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Abstract

We describe an algorithm to find maximum-weight digitally convex regions in gray-scale
images. After Christ et al. [CPS10] gave a system for consistent digital line systems, the
question how to transfer the concept of convexity to digital regions naturally appeared. The
regions computed using this definition are weight-maximal, the computational complexity
of our algorithm amounts to O(n5 · log n). With additional input data constraining the
possible solution, this bound can be improved to O(n3 · log n). We further describe a
hybrid approximation algorithm that first generates suitable constraints by executing the
O(n5 · log n)-algorithm on a downscaled version of the input image and then uses these
constraints to achieve the O(n3 · log n) bound.

Zusammenfassung

Wir beschreiben und implementieren einen Algorithmus, um digital-konvexe Regionen
maximalen Gewichts in Graustufenbildern zu finden. Nachdem Christ et al. [CPS10] ein
System für konsistente digitale Liniensegmente konstruierten, stellte sich die Frage nach
entsprechenden digital-konvexen Regionen. Die vom Algorithmus berechneten Regionen
sind gewichtsmaximal, der Zeitaufwand liegt bei O(n5 · log n). Mit zusätzlichen Eingabe-
daten zur Einschränkung des Suchraums kann diese Schranke zu O(n3 · log n) verbessert
werden. Weiterhin beschreiben wir einen hybriden Approximationsalgorithmus, der sin-
nvolle Einschränkungen erzeugt indem der O(n5 · log n)-Algorithmus auf einer verklein-
erten Version des Eingabebildes ausgeführt wird und anschließend diese Einschränkungen
verwendet um die O(n3 · log n)-Schranke zu erreichen.
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1. Introduction

1.1. Motivation

The question how to find a good digital representation of a Euclidean line has long been
a problem in digital geometry and image recognition. Rasterizing an analogue line and
choosing the pixels as nodes in a grid is straightforward and gives a grid path close to
the Euclidean line. Unfortunately, it does not yield the same consistency properties valid
for Euclidean line segments. For example, the intersection of two rasterized lines might
not be connected. Some alternative systems for digital lines were compiled by Klette and
Rosenfeld [KR04]. Convexity in pixel grids was equally not consistent, as two digitized
conventionally convex shapes might have a non-convex intersection. However, finding
convex shapes as a problem of image segmentation has many applications. One example
is medical imaging, where knots, lumps or even tumors are often convex.

Christ et al. [CPS10] gave a system of consistent digital line segments, which can be
used to define convexity on a grid. For image recognition purposes, we are interested in
weight-maximal digitally convex regions in a two dimensional grid, using the line segment
definition of Christ et al. [CPS10].

Finding the optimal digitally convex region in an N ×N -image turned out to be compu-
tationally very expensive with a time complexity of O(n5 log n). When a line L from the
leftmost contained pixel to the rightmost contained pixel is given, the complexity improves
to O(n3 log n). We call this constrained set of regions baseline-convex on L.

1.2. Related work

How to find shapes with certain properties in images is a known problem in computer
science. In medical imaging, convex or similar shapes are often of interest. Kobatake and
Murakami [KM96] described a method to find tumors by searching round convex shapes
and presented the iris filter to achieve this.

Different approaches for digital straightness were developed, over which Klette and Rosen-
feld [KR04] gave a survey. Chun et al. [CKNT08] described a system of consistent digital
rays, which achieved the desired consistency properties for some paths. Using the digital
rays, they gave an algorithm to efficiently find star-shaped regions in images. The digi-
tally convex regions we discuss are a proper subset of the family of star-shaped regions.
The family of regions bounded by two x-monotone curves are another superset of the
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2 1. Introduction

digitally convex regions and were considered by Asano et al. [ACKT01], who proved the
NP -completeness of finding a weight-maximal connected shape within an image. Christ
et al [CPS10] expanded upon the work of Chun et al. [CKNT08] and constructed a system
of digital line segments which guarantee a small Hausdorff distance to the Euclidean line
segment. With this foundation, a consistent definition of digitally convex regions appears.
Our work draws from the definition of digital line segments and computes the maximum-
weight digitally convex region in input images. This work is primarily based on the work of
Christ et al [CPS10]. Our main dynamic programming algorithm is similar to and inspired
by one described by Chun et al [CST03].

1.3. Outline

We present the theoretical groundwork in Chapter 2, proceeding from the line segment
definitions to convexity requirements of digital regions in a grid. We transfer the notion
of slopes to digital line segments, resulting in the slope constraints, which are central to
our approach. The definitions of the computed regions conclude the chapter.

In Chapter 3, we present the main algorithm to find maximum-weight digitally convex
regions. After evaluating the space and time complexity, we present a second algorithm
which compromises optimality for the sake of performance. A hybrid version allows fine-
grained adjustments to balance performance against quality.

We evaluate the performance and results of the algorithms in Chapter 4. After discussing
the behavior and output of the implementation, we give some possible improvements.

Chapter 5 concludes our work and presents further open questions.

2



2. Preliminaries

In this chapter, the boundaries of digitally convex regions will be discussed, as they are
fundamental for the algorithm proper presented in Chapter 3. We start with the line
segment properties defined by Christ et al. [CPS10], construct a notion of slopes on a pixel
grid and conclude with the constraints defining the boundaries of a digitally convex region
and their construction.

2.1. Terminology

Since this thesis uses different orders on Z, some notations may not be unambiguous any
more. Unless mentioned otherwise, min, max, ≤ and related symbols are assumed to be
based on the natural order. If a minimum is based on another total order ≺, it will be
marked as min≺. The same holds for the maximum max≺ and other notations based
on orders. Since the coordinate sum, or metric of a pixel position p is central to the
construction of line segments, we define m(p) := (px + py) as an abbreviation.

2.2. Definitions

2.2.1. Line segment definitions

A line segment is a grid path between two points. Given points p = (px, py), q = (qx, qy)
on a two dimensional grid and a total order ≺ on Z, the line segment between them is
contained in the bounding box spanned by p and q. We construct the line segment S(p, q)
as a path on the two-dimensional grid, where neighboring nodes are connected. Each node
has four neighbors.

Without loss of generality, we assume px < qx and construct the path S(p, q) from left to
right. Let r = (rx, ry) be the current node of the construction. px ≤ rx ≤ qx holds.

Christ et al. [CPS10] divided two cases:

• case py ≤ qy:

– if m(r) is among the (qy − py) greatest elements in [m(p),m(q)) according to
≺, we continue the path with the upper neighbor of r.

– if m(r) is not among the (qy−py) greatest elements according to ≺, we continue
the path with the right neighbor of r.

