ′)) = c	α (C ′, Vα\C ′)− c	α (C ′\C, Vα\C ′) + c	α (C ∩ C ′, C ′\C)

cα(C, Vα\C) = c	α (C ∪ C ′, Vα\(C ∪ C ′))− c	α (C ′\C, Vα\(C ∪ C ′)) + c	α (C,C ′\C)

By subtracting the second equation from the first one we get:

cα(C ∩ C ′, Vα\(C ∩ C ′))− cα(C, Vα\C) = (c	α (C ′, Vα\C ′)− c	α (C ∪ C ′, Vα\(C ∪ C ′)))
− (c	α (C ′\C, Vα\C ′)− c	α (C ′\C, Vα\(C ∪ C ′)))
+ (c	α (C ∩ C ′, C ′\C)− c	α (C,C ′\C))

≤ 0

We conclude that cα(C ∩ C ′) ≤ cα(C). However, this contradicts the correctness of C
being the community of v in Gα as the cut inducing C ∩C ′ is of at most the same weight
and v’s side is smaller than C. Thus, C ′ must be a superset of C.

v

C

C ′
t

Figure 6: If C neither contains b nor d the community of r(C) in G	α is a superset of C.

Lemma 3.1 and 3.2 are needed in order to refine the Basic Update Algorithm. In the
following we will describe the advanced update algorithm for edge deletions (Algorithm 4)
in detail and will thereby come back to these two lemmas. First we give a rough sketch of
the algorithm:
Looking at Algorithm 4 one notes that Line 1-3 correspond to Line 4-6 of Algorithm 3.
In the following lines the lower levels, the levels where the clustering may change, are
recomputed. Therefore, the clusterings on these levels are recalculated iteratively top
down. Lemma 2.2 and Theorem 2.3 are central for this proceeding as they describe how
information from an update on a higher level can be used to achieve a speedup for the
recomputation of the clustering on lower levels:
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Procedure Prepare(G⊕/	, α, Cα, V ′, W ′)

1 G
⊕/	
α ← ExpandGraph (G⊕/	, α)

2 For C ∈ Cα, r(C) ∈ V ′
3 Add C to C⊕/	α

4 Contract V ′ in G
⊕/	
α

5 S ← {V ′}
6 For C ∈ Cα\C⊕/	α , r(C) ∈W ′
7 S ← S ∪ {C}
8 Return (G

⊕/	
α , C⊕/	α ,S)

Procedure Rework(G
⊕/	
α , C⊕/	α , Cα, V ′, W ′, S)

1 C′α ← SimplifiedCluster(G
⊕/	
α ,S)

2 For C ∈ C′α, r(C) ∈ V \V ′
3 Add C to C⊕/	α

4 For C ∈ Cα, b 6∈ C, d 6∈ C
5 If C ∈ C⊕/	α

6 V ′ ← V ′ ∪ C // Theorem 2.3 applied to C
7 W ′ ←W ′\C
8 Else If C is still the community of its representative in G

⊕/	
α

9 W ′ ←W ′ ∪ C // Lemma 2.2 applied to C

10 Return (C⊕/	α , V ′,W ′)

Lemma 2.2 states that if a cluster C neither containing b nor d stays the community of
its representative on level αi then all the communities of vertices in C on all lower levels
stay the communities for their corresponding representative. Lemma 1.8 allows us to
contract each cluster that stays the community of its representative into one super-node in
the expanded graph Gαi . Furthermore, we do not need to recompute these communities.
Therefore, we will hand over this information to the Procedure Simplified Cluster using
its second argument S.
Theorem 2.3 says that if a cluster C neither containing b nor d stays a cluster in the
modified graph then all clusters in T(C), its subtree in the hierarchy, stay valid clusters
on their corresponding level. Thus, no new cut will cut through one of these clusters or
between two of these clusters. Even if several clusters stay valid then on a lower level no
two clusters belonging to different subtrees in the hierarchy can be split by a newly found
minimum cut. Therefore, all clusters that stay valid clusters in the modified graph can be
contracted into one single super-node in Gαi .
But how can we detect that a cluster that neither contains b nor d stays the community of
its representative or even stays a cluster in the modified graph? We can do this during the
computation of the updated clustering in Rework where we use the following heuristic in