3



4 2. Preliminaries

• case py > qy:
S(p, q) is the mirror reflection of S((−qx, qy), (−px, py)) along the y-axis.

Continuing a line segment with the right neighbor of the current rightmost point will be
called going to the right, adding the upper neighbor will be called going up. The other
directions follow analogously for the mirrored version.

This system of line segments has several interesting properties:

1. Grid path property: For all p, q ∈ Z2 , S(p, q) is the vertex set of a path from p to q
in the grid graph.

2. Symmetry property: For all p, q ∈ Z2 , S(p, q) = S(q, p)

3. Subsegment property: For all p, q ∈ Z2 and every r ∈ S(p, q), we have S(p, r) ⊆
S(p, q)

4. Prolongation property: For all p, q ∈ Z2, there exists r ∈ Z2, such that r 6∈ S(p, q)
and S(p, q) ⊂ S(p, r).

5. Monotonicity property: If both p, q ∈ Z2 lie on a line that is either horizontal or
vertical, then the whole segment S(p, q) belongs to this line.

2.2.2. Convexity requirements

For a region R ⊂ Z2 to be convex, every line segment between any two points has to be
contained within the region. If the line segment S(p, q) between two points p, q ∈ R is not
contained in R, we call S(p, q) a non-convexity witness path. In a region R containing k
pixels, at most (k2)/2 possible witness paths exist. We call a point in R having at least
one neighbor not contained in R a border point.

Within the set of border points, we define two subsets:

• The upper boundary of a region R consists of the pixels in R whose upper neighbor
is not contained in R.

• The lower boundary of a region R consists of the pixels in R whose lower neighbor
is not contained in R.

These boundaries may overlap if the height of R is only one pixel at some columns. The
union of upper and lower boundary may not contain all border points of R, but uniquely
defines R. Given upper boundary ub and lower boundary lb, a point p is contained in the
resulting region iff there are points u ∈ ub and l ∈ lb so that qx = ux = lx and ly ≤ qy ≤ uy.
The boundaries are not connected in most cases. We define a boundary path of a region
R as a connected set of pixels in R, each having one neighbor not contained in R. The
upper boundary path consists of the upper boundary and those border points necessary to
connect them. Similarly, the lower boundary path consists of the lower boundary and the
border points necessary to connect them.

When deciding whether a given region is convex, we only have to consider possible non-
convexity witness paths involving border points. Assume a non-convex grid region R and
two points a, b contained in R, so that their line segment S(a, b) is not contained in R.
Then a point r ∈ S(a, b) exists with r 6∈ R. S(a, r) ⊂ S(a, b) due to the subsegment
property mentioned in Section 2.2.1.

As line segments are connected, a border point t is contained in S(a, r), and a border
point s is contained in S(r, b). The line segment S(t, s) is a subsegment of S(a, b), since
t and s are both contained in S(a, b). Due to the subsegment property mentioned in
Section 2.2.1, S(t, s) contains every point of S(a, b) between t and s, including r. Since

4



2.3. Slopes 5

it includes r 6∈ R, and t, s ∈ R, S(t, s) is a non-convexity witness path for R. We have
now constructed a non-convexity witness path between two border points for an arbitrary
non-convexity witness path. Hence, it is sufficient to consider only border points of R,
since every non-convexity witness path of R contains a witness path between two border
points.

Due to the monotonicity property, non-convexity witness paths cannot go around a region
R. Every non-convexity witness path between a point u of the upper boundary path and
a point l of the lower boundary path will have to pass through R and contain at least
one other boundary path point t to reach u respectively l from outside R. The border
point t must be contained in either the upper or lower boundary path, resulting in a non-
convexity witness path within the upper or lower boundary path. Hence, it is sufficient to
concentrate on pairs of points within the upper respective lower boundary path.

Some border points are not contained in either boundary path. These are points of the
rightmost and leftmost column of R, which are between the upper and lower boundary
and therefore neither in the upper boundary path nor in the lower boundary path, as
those only contain additional points to make them connected. However, no non-convexity
witness path includes these points as the only border points. Such a path would need to
contain a point right of the rightmost column of R or left of the leftmost column, which
is prevented by the monotonicity property.

The upper boundary path of a digitally convex region first rises monotonously and then falls
monotonously. Otherwise, a horizontal non-convexity witness path could be constructed
due to the monotonicity property. Likewise, the lower boundary first falls, then rises
monotonously.

2.3. Slopes

2.3.1. Grid paths in images

Regarding a convex Euclidean shape in R2, the slope of the upper boundary is not allowed
to increase, the slope of the lower boundary is not allowed to decrease.

R

p

q

Figure 2.1.: Non-convexity in a Euclidean shape

In Figure 2.1, the slope of the upper boundary of a Euclidean shape increases between
p and q, which leads to a non-convexity witness path between them. We want to find
a similar notion of slope for the system of consistent digital line segments by Christ et
al. [CPS10]. For this, a definition of regions on a pixel grid is necessary. The definition
discussed in Section 2.2.2 is useful for a grid path, where the nodes have an area of zero.
The pixels of the input image have a non-empty area, which may lead to ambiguity when
computing the weight of an enclosed region. To resolve this ambiguity, we define the
boundary paths to go through the pixel centers and the resulting region to include every
pixel which is passed. The dashed boundary paths shown in Figure 2.2 enclose the region
R. The upper boundary path consists of the nodes (0, 3), (1, 3), (1, 4), (2, 4), (2, 3) and
(3, 3). The lower boundary path consists of the nodes (0, 0), (1, 0), (1, 1), (2, 1) and (3, 1).

5



6 2. Preliminaries

0

0

3

3

R

Figure 2.2.: A region defined by it’s boundary paths

Some extensions of these boundary paths will result in a digitally convex region, others will
not. We identify the slope of a path with the possible extensions preserving the convexity.
Since the possible extensions of a boundary path depend on the metrics of previous pixels
contained in it, 2(A+B) possible slopes exist in an image of size A×B. This stems from
the A + B possible values for m(.) for positive and negative slopes, respectively. Not all
slopes can end on all pixels. For example, no path with a steep negative slope can exist
on the upper border.

2.3.2. Total orders

R

0

0

4

3

Figure 2.3.: Non-convexity in digital regions

In Figure 2.3, the region R is bounded by a staircase path as an upper boundary and a
horizontal line as a lower boundary. Whether this region is considered convex depends on
the total order used to construct the system of digital line segments. If the natural order
is used, the line segment from (2, 2) to (4, 3) consists of the points (2, 2), (3, 2), (4, 2) and
(4, 3), which are all in R. This line segment is represented as the dashed line. Considering a
system of line segments based on the natural order, this region is indeed convex. However,
using the natural order causes the resulting digitally convex regions to be staircase regions.
Figure 2.4 shows an example of such a region. The lower boundary is simply a horizontal
line, while the upper boundary has monotonicity as it’s only constraint. These regions
do not fit our intuitive concept of convexity very well. Apart from that, they could be
computed faster, as the family of regions convex with respect to the natural order is a
subset of the family of point-stabbed regions discussed by Chun et al [CST03]. Their
algorithm would only needed to be modified slightly to compute regions digitally convex

6



2.3. Slopes 7

0

0

Figure 2.4.: A region R, digitally convex with respect to the natural order

with respect to the natural order. For these reasons, we concentrate on a different total
order used by Christ et al. [CPS10].

Since a line segment constructed between points p and q with the natural order consists
of the bottom and right border of the bounding box of p and q, the Hausdorff distance
between the line segment S(p, q) and the euclidean segment pq has a bound of Θ(

√
n)

for a euclidean distance of n between p and q. Because of this, Christ et al. [CPS10]
used another total order based on powers of two, which improves the distance bound to
Θ(log(n)).

Definition 1. Let |k|2 = sup{m : 2m|K} be the number of times k is divisible by 2.
We define the total order ≺ by saying a ≺ b if and only if there exists a non-negative
integer i such that |a− i|2 ≤ |b− i|2 and for all j ∈ {0, .., i− 1} we have |a− j|2 = |b− j|2.

From now on, we will refer to ≺ as the canonical total order. While the algorithm presented
in Chapter 3 can operate with any total order ≺ on [−n, n + m] ⊆ Z, we only used the
canonical total order for the experimental evaluation in Chapter 4.

Using ≺, the line segment from (2, 2) to (3, 3) in Figure 2.3 becomes the dotted line, as
|4|2 ≥ |5|2, and therefore 5 ≺ 4. Since the point (2, 3) is not contained in R, the line
segment between (2, 2) and (3, 3) is a non-convexity witness and R is not convex with
respect to ≺. Thus, the same region can be convex with respect to one total order and not
convex with respect to another.

2.3.3. Non-convexity witness paths

To generalize this example, we consider non-convexity witness paths in increasing upper
boundaries: Let R be a region and p, q be two points in the upper boundary of R, whose
line segment S(p, q) is not contained in R. Without loss of generality, let px ≤ qx hold.
We call the path between p and q along the upper boundary the boundary path b. The
boundary path and S(p, q) have at least p and q in common. Since both the starting point
and the end point of S(p, q) are within R, S(p, q) has to start at p in R, lead out of it
and re-enter it to reach q. We follow S(p, q) from p to q and observe the point where it
diverges from the boundary path and therefore from R. We consider an increasing upper
boundary, so the only way to diverge from R is for S(p, q) to go up from a border point
where the boundary path goes to the right. S(p, q) may diverge from the boundary path
by going to the right when the boundary path goes up, but it does not constitute a non-
convexity witness path. As we are only interested in these, we focus on the first point
where the boundary path goes to the right and S(p, q) goes up. Naturally, it is a border
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point. Let r = (rx, ry) be this border point and s = (rx, ry + 1) it’s upper neighbor, so
that r ∈ R ∩ S(p, q) and s ∈ S(p, q)\R. According to ≺, m(r) must be one of the qy − ry
biggest numbers in [m(r),m(q)) to cause S(p, q) to go up at r. Both paths go up qy − py
times. Since the boundary path went to the right at r, it still has to go up qy − ry times
to reach q, one more time than S(p, q). Since m(r) was one of the qy− ry biggest numbers
in [m(r),m(q)), the boundary path only has qy − ry − 1 pixels ui left for which m(ui) is
among the qy−ry biggest numbers. Therefore, it has to go up at another point t right of r,
despite m(t) not being one of the qy − ry biggest numbers in [m(r),m(q)). The inequality
m(t) ≺ m(r) holds.

We have now an easy criterion to check if any path between two points p, q (px < qx, py <
qy) is a suitable upper boundary path for a digital region. If there is a non-convexity
witness path, we can find the corresponding pixel where the boundary path goes to the
right and S(p, q) goes up, leaving the region. If there are pixels r = (rx, ry), t = (tx, ty)
with m(t) ≺ m(r) and rx < tx and the boundary path goes to the right at r and up at t,
we can construct a non-convexity witness path S(r, (tx, ty + 1)).

Using this criterion, we can construct suitable upper boundary paths by ensuring no step
up is made on a pixel t, if m(t) ≺ m(r) and the path went to the right at r. To formalize
the possible extensions of boundary paths which leave it’s suitability to be a boundary
path unchanged, we define the slope constraint of a boundary. The slope constraint is an
integer which determines the possible extensions of a boundary path.

2.3.4. Slope constraints

2.3.4.1. Ascending upper boundary

Let ubp be a valid ascending upper boundary path with the rightmost x-coordinate i.
For an extension of ubp to column i + 1 to be valid, no step up can be made on a pixel
whose value is smaller than any value of a pixel where ubp went to the right. Otherwise, a
non-convexity witness path could be constructed as described in Section 2.3.3. Since the
boundary path goes to the right once in every column, we only have to consider the pixels
of the upper boundary. The metric of every pixel in column i+ 1 where ubp goes up must
be larger than the upper slope constraint, according to ≺.

Definition 2. The slope constraint uc(ubp) of an upper boundary path ubp is the maxi-
mum of all metrics where ubp went to the right.

uc(up) := max≺
b∈ubp

ubp went to the right at b

m(b)

The slope constraint of an upper ascending boundary path in an image of dimensions n×m
can be computed in O(n), since only one value for every column has to be considered. If the
slope constraint is updated while constructing a boundary path, the constant complexity
per column will be dominated by the construction of the boundary path, as long as a ≺ b
can be resolved in constant time. Since the possible values for a and b are independent
of the actual picture, they can be computed beforehand and retrieved in constant time.
O(n + m) space is sufficient to store all possible values of m(p) sorted according to ≺.

2.3.4.2. Descending upper boundary

Line segments with a negative slope are created by mirroring along the y-axis, as defined
in Section 2.2.1. Let ubp be a valid descending upper boundary path and let q be the

8
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i i+ 1

r

p

q

q′

−i

rmirrored

pmirrored

qmirrored

q′m

Figure 2.5.: Extending an upper boundary with negative slope through mirroring the line
segments

uppermost pixel to which ubp can be extended. The metric of mirrored pixel qmirrored has
to be lower than the value of any mirrored pixel rmirrored, if ubp went downwards to r.
Otherwise, a line segment from the selected pixel would go up and leave the region, as
seen with q′ in Figure 2.5.