the Procedure Simplified Cluster: First compute the communities in G
⊕/	
α that belong

to the representatives of clusters in Cα. If the community of v in G
⊕/	
α neither contains

b nor d and the cut inducing it has the same weight as the cut inducing v’s community
in Gα then we already know that v’s community does not change as both cut weights are
not affected by the edge modification. If we detect a community that does not change we
mark it with a cluster flag. Note that the communities in S need to be marked with the
cluster flag as well as they are also communities that stay valid. If later in Line 6 a marked
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Algorithm 4: Update on edge deletion

Input: G	(V,E\{{b, d}}, c	), α1 > . . . > αmax, Cα1 , . . . , Cαmax
1 Let k be the smallest index such that in Cαk b, d are in the same cluster and C

b/d
αk

stays the community of its representative in G	αk
2 For i = k, . . . ,max // Carry over C	αk , . . . , C	αmax
3 C	αi ← Cαi // Theorem 2.6

4 V ′ ← V \Cb/dαk // Theorem 2.3 applied to clusters in Cαk\{C
b/d
αk }

5 W ′ ← ∅
6 For i = k − 1, . . . , 1
7 (G	αi , C	αi ,S)← Prepare (G	, αi, Cαi , V ′,W ′)
8 If b, d are in different clusters in Cαi
9 Contract Cbαi and Cdαi in G	αi // Lemma 3.1 applied to Cbαi and Cdαi

10 S ← S ∪ {Cbαi , Cdαi}
11 Else
12 αj ← the highest level where b and d are in different clusters in Cαk

Contract Cbαj and Cdαj in G	αi // Lemma 3.1 applied to Cbαj and Cdαj
13 For C ∈ Cαi , b 6∈ C, d 6∈ C
14 Contract C in G	αi // Lemma 3.2 applied to C
15 (C	αi , V ′,W ′)← Rework(G	αi , C	αi , Cαi , V ′,W ′,S)
16 Return C	α1

, . . . , C	αmax

community is removed from Cα as it is covered by a newly found community we unmark
the covered community again. At the end of Procedure Simplified Cluster all clusters
marked with the cluster flag have already been clusters in the previous clustering. Using
this approach no extra computations are needed to determine whether a cluster C of the
previous clustering stays a cluster or at least the community of its representative.
Both advanced update algorithms, the algorithm for updates after edge deletions and the
algorithm for update after edge insertions, use two mutually exclusive sets V ′ and W ′

in order to store which clusters and which communities do not change and thus, can be
contracted. The set V ′ contains the vertices that can be contracted into a single super-node
as the clusters covering V ′ on all lower levels will stay valid. Thus, if the representative
of a cluster is in V ′ then the cluster will also be part of the updated clustering. In W ′ we
store all vertices from which we know that their communities are still their communities
in the modified graph on all lower levels and that are not in V ′, i.e. not in a cluster that
stays valid.
According to Theorem 2.6 and 2.9 all clusters on level αk stay valid. Theorem 2.3 can
be applied to all of these clusters that neither contain b nor d. Thus, we can initialize V ′

with V \Cb/dαk in Line 4. However, W ′ is initially empty as there is no information about
clusters that stay communities of their representatives.

We now explain Algorithm 4 step by step and thereby explain the Procedures Prepare and
Rework, which are also used by the update algorithm for edge insertions (Algorithm 5).
This is the reason for choosing the notation ⊕/	 in the Procedures Prepare and Rework. As
already mentioned Algorithm 4 updates the hierarchy going top down. In each iteration,
i.e. for each αi, first of all the subroutine Prepare is called in Line 7.