Definition 3. The slope constraint of a descending upper boundary path ubp is the
minimum of the metrics of all pixels to which ubp went downwards to

uc(ubp) := min≺
b∈ubp

ubp went downwards to b

m(bmirrored)

m(qmirrored) ≺ uc(ubp) holds for every valid extension q. For the constraints of descending
upper boundaries, several pixels per column must be considered, but only one per row.
Similar to the ascending boundary, we can update the slope constraints in amortized
constant time. Definition 2 is used for upper boundaries with positive slope, definition 3
is used for upper boundaries with negative slope. As argued in Section 2.2.2, an upper
boundary will first have a positive slope, then the rightmost part of it will have a negative
slope. Technically, a boundary path will not have a slope due to not being a straight line
segment. However, we consider a boundary path ending in column i to have “negative
slope” if the associated pixel in column i has a lower y-coordinate than the one in column
i− 1.

2.3.4.3. Descending lower boundary

Similar to the process applied to the descending upper boundary, the pixels in question
are mirrored along the y-axis. The resulting constraints are similar to those used for
the ascending upper boundary, mirrored along the y-axis as well. Let lbp be a valid
descending lower boundary path and let q be the lowermost pixel to which lbp can be
extended. No step down should be made to a pixel t, if lbp went to the right at s and
m(tmirrored) ≺ m(smirrored) holds.

Definition 4. The slope constraint of a lower boundary path lbp is the maximum of the
metrics of pixels bmirrored, if lbp went to the right at b.

lc(lbp) := max≺
b∈lbp

lbp went right at b

m((bx + 1, by)mirrored)

9
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2.3.4.4. Ascending lower boundary

The process has some similarities with the slope constraint calculations of the upper as-
cending and the upper descending boundary. Let lbp be an ascending lower boundary path
and let q = (qx, qy) be the lowermost pixel lbp can be extended to. The metric of every
pixel where lbp went up has to be greater than m(qx − 1, qy).

Definition 5. The slope constraint of an ascending lower boundary lbp is the minimum
of the metrics of pixels b where lbp went up.

lc(lp) := min≺
b∈lbp

lbp went up at b

m(b)

2.4. Region definitions

We define three notations for use in the main algorithm.

2.4.1. Potential

Definition 6. A region A is said to have higher potential than a region B iff

• the rightmost column of A equals the rightmost column of B and

• the largest possible extension of B into the next column is a true subset of the largest
possible extension of A.

This does not constitute a total order on the family of convex regions, since many regions
are not comparable.

2.4.2. Weight

Definition 7. The weight of a region weight(R) is defined as the summed up weight of
all pixels contained in it, i.e. weight(R) =

∑
p∈R weight(p)

Definition 8. A region A is said to dominate a region B iff

• A has a higher potential than B and

• weight(A) ≥ weight(B).

10
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3.1. Outline

We describe two algorithms to find the weight-maximal digitally convex shape in an image.
The first one requires only the input image and the total order used to define convexity.
We call this the complete algorithm. Unfortunately, it has a space complexity of O(n5)
and a computational complexity of O(n5 · log n), rendering it impractical for usual inputs.
The second algorithm requires additional input but achieves a space complexity of O(n3)
and a time complexity of O(n3 · log n). We call this second algorithm the baseline-convex
algorithm. We will then proceed to combine both algorithms into a hybrid approach
by scaling the input image to achieve an approximation with an overall running time
that is dominated by the baseline-convex algorithm. Both algorithms are very similar
in structure. In Sections 3.2 and 3.3 we give a high-level description of the complete
algorithm, in Sections 3.4 to 3.10 detailed parts are discussed until the baseline-convex
algorithm in Section 3.13 and the outline of the hybrid approach in Section 3.14 conclude
the chapter. The sub-algorithms are shared between the complete and the baseline-convex
algorithm with only minor adaptions. Therefore they are only discussed in-depth for the
complete algorithm.

3.2. Input and output data

The algorithm to find a maximum-weight digitally convex shape in an n×m pixel image
requires the following inputs:

• the image I, which can be interpreted as a matrix of pixel weights, I ∈ Zn×m

• a total order ≺ on [−n, n + m] ⊆ Z

• a threshold t

The pixel weights of I are constructed by using the brightness values of these pixels and
subtracting t. The brightness values are usually positive while the pixel weights include
positive and negative elements. Without the threshold, the weight-maximal region would
trivially contain the whole image. The output consists of the upper and lower boundary
defining the maximum-weight digitally convex region in I.

11
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3.3. Complete algorithm

3.3.1. Region definitions

Definition 9. The region R(x, uy, ly, uc, lc) is defined as the weight-maximal digitally
convex region fulfilling the following constraints:

• x is the rightmost column of R

• uy is the upper boundary pixel of R in column x

• ly is the lower boundary pixel of R in column x

• uc is the upper slope constraint

• lc is the lower slope constraint

3.3.2. Data structure

The main data structures are three five-dimensional arrays of integers. The five dimensions
are modeled after Definition 9.

1. W (x, uy, ly, uc, lc) – the summed region weights

2. previousUpperY(x, uy, ly, uc, lc) – previous upper y-coordinate

3. previousLowerY(x, uy, ly, uc, lc) – previous lower y-coordinate

4. previousUpperC(x, uy, ly, uc, lc) – previous upper slope constraint

5. previousLowerC(x, uy, ly, uc, lc) – previous lower slope constraint

The first array stores the weight of the computed regions and is central to the algorithm.
The second and third array are used to calculate the slope constraints and to backtrack the
shape of the maximum-weight region after the execution of the main algorithm. The fourth
and fifth array are not strictly necessary, they simplify reconstructing the maximum-weight
region. A region R is stored by writing the corresponding values in the respective arrays.
Often, we use W to describe a step in the algorithm and omit write operations in the other
arrays, since they are exactly analogous. Due to the sparseness of the arrays in practice,
the actual implementation uses nested maps. Since the array notation is clearer, it will be
kept in the algorithm description.

3.3.3. Overview

Algorithm 1 processes the image I column by column from left to right. For every column
i, the maximum-weight regions having their rightmost pixel in i are either created as single
columns or constructed from the maximum-weight regions having their rightmost pixel in
column i− 1.

Invariant 1 holds true for all x, uy, ly, uc, lc at each start of the outer for loop. Each value
stored in W is the weight of the maximum-weight digitally convex region ending on the
respective coordinates. We initialize W with −∞ to indicate an empty field.

Invariant 1. W (x, uy, ly, uc, lc) = −∞ or W (x, uy, ly, uc, lc) = weight(R(x, uy, ly, uc, lc))

At the first execution of the outer loop, W is completely empty. Invariant 2 holds for x ≤ i
and all uy, ly with ly ≤ uy at every step i = 0, .., n of Algorithm 1.