Prepare firstly expands the graph by adding the artificial vertex t and connecting it to all
other vertices by weight αi. Then in Line 2 and 3 all clusters from Cαi that stay valid are

added to C⊕/	αi . Therefore we need to check whether the representative of a cluster is in

V ′. Then V ′ is contracted into one single super-node in G
⊕/	
αi in Line 4. We will justify
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the correctness of the clusters’ validity and the contraction when we further modify V ′ in
Rework. Furthermore we initialize S with {V ′}. The set S contains the communities we
will later hand over to Simplified Cluster and thus, need not be computed by Simpli-

fied Cluster. As no other community in the modified graph will cover V ′ the super-node
containing V ′ will be a community.
Afterwards we add all clusters that we found to stay valid communities of their represen-
tatives in Gαi to S in Line 6. To this end we need to check whether the representative of
a cluster of the previous clustering Cαi is in W ′. If yes we add the cluster to S as well.
Again we will justify this proceeding in the context of the modification of W ′ in Rework.

After the preparation in Algorithm 4 we proceed contractions that are specific to edge
deletions. From Lemma 3.1 we know that if b and d are not in the same clusters the
clusters containing b and d, respectively, stay valid communities of their representatives.
Thus, according to Lemma 1.8 we contract them in Line 9 and add them to S as well.
Otherwise we look for the highest level αj , j < i where b and d lie in different clusters.
Again we can contract Cbαj and Cdαj in G	αi in Line 12. Lemma 3.1 states that Cbαj and Cdαj
stay communities for their representatives in G	αj . According to the nesting property

they are subsets of communities in G	αi . Using Lemma 1.8 we can justify the contraction
of Cbαj and Cdαj in G	αi . But as they are only subsets of communities in G	αi and not
necessarily communities we may not add them to S. Furthermore we are not allowed to
add these communities to W ′ as Lemma 3.1 gives no guarantee for the lower levels.

Furthermore we contract each cluster in Cαi that contains neither b nor d into a super-node.
According to Lemma 3.2 we know that they stay subsets of communities in Gαi and using
Lemma 1.8 we can contract them in Line 14.

In the last step of an iteration the subroutine Rework is called. This procedure is as well
used by the algorithm for edge insertions (Algorithm 5). At first it clusters the graph G⊕αi
with all contractions being proceeded using the Procedure Simplified Cluster presented
in Section 1.2 yielding C′αi . Thereby the set S of communities we already know is used
to speed up the computation of the clustering. During the computation of the updated
clustering we detect which clusters stay valid communities or even clusters in the modified
graph.
Only those parts of C′αi covering V \V ′ are of interest as we already know the clustering
of V ′. Thus, we complete the intermediate clustering C	αi by adding the missing clusters
from C′αi in Line 3.
In the following lines V ′ and W ′ are modified. If in Procedure Simplified Cluster we
noticed that a cluster C of the previous clustering is as well in the updated clustering, i.e.
it is marked with the cluster flag, we use Theorem 2.3 in order to deduce that the whole
subtree T(C) in the hierarchy stays valid. Thus, we can exclude these clusters from later
calculations in Simplified Cluster by adding them to V ′ such that they are contracted
into a single super-node in the next iterations. If C is a subset of W ′ we need to remove
it from W ′ in order to keep V ′ and W ′ mutually exclusive.
However if C does not stay a valid cluster but a valid community for its representative
Lemma 2.2 states that all communities of vertices in C on the lower levels stay communities
for their representatives in the updated graph. Thus, in the following iterations in Line 6
of Procedure Prepare these communities will directly be added to S. To this end we need
to add C to W ′.

After the iterative computation of all C	αi Algorithm 4 returns the sequence of all updated
clusterings that together form the updated hierarchy.
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3.2 Edge insertion

In this section we present the algorithm that updates the hierarchy of clusters after an
edge has been inserted. For this algorithm we do not need any further lemmas but rely on
the lemmas discussed in Section 2.2.

Algorithm 5 works quite analog to the update algorithm for edge deletions we presented in
the previous section (Algorithm 4). In particular both algorithms, Algorithm 4 and Algo-
rithm 5, use the subroutines Prepare and Rework. We refer the reader to Section 3.1 for
their description. Furthermore Line 1-4 of Algorithm 5 are equal to Line 1-4 of Algorithm 4
except the choice of k.

However, in contrast to the case of an edge deletion we know that a lot of communities
do not change due to the edge insertion. Observation 2 says that all communities that
neither contain b nor d will not change. Thus, we can set W ′ to V \(Cbαi ∪Cdαi) in the very
beginning of each iteration, right before the call of Prepare. Then the Procedure Prepare

adds all these communities in G⊕αi to S.