Invariant 2. ∃uc, lc W (x, uy, ly, uc, lc) = weight(R(x, uy, ly, uc, lc))

12
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In experimental data, the set of regions R(i, uy, ly, uc, lc) for all uy, ly, uc, lc in a given
column i turned out to contain a high amount of redundancy. The majority of regions
was dominated by other regions, i.e. their weight was less than or equal to the weight of
another region with higher potential.

For this reason, we decided to reverse the direction in the implementation. Instead of
computing the optimal region for every possible combination of uy, ly, uc, lc, we expand
existing regions ending in column i − 1 to column i and then remove dominated and
duplicate regions.

Algorithm 1: High-level description of the complete algorithm

Input: image I as a matrix of pixel weights, total order ≺, (threshold k)
Output: maximum-weight digitally convex region in I
M := ∅ ;
for i = 0 to n do

create new regions in column i and add them to M ;
foreach region R ∈M ending in column i do

extend R to region R′ ending in column i + 1 so resulting area is maximized;
add R′ to M ;

end
foreach region R′ ∈M ending in column i + 1 do

if R′ contains more than one pixel in column i + 1 then
trickle R′ to smaller regions R′smaller;
add R′smaller to M ;
/* R′ is not deleted */

end

end
foreach region R′ ∈M ending in column i + 1 do

update slope constraints of R′;
if R′ is invalid due to anomaly then

remove R′ from M
end

end
consolidate regions;

end
return weight-maximal region in M

3.4. Create new regions in column i

A single vertical line is a valid digitally convex region. In every column, a new region is
created for every combination of upperY and lowerY as shown in Algorithm 2. After this

Algorithm 2: Creating initial regions

Input: image I, column x
for upperY = 0 to m do

for lowerY = 0 to upperY do

W (x, upperY, lowerY, x + upperY,−x + lowerY ) =
∑upperY

i=lowerY I(x, i)
end

end

step, Invariant 2 holds for x ≤ i and every uy, ly with ly ≤ uy. Since the regions created
in this step are digitally convex, Invariant 1 still holds. The initial slope constraints are

13
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the metrics of the uppermost and lowermost pixel, as these are the first pixels contained in
the respective boundary paths. Newly created regions always have the highest potential.

3.5. Extend existing regions to column i+ 1

When extending an existing digitally convex region ending in column i to column i+1, we
have to ensure the extended region’s convexity. The paths between pixels contained in the
given region will not change, and a single column cannot contain any non-convex paths
due to the monotonicity property, as discussed in Section 2.2.1. For that reason, we only
have to consider possible paths between the previous region and the new column. Specifi-
cally, based on Section 2.3.3 and using the slope constraints constructed in Section 2.3.4,
we calculate the highest possible extension of the upper boundary and the lowest possible
extension of the lower boundary. Given a region R = R(i, uy, ly, uc, lc) ending in column
i, we create a region R′ = R(i + 1, newUpperY, newLowerY, uc, lc) such that R ⊂ R′ and
newUpperY −newLowerY is maximized. The possible extensions of both boundaries en-
closing the maximum area can be computed almost independently, since they depend only
on the region up to column i. As their only interaction, the lower boundary gives a lower
bound for the upper boundary. Extensions where this constraint is violated are invalid
and will be discarded. Extending region R to a single R′ has a constant computational
complexity. We focus on the extension of the upper boundary, as the lower boundary’s
extension works similarly. Since the upper ascending and the lower descending boundary
both increase the distance between them, we call them expanding boundaries. The lower
ascending and the upper descending boundary are called contracting boundaries.

3.5.1. Expanding boundary

In this section, we assume the upper boundary has a positive slope, we will discuss the
other case in Section 3.5.2. Let p = (px, py) be the last pixel of the upper boundary, px = i.
Since we assume the boundary to be expanding, we use the first definition of the upper
slope constraint to find a valid pixel to extend it to. This pixel will be called q = (qx, qy).
Naturally, qx is i + 1. To maximize the enclosed area, qy should be as high as possible.
We find qy by selecting the lowest pixel whose metric is smaller than uc. If it were not,
we could go up at qy and select qy+1 as the extension, so qy would not be the highest
possible. Since a horizontal extension of an ascending upper boundary is always valid, py
is a suitable lower bound for qy.

qy = min
y≥py, (px+1)+y≺uc

y

where ≺ is the total order and uc is the upper slope constraint, as defined in Section 2.3.4.1.
If uc ≺ (px + 1) + y holds true for every y ≥ py, every y-coordinate would be a valid
extension and we could select an arbitrary one. To maximize the area, we choose qy = m,
with m being the height of our image. Since n+m pixel metrics exist in an n×m-image,
we can store possible minimal values for every slope constraint in O((n + m)2) space.
Using precalculated values, we can find the y-coordinate for a given boundary extension
in constant time.

In Figure 3.1, a given upper boundary is extended from column i to column i + 1. In this
example, q is the highest possible extension, marked as a dashed line. The path from r to
q′, marked as a dotted line, is above p. If we took q′ as the highest point of column i + 1,
the path S(r, q′) would be a non-convexity witness, rendering the resulting region invalid.

14
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p

q

q′

i i+ 1

r

Figure 3.1.: Extending the upper boundary. uc = rx + ry

3.5.2. Contracting boundary

According to the line segment system definition of Christ et al. [CPS10], line segments
with negative slope are constructed by mirroring the definition for positive slopes on the
y-axis. For descending upper boundaries, these mirrored definitions result in the following
constraints:

qy = max
y≤py ,(−(qx)+y≺uc)

y

q′

q

p

Figure 3.2.: Extending the upper boundary with a negative slope

The lower boundary of a region can be extended in a similar way. Given a region R ending
in column i, we can now construct a region R′ ending in column i + 1 by extending both
boundaries. The resulting region is well-defined, as considered in Section 2.2.2.

If we use precalculated values for≺, the operations described in this section can be executed
in constant time.

3.5.3. Invariants

We showed in Section 2.3.3 that every non-convexity witness path necessitates a violation
of the slope constraints. In the current step of the algorithm, we chose the extensions of
the boundary paths so that they fulfill the slope constraints. Therefore, no non-convexity
witness paths exist and the resulting region is convex.

15
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3.6. Trickle

The region R′ constructed by extending the boundaries of a previous region is valid, but not
necessarily optimal. We need to consider all possible continuations of R into column i+ 1.
In Algorithm 3, we “trickle inwards” both boundaries of R′ to attain all possible extensions
of R into column i + 1. The updating of arrays previousUpperY and previousLowerY
happens as well, but is omitted in the description for the sake of brevity. In Figure 3.3, an

result of extension

trickled down

trickled down

trickled down

Figure 3.3.: Obtaining several upper boundaries by trickling down one

upper boundary is trickled down to obtain y new regions. This process is repeated until
the upper and lower boundary overlap, as shown in Algorithm 3. In this phase, the slope

Algorithm 3: Trickling a single region

Input: region R
for uy = upperY (R)− 1 to lowerY (R) do

/* create new region with the upper boundary lowered and add it to

M */

W (i + 1, uy, lowerY, uh, lh) = W (i + 1, uy + 1, lowerY, uh, lh)− I(i + 1, uy + 1);
for ly = lowerY (R) + 1 to uy do

/* create new region with the lower boundary raised and add it to

M */

W (i + 1, uy, ly, uh, lh) = W (i + 1, uy, ly − 1, uh, lh)− I(i + 1, ly − 1);
end

end

constraints were only copied and may or may not be valid for the newly created regions.
This change will be taken care of in Section 3.7. To avoid overwriting dominating regions,
the resulting regions are not in fact written directly to W , but stored until the entire
column has been considered. After this step, (newUpperY −newLowerY + 1)2/2 trickled
regions are created from R. Repeating this algorithm for every of the O(n5) regions stored
in W would result in an overall computational complexity of O(n7), which is the reason
another approach was developed. The details will be discussed in Section 3.12.3.

3.6.1. Invariants

The created regions with expanding boundaries are convex as well, since the vertical part
of a line segment connecting a point in column i and column i + 1 is contained in column
i + 1 and is now only shortened. Regions with contracting boundaries may or may not be
valid, the invalid ones are discarded in Section 3.8.
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3.7. Update slope constraints

As the slope constraints of a region R depend on its boundary paths, they change when the
boundary paths change. Re-evaluating the formulas presented in Section 2.3.4 would ne-
cessitate considering the entire boundary path so far, which results in linear computational
complexity. To keep the complexity for one path update constant, we only compare the
previous slope constraints with the metrics of the boundary path pixels in the rightmost
column. As shown in Algorithm 4, the metrics of pixels where the boundary path went up
or down also influence the new slope constraint. For this calculation, we need the mini-
mum, according to ≺, of an interval, defined with the natural order. Using precalculated
values and O((n+m)2) space, we can retrieve these minimal values in constant time. Let
newUpperY and newLowerY be the rightmost y-coordinate of the upper respective lower
boundary in column i+1. The slope constraints are uc and lc, the y-coordinates in column
i are previousUpperY and previousLowerY . Algorithm 4 has a constant computational

Algorithm 4: Update slope constraints

Input: previous slope constraints uc and lc, column i, previous and current
y-coordinates newUpperY , newLowerY , previousUpperY and
previousLowerY

Output: new slope constraints uc and lc
/* upper boundary */

if upper boundary has positive slope then
if uc ≺ i + 1 + newUpperY then

uc = i + 1 + newUpperY ;
end
else

/* leave uc unchanged */

end

end
else

uc = min≺(uc,min≺[−(i) + newUpperY,−(i) + previousUpperY ));
/* minimum over interval is used */

end
/* lower boundary */

if lower boundary has positive slope then
lc = min≺(lc,min≺[i + previousLowerY, i + newLowerY ));

end
else

if lc ≺ −(i + 2) + newLowerY then
lc = −(i + 2) + newLowerY ;

end
else

/* leave lc unchanged */

end

end

complexity, as long as the minimum of an interval according to ≺ can be found in constant
time. Like before, this can be done with cached values in O((n + m)2) space.

3.8. Anomalies

Since the lower ascending and the upper descending boundaries share some properties, we
call both contracting boundaries. In case of a contracting boundary, the regions derived
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by trickling a valid region inwards may not always be valid as well. For some total orders,
anomalies can occur on upper boundaries with negative slope or lower boundaries with
positive slope. The anomalies occur when two numbers A and B exist with A ≤ B and
B ≺ A. Naturally, using the natural order will prevent anomalies from occurring, but we
will loose the bound for the Hausdorff distance.

In Figure 3.4, we have a region whose lower boundary has a positive slope. The point
q = (5, 1) is a valid extension of the lower boundary, according to ≺. The point q′ =
(5, 4), even though it lies inwards of q, is not. The path between (4, 0) and q′ consists of
(4, 0), (4, 1), (4, 2), (4, 3), (5, 3), (5, 4), according to ≺. If we continue the lower boundary
with q′, (5, 3) is not contained in the resulting region, which is therefore non-convex.

(0, 0)

q

q′

(4, 0)

Figure 3.4.: Invalid region derived through trickling

After trickling contracting boundaries, we have to remove these invalid regions. If any of
these two conditions holds true, the region will be deleted:

• uc ≺ −(i + 1) + upperY

• lc ≺ (i + 1)− 1 + lowerY

After the regions fulfilling the above conditions are deleted, the remaining ones are digitally
convex and can be stored in W without violating Invariant 1.

3.9. Consolidate constructed regions

In the previous steps, we constructed the expansions of one region R ending in column i
to a set of regions ending in R′. The descendants of a single region have unique values for
upperY and lowerY .

After repeating this constructions for all regions ending in i, we have created about n6/2
regions. Since W only holds n4 paths per column, some regions share coordinates. To get
the optimal region R(i+ 1, ·, ·, ·, ·), every constructed region CR is stored in the array W ,
only if there was no other region with a higher weight already stored for these coordinates.
In both cases, the region with the lower weight is discarded. After this step, the Invari-
ant 1 holds true. W does contain an empty value, indicated by −∞, for some indices for
which valid regions exist to reduce redundancy. An empty value indicates the existence of
another region which dominates this one. For those indices, the associated region could be
constructed by choosing the maximum-weight region under those with higher potential.
In Section 3.4, one region consisting only of one column was created in each column i
for every uy, ly with ly ≤ uy. If we continue both boundaries horizontally, the resulting
region is rectangular and therefore digitally convex. This region will only be deleted if a
dominating region with the same i, uy, ly is found. For that reason, Invariant 2 holds true
for all uy, ly with ly ≤ uy.