After the Procedure Prepare has been called we proceed contractions that are specific
to edge insertions. According to Observation 2 we can contract the clusters that neither
contain b nor d in Line 9. These are the communities Procedure Prepare already added to
S. For the clusters that contain either b or d on the current level αi, i.e. for Cbαi and Cbαi ,
we do not know whether they are still the communities of their representatives in G⊕αi .
However, according to Observation 2 we know that all clusters in T(Cbαi) and T(Cbαi),
respectively, that neither contain b nor d stay valid communities on their levels and thus,
subsets of communities in G⊕αi due to the nesting property. According to Lemma 1.8
we can contract these clusters in Gαi as well (see Line 11).

Finally in Line 12 the clustering C⊕αi is extended by the clusters that cover V \V ′ and V ′

and W ′ are updated by the subroutine Rework. Note that the update of W ′ does not
matter in this context as it is overwritten at the beginning of the next iteration. After
going through all levels from αk−1 to α1 Algorithm 5 returns the updated hierarchy of
clusterings.

Algorithm 5: Update on edge insertion

Input: G⊕(V,E ∪ {{b, d}}, c⊕), α1 > . . . > αmax, Cα1 , . . . , Cαmax
1 Let k be the smallest index such that in Cαk b, d are in the same cluster
2 For i = k, . . . ,max // Carry over C⊕αk , . . . , C⊕αmax
3 C⊕αi ← Cαi // Theorem 2.6

4 V ′ ← V \Cb/dαk // Theorem 2.3 applied to clusters in Cαk\{C
b/d
αk }

5 For i = k − 1, . . . , 1 // Compute C⊕α1
, . . . , C⊕αk−1

6 W ′ ← V \(Cbαi ∪ Cdαi)
7 (G⊕αi , C⊕αi ,S)← Prepare (G⊕, αi, Cαi , V ′,W ′)
8 For C ∈ Cαi , b 6∈ C, d 6∈ C
9 Contract C in G⊕αi // Observation 2 applied to C

10 For C ∈ T(Cbαi) ∪ T(Cdαi), b 6∈ C, d 6∈ C
11 Contract C in G⊕αi // Observation 2 applied to C
12 (C⊕αi , V ′,W ′)← Rework(G⊕αi , C⊕αi , Cαi , V ′,W ′,S)
13 Return C⊕α1

, . . . , C⊕αmax
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4 Analysis

4.1 Proof of correctness

Firstly consider the following scenario: For a graph G we compute the hierarchy using
the Hierarchical Cut Clustering Algorithm (Algorithm 2). Then the graph is
modified and we update the hierarchy of clusterings. Then again we modify the already
modified graph and want to update the hierarchy a second time.

Note that for updating a hierarchy using the Basic Update Algorithm or the advanced
update algorithms (Algorithms 3-5) we presuppose that the hierarchy that is to be updated
consists of communities. Therefore, in order to enable consecutive updates of the hierarchy
as the graph stepwise changes we need to guarantee that the clusterings provided by
Algorithms 3-5 also consist only of communities. We will call this property of the hierarchy
the invariant.

It is easy to show that Algorithms 3-5 maintain the invariant. Clusters in the new
hierarchy can be computed by either carrying them over directly or by using the algorithms
presented by Flake et al. In the first case we showed in the previous chapter that clusters
are only carried over if they are still communities. In the second case the Procedure
Simplified Cluster only returns clusters that are communities as stated in Section 1.2
even if contractions of subsets of communities are proceeded as described in Lemma 1.8.
Thus, the updated hierarchies consist of communities.

Furthermore the invariant implies as well that we obtain a valid hierarchy, i.e. a hier-
archy that the Hierarchical Cut Clustering Algorithm would return. According
to Corollary 1.9 there exists exactly one hierarchy of clusterings consisting of clusters that
are communities. Thus, the hierarchies returned by Algorithms 3-5 are the hierarchies
that the Hierarchical Cut Clustering Algorithm would have returned.