18



3.10. Reconstructing the optimal region 19

3.10. Reconstructing the optimal region

After the main algorithm has finished, the boundaries of the maximum-weight region are
stored implicitly in the arrays W , previousUpperY and previousLowerY . We first identify
the last column of the maximum-weight region by iterating over the values in W and pick
the maximum. With the end points identified, we follow the boundaries backwards in
Algorithm 5. Since the region is unambiguously characterized by the upper and lower
boundary, as shown in Section 2.2.2, the output of Algorithm 5 is sufficient. We assume

Algorithm 5: following paths backwards

Input: x, uy, ly, uc, lc
Output: upper and lower boundary defining the maximum-weight region

R(x, uy, ly, uc, lc
weight = W (x, uy, ly, uc, lc);
/* if the weight of the region currently being backtracked is the same

as the current column, we are already at the leftmost column */

while weight ≥∑uy
y=ly I(x, y);

do
upperBoundary.prepend(x, uy);
lowerBoundary.prepend(x, ly);
previousUY = previousUpperY(x, uy, ly, uc, lc);
previousLY = previousLowerY(x, uy, ly, uc, lc);
previousUC = previousUpperC(x, uy, ly, uc, lc);
previousLC = previousLowerC(x, uy, ly, uc, lc);
weight = W (x, uy, ly, uc, lc) -

∑uy
y=ly I(x, y);

x = x− 1;
uy = previousUY;
ly = previousLY;
uc = previousUC;
lc = previousLC;

end
upperBoundary.prepend(x, uy);
lowerBoundary.prepend(x, ly);
return upperBoundary, lowerBoundary

Invariant 1 holds before the execution of Algorithm 5 and W is not empty for the input
coordinates given. The associated region R(x, uy, ly, uc, lc) is recreated by backtracking
the values stored in the five arrays. According to Invariant 1, this region is indeed digitally
convex.

The operations within the while loop take constant time. Since x is decreased with every
loop repetition, the loop body will be executed at most n times. The computational
complexity of Algorithm 5 is therefore O(n).

3.11. Correctness

3.11.1. Returned region is convex

The initial shapes created in Section 3.4 are convex, since all line segments between two
points sharing a x-coordinate only contain points within that column, see Section 2.2.1.
The regions computed by Algorithm 1 are digitally convex if Invariant 1 holds at the end
of the outer loop and Algorithm 5 returns a digitally convex region if Invariant 1 holds.
The former is discussed in the respective sections, the latter in Section 3.10.
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3.11.2. Returned region is weight-maximal

Given an image I, let Ropt be the maximum-weight digitally convex region on I. Let xopt
be the rightmost column of Ropt and Rpredecessor be region Ropt without xopt. Rpredecessor

is the maximum-weight region among those with the potential to be extended to Ropt.
Otherwise, we could extend another region R′ ending in xopt−1 to include the intersection
of xopt and Ropt so that the resulting region R′extended had a higher weight than Ropt. This
is a contradiction to the initial assumption of Ropt being the maximum-weight digitally
convex region on I. This argumentation can be extended to show that every predecessor
Ri, part of Ropt up to region i, is the maximum-weight region among those ending in
column i with the same constraints. The possible extensions of a region are controlled by
the y-coordinates and slope constraints.

We now have to show that these regions are actually constructed. In the first step of
Algorithm 1, all possible regions consisting of a single column, including the leftmost
column of Ropt, are created. Since it is the maximum-weight region among those of it’s
coordinates and constraints, it will not be dominated by any other region and will be
written to W .

In the phase of extending and trickling, all possible extensions of regions stored in one
column i of W (i, ·, ·, ·, ·) are created. Since Ri is stored in W , Ri+1 is among the possible
extensions. Since Ri+1 is weight-maximal among the regions with the same potential, it
will be saved to W (i+ 1, ·, ·, ·, ·). In accordance with Invariant 1, this continues until Ropt

is computed.

3.12. Computational and space complexity

3.12.1. Space complexity

Each of the five five-dimensional arrays has a space complexity of O(n ·m2 · (n + m)2).
In the extension and the slope constraint update phases, arrays with precalculated values
are used. These use O((n+m)2) space each, their influence on the total space complexity
is dominated by the five storage arrays. This results in an overall space complexity of
O(n ·m2 · (n + m)2) or O(n5) for a quadratic input image.

3.12.2. Naive implementation

The algorithm steps described in Section 3.4, Section 3.8, Section 3.5 and Section 3.7
have a constant computational complexity for one region. The final part of retrieving
the computed region, described in Section 3.10 has a computational complexity of O(n).
The naive implementation of the trickling step, described in Section 3.6, creates up to
m2/2 regions for every region in W . Using this implementation results in an overall time
complexity of O(n ·m2 · (n + m)2 ·m2 · 1) = O(n ·m4 · (n + m)2) or O(n7) for a quadratic
input image.

3.12.3. Improvements

A simple speedup consists in consolidating the expanded regions first and trickling them
afterwards in place in W . This results in a constant computational complexity for the
trickle step and an overall complexity of O(n5). Unfortunately, the previous y-coordinates
are necessary for the slope constraint update, as seen in Section 3.7. Before the boundaries
are trickled inwards, the potential of a region depends on the previous y-coordinate as well
as on the slope constraints. If, for example, newUpperY ≤ previousUpperY , the upper
boundary cannot rise again. Before the trickling and the slope constraint update are
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Figure 3.5.: Dominating regions modeled as a skyline problem.

completed, a lower value for previousUpperY results in a higher potential. Removing
regions earlier could result in one region R overwriting another region R′, if uc(R) =
uc(R′), lc(R) = lc(R′), uy(R) = uy(R′) and ly(R) = ly(R′) and weight(R) ≥ weight(R′),
despite R′ having a lower value for previousUpperY and therefore possibly having more
potential than R. These coordinates are only important in the range between the most
outward lying extension and previousUpperY respective previousLowerY . This can be
constructed as a skyline problem. The x-axis of the skyline problem corresponds to uy or
ly, the weight of the regions is represented as the height of the skyline shapes, as shown
in Figure 3.5. The resulting skyline problem can be solved by sorting the uppermost and
lowermost y-coordinate of the O(m·(n+m)2) shapes, which results in a time complexity of
O(m·(n+m)2·log(m·(n+m))) for one skyline model. The sections marked in bold designate
the regions written to W for each set of coordinates. The skyline modeling has to be
repeated m-times per column, resulting in a complexity of O(m2 ·(n+m)2 ·log(m·(n+m)))
per column. With this improvement, the stated complexity of O(n5 · log n) can be reached.
Algorithm 6 implements this for the expanding upper boundaries and is inspired by work
of Börzsönyi et al. [BKS01]. This problem does not appear for contracting boundaries, as
the previous y-coordinate is of no significance in this case and they can be trickled in place.
After the execution of Algorithm 6, the slope constraints are updated as usual, described
in Section 3.7.