4.2 Runtime

We measure the runtime in terms of the number of minimum-cut calculations that are
necessary to update a hierarchy. Using this approach we do not decide which algorithm is
used to compute the minimum cuts.
We compare our update algorithms to a recomputation of the hierarchy from scratch us-
ing the static Hierarchical Cut Clustering Algorithm. We denote the number of
minimum-cut calculations the Hierarchical Cut Clustering Algorithm needs to
build a hierarchy of clusterings of the graph G using the parameter sequence α1 > . . . >
αmax and a set of communities S by #HCCA(G,α1 > . . . > αmax,S). We firstly give a
runtime analysis of the Hierarchical Cut Clustering Algorithm, i.e. explain on
what the value of #HCCA(·, ·, ·) depends: The Hierarchical Cut Clustering Algo-
rithm needs one minimum-cut calculation per community it computes. As each cluster is
a community the number of minimum-cut calculations is greater than or equal to the num-
ber of clusters in the whole hierarchy. If Simplified Cluster, which is a subroutine of
the Hierarchical Cut Clustering Algorithm, finds a community that will later be
covered by another community then it spends more minimum-cut calculations than there
are clusters in the hierarchy, i.e. the number of clusters in the hierarchy is only a lower
bound for #HCCA(G,α1 > . . . > αmax, ∅). Flake et al. choose the next vertex whose
community shall be computed according to the sum of the weights of its adjacent edges.
They always compute the community of the vertex with the highest weighted degree that
is not yet contained in a community. Using this heuristic #HCCA(G,α1 > . . . > αmax, ∅)
is commensurate with the number of clusters [1].
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The analysis we present in the following presupposes that the Hierarchical Cut Clus-
tering Algorithm uses a fixed ordering of the vertices and starts to compute the com-
munity of the first vertex of the ordering and then proceeds with the next vertex that is
not yet contained in a community and so on. Note that the analysis holds as well for other
orderings than the one Flake et al. suggested.

In Section 4.2.1 we analyze the Basic Update Algorithm. The Basic Update Al-
gorithm carries over the upper levels that do not change at all. Then all clusters that
stay valid are contracted into one single super-node and afterwards the Hierarchical
Cut Clustering Algorithm is called. In Section 4.2.2 we discuss the runtime of the
advanced update algorithms.

4.2.1 The Basic Update Algorithm

General case

Edge deletion max− k + 1 + #HCCA(Ĝ, α1 > . . . > αk−1, {V \Cb/dαk })
Edge insertion #HCCA(Ĝ, α1 > . . . > αk−1, {V \Cb/dαk })

Best case

Edge deletion max

Edge insertion 0

Worst case

Edge deletion #HCCA(G,α1 > . . . > αmax, ∅)
Edge insertion #HCCA(G,α1 > . . . > αmax, ∅)

Table 1: Number of minimum-cut calculations the Basic Update Algorithm needs in
order to update the hierarchy.

In this section we will firstly express the runtime of the Basic Update Algorithm in a
general formula that depends on the parameter k, which is defined by Theorem 2.6 and 2.9,
respectively, and will then adjust this formula to the best and the worst case.
For edge deletions we need to check on the upper levels whether the community containing
b and d stays valid. Thus, we need one minimum-cut calculation per level we check upon
this condition. We check this condition going from the highest level to level αk. If level
αk−1 is an intra-cluster level we check it as well but find Cb/d not to stay valid. However,
we do not count this additional minimum-cut calculation as we assume that we can use
this cut later when we compute the clustering of level αk−1. Thus, in total we spend
max− k + 1 minimum-cut calculations for the upper levels, where 1 ≤ k ≤ max+ 1.
In the case of an edge insertion we do not need any minimum-cut calculations in order to
determine which levels of the hierarchy stay valid.
In both cases we contract all clusters that stay valid on the lower levels into one single

super-node yielding Ĝ. Note that Ĝ contains |Cb/dαk | + 1 vertices what is an assumably
small number in comparison to |V |. The contracted super-node forms a singleton in the

clustering. Thus, we can initialize S with {V \Cb/dαk }. Then we apply the Hierarchical
Cut Clustering Algorithm for the lower levels α1 > . . . > αk−1. Thus, the number
of minimum-cut calculations the Basic Update Algorithm needs for the lower levels is
#HCCA(Ĝ, α1 > . . . > αk−1, {V \Cb/dαk }).
For the total number of minimum-cut calculations the Basic Update Algorithm needs
we sum up the two values for the upper levels and the lower levels yielding the formulas
listed in Line 1 and 2 of Table 1.

We will now adjust these formulas to the best case, i.e. the case in which the Basic
Update Algorithm can carry over as much as possible. This is, the complete hierarchy
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does not change and all levels are intra-cluster levels where Cb/d stays the community of its
representative – as well if an edge has been deleted and if it has been inserted. Then it holds
that k = 1, i.e. we do not need to call the Hierarchical Cut Clustering Algorithm
at all. In the case of an edge insertion this means that we do not afford any minimum-cut
calculations. In the edge-deletion case we spend one minimum-cut calculation per level,
i.e. max minimum-cut calculations (see Line 3 and 4 of Table 1).

We now discuss the worst case. In the worst case no level can be carried over. Thus, we
cannot contract any clusters that stay valid and directly start using the Hierarchical
Cut Clustering Algorithm. This leads to #HCCA(G,α1 > . . . > αmax, ∅) minimum-
cut calculations (see Line 5 and 6 of Table 1), i.e. the Basic Update Algorithm is at
least as good as the Hierarchical Cut Clustering Algorithm.

However, these upper boundaries for the number of minimum-cut calculations seem to be
far from sharp boundaries in an average case analysis. As already mentioned the Basic
Update Algorithm needs at most one minimum-cut calculation to verify that a level
can be carried over in contrast to at least |Cαi | minimum-cut calculations for recomputing
it using the Hierarchical Cut Clustering Algorithm. Even though we cannot
guarantee that levels can be carried over it seems to be probable that one or even several
levels can be carried over. Consequently it seems to be probable that the Basic Update
Algorithm needs less minimum-cut calculations than the worst case boundary declares.
Besides the number of minimum-cut calculations the Basic Update Algorithm further
saves some effort due to the contraction of V \Cb/dαk . As this set is potentially large the
contraction leads to a graph Ĝ with a potentially small number of vertices. This cannot
be measured by the number of minimum-cut calculations but might reduce the runtime of
each single minimum cut-calculation drastically.

4.2.2 The advanced update algorithms

Lower bound if the hierarchy does not change

Edge deletion max− k + 1 + $T(C
b/d
αk )

Edge insertion $T(C
b/d
αk )

Upper bound on the upper levels

Edge deletion max− k + 2

Edge insertion 0

Upper bound on the lower levels (per level)

Intra-cluster deletion |Cα| − 1 + |Cb/d|
Inter-cluster deletion |Cα| − 2

Inter-cluster insertion |Cb|+ |Cd|

Table 2: Number of minimum-cut calculations of the advanced update algorithms.

In this section we discuss the runtime of the advanced update algorithms. We will analyze
(i) the number of minimum-cut calculations the advanced update algorithms need at least
if the hierarchy does not change at all and (ii) the number of minimum-cut calculations
the advanced update algorithms need at most regardless whether the hierarchy changes or
not.

We firstly recall the heuristic that the algorithms use during the computation of the cluster-
ings on the lower levels in order to recognize whether clusters in Cα stay valid communities

in G
⊕/	
α or even clusters in C⊕/	α : First compute the communities in G

⊕/	
α that belong to

the representatives of clusters in Cα. If afterwards there are still vertices that do not belong
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to communities we proceed with the same ordering of vertices as the Hierarchical Cut
Clustering Algorithm would do.
The representatives of clusters in Cα would have been a good choice while computing the
clustering Cα. As we expect the changes of the clustering due to the single edge modifi-

cation, i.e. the differences between Cα and C⊕/	α , to be small these representatives are as

well a good choice for computing C⊕/	α .

At first we discuss the case that the whole hierarchy stays valid. What is the number of
minimum-cut calculations the advanced update algorithms need at least to recognize that
the whole hierarchy stays valid?
For the upper levels we need one minimum-cut calculation per level in the case of an edge
deletion and zero minimum-cut calculations in the case of an edge insertion.
Now we turn to the update of the lower levels. As we want to deduce a lower bound for
the number of minimum-cut calculations we assume that according to the ordering we

described above the first |C⊕/	α | vertices the algorithms pick are the representatives of the

clusters in C⊕/	α .
Begin with considering level αk−1. The algorithm needs to recalculate the minimum-cuts

inducing the clusters that are children of C
b/d
αk . As the hierarchy does not change these

clusters are reconfirmed and we can apply Theorem 2.3 to all clusters that neither contain
b or d. On level αk−2 then the algorithms need to check whether the clusters that are

children of Cbαk−1
, Cdαk−1

or C
b/d
αk−1 change and thus, recompute these clusters. Afterwards

we can again apply Theorem 2.3 as we found that these clusters stayed valid. On the levels
αk−3, . . . , α1 we proceed using the same method.

Thus, we always need to reconfirm the clusters that are children of C
b/d
αk or of Cb, Cd or

Cb/d on lower levels. We denote the number of these clusters by $T(C
b/d
αk ) (see Figure 7

for illustration). As we assumed that we directly pick the representatives of the clusters

in C⊕/	α we need one minimum-cut calculation per cluster we compute, i.e. |$T(C
b/d
αk )|

minimum-cut calculations in total for the lower levels. Again we need to add the bound
for the upper levels to the one for the lower levels in order to gain a lower bound for the
advanced update algorithms (see Line 1 and 2 of Table 2).
Note, that for k = 1 this case is what we described as best case in the last section. For
k = 1 the bounds of the advanced update algorithms evaluate to the same values as the
best case bounds of the Basic Update Algorithm.

Cb/dαk

α1

Cb Cd

C
b

C
d

Cb Cd

Figure 7: The solid clusters belong to $T(C
b/d
αk ).

It is hard to give a good boundary for the number of minimum-cut calculations of the
whole algorithm in the worst case. For the upper levels the analysis is analogue to the
analysis of the general case of the Basic Update Algorithm. However, we do not

assume that we can reuse the cut we calculated in order to check whether C
b/d
αk−1 changes.

For the lower levels we give boundaries per level distinguishing the following three cases:

23



intra-cluster deletion, inter-cluster deletion, and inter-cluster insertion. Note that an intra-
cluster insertion does not occur on a level below level αk. Thus, we exclude this case from
the following analysis. The maximum number of minimum-cut calculations on a level
depends on the number of vertices in the expanded graph after all contractions have been
proceeded. In the worst case we need to compute the community of each vertex in the
graph. Thus, the maximum number of minimum-cut calculations is the number of vertices
after all contractions minus the number of communities we already know, i.e. |S|.
We start computing this number for an intra-cluster edge deletion. As we are on a level
below level αk the community of r(Cb/d) changes and we need to recompute the clustering
on this level. Now consider Algorithm 4. In Line 14 it contracts all clusters that neither
contain b nor d. Thus, after these contractions the graph has at most |Cα| − 1 + |Cb/d|
vertices. As S might be empty this is an upper boundary for the number of minimum-cut
calculations (see Table 2).

In the case of an inter-cluster edge deletion all cluster in Cα are contracted. Furthermore
Cb and Cd stay valid communities. Thus, Algorithm 4 needs at most |Cα|−2 minimum-cut
calculations (see Table 2).

For an inter-cluster edge insertion all clusters of Cα except Cb and Cd are contracted leading
to a graph with |Cα| − 2 + |Cb| + |Cd| vertices. Furthermore all clusters except Cb and
Cd stay valid communities in the modified graph. Thus, S contains |Cα| − 2 communities.
Therefore, the maximum number of minimum-cut calculations is |Cα| − 2 + |Cb|+ |Cd| −
(|Cα| − 2) = |Cb|+ |Cd| (see Table 2).

In the analysis above the difficulty of giving a good bound for the number of minimum-cut
calculations are the terms |Cb|, |Cd| and |Cb/d|, i.e. the uncontracted clusters. One could
use Flake et al’s heuristic in order to cluster Cb ∪ Cd and Cb/d, respectively, yielding a
number of minimum-cut calculations that is proportional to the number of clusters covering
these sets of vertices. Furthermore, one could argue that the size of Cα is similar to the size

of C⊕/	α . It follows that the number of minimum-cut calculations per level is proportional

to the number of clusters in C⊕/	α .

For a detailed and well-founded runtime analysis of the advanced update algorithms one
should implement and evaluate them in comparison to the Hierarchical Cut Clus-
tering Algorithm using real world data. Thereby one should test different heuristics
how to handle the problem of uncontracted clusters, e.g. (i) Flake et al’s heuristic and (ii)
first use the representatives of the children of Cb, Cdor Cb/d in the previous hierarchy.

5 Further dynamisation

In the foregoing parts of this work we only covered the modification of edges in a graph. In
the following two sections we discuss further possibilities to dynamise the Hierarchical
Cut Clustering Algorithm. Firstly we show that the granularity of the hierarchy
can easily be changed and secondly we cover vertex modifications, i.e. the insertion and
deletion of vertices.

5.1 Changing α1 > . . . > αmax

First of all consider the following scenario: We start with an initial hierarchy and stepwise
update the hierarchy. After a vast number of updates the hierarchy might be somehow
degenerated. For example two neighboring levels might be the same. In the worst case all
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levels could be the same. One can also imagine that differences between two neighboring
clusterings are too strong.

In these cases it might be reasonable to change one or several parameters in the sequence
α1 > . . . > αmax in order to change the granularity of the hierarchy. Obviously deleting
a single level is no problem at all as afterwards clusters on lower levels are still subsets
of the clusters on the higher levels. Now consider that we want to insert a level αi.
Firstly, we need to compute the clustering on this level. Therefore, we can step into the
Hierarchical Cut Clustering Algorithm and contract the clusters on level αi−1
and then compute the clustering on level αi. According to Lemma 1.7 the freshly inserted
level is compatible with upper part of the old hierarchy and as well with the lower part of
it. Note that we can simulate the change of a single αi by inserting and deleting a level.

5.2 Vertex modifications

Now we will discuss the modification of vertices, i.e. the insertion and deletion of a vertex.
We restrict this discussion to vertices that are disconnected in the graph G. Therefore,
before deleting a vertex one need to remove all incident edges by edge modifications and
if a vertex shall be added the incident edges are added after the vertex modification has
been proceeded. Note that even though we allow G to be disconnected in this section the
expanded graph Gα is always connected.

Hartmann et al. showed that disconnected vertices form singletons in the clustering [4, 5]
independently of the value of α and thus, the clustering can easily be updated after a
vertex modification by simply adding or deleting a singleton. This can easily be extended
to the context of hierarchical cut clustering: we need to add or delete a singleton on every
level of the hierarchy. Obviously in the updated hierarchy the clusters still obey the nesting
property described in Lemma 1.7, i.e. the hierarchy is a valid clustering hierarchy for the
modified graph.

As a singleton, that contains a disconnected vertex v, is the community of v (see Hartmann
et al.) the updated hierarchy again consists only of communities. Thus, we can further
apply the update techniques we presented after more edge or vertex modifications has been
proceeded.

6 Conclusion

In this work we presented different methods to dynamise the Hierarchical Cut Clus-
tering Algorithm presented by Flake et al. We covered changes of the underlying
graph by edge and vertex modifications as well as changing the parameter sequence
α1 > . . . > αmax, i.e. the granularity of the hierarchy. Of these three methods the
modifications of edges are most difficult to handle and cover the main part of this work.
To deal with edge modifications, we firstly developed the Basic Update Algorithm that
is simple but efficient. Afterwards we presented advanced update techniques that are more
complex but even more efficient. The runtime of these update algorithms is potentially
low in comparison to recomputing the hierarchy from scratch using the Hierarchical
Cut Clustering Algorithm.

Future work will include the implementation of the algorithms presented in this work
and their empirical evaluation. Furthermore it is an open question how to choose a good
parameter sequence α1 > . . . > αmax. Moreover, it is an interesting question how to deal
with offline changes and multiple graph modifications at once.
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