3.13. Baseline-convex algorithm

3.13.1. Introduction

With some additional input, we can reduce the computational complexity and space com-
plexity to O(n3 log n) and O(n3), respectively. We will first discuss the nature of these
inputs in Section 3.13.2, then discuss a family of regions in Section 3.13.3 and the main al-
gorithm in Section 3.13.5, to conclude with the space and time complexity and limitations
in Sections 3.13.7 and 3.13.8.

3.13.2. Additional input

In addition to the inputs of the complete algorithm, as defined in Section 3.2, the baseline-
convex algorithm requires two inputs:
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Algorithm 6: Solving the influence of previousY as a skyline problem

Input: column i
extended = ∅;
foreach R ∈M ending in column i do

extend R and add the extension R′ to extended;
end
for ly = 0 to m do

for uc = 0 to (n + m) do
for lc = 0 to (n + m) do

tempset = regions R′(i + 1, ·, ly, uc, lc) in extended;
activeset = ∅;
sort the y-coordinates uy and previousUpperY of regions in tempset;
/* skyline algorithm */

for u = m down to ly do
add region R′ ∈ tempset to activeset if uy(R′) = u;
remove region R′ from activeset if previousUpperY (R′) = u;
W (i + 1, u, ly, uc, lc) = maxR′∈activesetweight(R

′);
end

end

end

end
repeat the above for the lower boundary;
trickle the contracting boundaries in place;

• an array d of length n, containing one y-coordinate d[i] for every column i

• the starting column xstart

The algorithm finds the maximum-weight region R fulfilling two additional constraints:

• xstart is the leftmost column whose intersection with R is non-empty.

• If R contains a pixel in column i, it contains (i, d[i]) as well.

The array d serves as the baseline, dividing the upper and lower boundary and allowing
to compute optimal boundaries for the upper respective lower part independently. This
reduces the space complexity to O(n3) and the time complexity to O(n5) or O(n3 log n),
depending on implementation choice, see Section 3.12.

3.13.3. Half-convex regions

To use the additional information of the baseline d, we define half-convex regions.

Definition 10. A half-convex region is a region H where either

• every non-convexity witness path contains pixels of the lower boundary, or

• every non-convexity witness path contains pixels of the upper boundary.

These types of half-convex regions are called upper half-convex region and lower half-
convex regions, respectively. In Figure 3.6, U is an upper half-convex region and L is a
lower half-convex region. Since they share the baseline (represented by the pixels filled
in gray) and their leftmost and rightmost x-coordinate, they can be combined to form a
digitally convex region. A subset of the baseline is the fixed lower boundary for the upper
half-convex region and the upper boundary for the lower half-convex region. An upper and
a lower boundary need to share the leftmost and rightmost x-coordinate to unambiguously
define a region. The leftmost x-coordinate is given as xstart.
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U
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Figure 3.6.: Half-convex regions U and L

3.13.4. Data structure

Since we compute the upper and lower boundaries independently, we can store them in
two three-dimensional arrays.

• UW(x, uy, uc) – weight of the upper half-convex regions

• UPreviousY(x, uy, uc) – path tracking of the upper half-convex regions

• LW(x, ly, lc) – weight of the lower half-convex regions

• LPreviousY(x, ly, lc) – path tracking of the lower half-convex regions

Since no upper boundaries end below the dividing line, the first two arrays are empty for
all (x, y)-positions in the lower half. The same holds for the lower boundaries and the
latter two arrays. Due to this and the overall sparseness, map structures were used in the
implementation, similar to the complete algorithm.

3.13.5. Algorithm

The overall structure is outlined in Algorithm 7. It is very similar to the previous Algo-
rithm 1. We proceed column by column in the direction of increasing x-values. The upper
and lower half-convex regions are computed independently. To allow this, the leftmost
column of each region is fixed as xstart. No completely new regions are created after the
first step, which is a major difference to the first algorithm. After the execution of the
main algorithm, the maximum-weight pair of half-convex regions is located and joined.
Since the leftmost column is fixed, for every column i, a pair of half-convex regions with
their rightmost column i can be combined to form a digitally convex region. After the
maximum-weight pair of half-convex regions are joined for every column, we only have to
iterate over all columns to pick the overall weight-maximal region.

3.13.6. Space complexity

Similar to Section 3.12, the space complexity is dominated by the storage arrays. The
baseline-convex algorithm uses four three-dimensional arrays, which results in a space
complexity of O(n ·m2).

3.13.7. Computational complexity

O(n · m2) regions are considered. The extension, update of the slope constraints and
removing of invalid regions have a constant complexity for each region. As in Section 3.12,
the trickle step dominates the complexity for each region, resulting in an overall complexity
of O(n ·m2 logm)
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Algorithm 7: Computing a region baseline-convex on d

Input: total order ≺, image I, array d, int xstart
Output: maximum-weight region baseline-convex on d starting on xstart
UM = ∅;
LM = ∅;
create upper half-convex regions in column xstart and add them to UM ;
create lower half-convex regions in column xstart and add them to LM ;
for x = xstart to n do

foreach upper half-convex region R in UM ending in column x do
create R′ ending in column x + 1 from R;
add R′ to UM ;

end
foreach lower half-convex region R in LM ending in column x do

create R′ ending in column x + 1 from R;
add R′ to LM ;

end
foreach half-convex region R′ ∈ UM ∪ LM that ends in column x + 1 do

if R′ contains more than one pixel in column x + 1 then
trickle R′ inwards to Rsmaller;
add Rsmaller to UM or LM ;

end

end
foreach half-convex region R′ ∈ UM ∪ LM that ends in column x + 1 do

update slope constraints of R′;
if R′ is invalid due to anomaly then

remove R′ from M
end

end
remove dominated regions;

end
return maximum-weight matching pair of half-convex regions in UM , LM

3.13.8. Limitations

The family of digitally convex regions recognized by Algorithm 7 is equal to the one
recognized by Algorithm 1, if given the right input parameters. The quality of the result
depends on the input parameters. If the optimal region Ropt and the dividing line do not
intersect, the optimal region will not be found. Hence, it is vital to obtain suitable input
parameters. A simple approach consists of calculating the summed weight for every row
and choose the maximum row as the dividing line. After we chose the baseline d, the
starting point xstart could be obtained by choosing the leftmost point of the maximum-
weight segment in d. This is feasible in O(n + m). Unfortunately, even a simple diagonal
shape, though convex, would elude this approach.

3.14. Hybrid algorithm

To solve the problem of obtaining good input parameters for the baseline-convex algorithm,
we propose to use Algorithm 1 on a scaled down version I ′ of the input image I. The
resulting weight-maximum region Rsmall is scaled up to fit the original image. From this
result, the input parameters for Algorithm 7 are extracted. The baseline d is constructed
by taking the arithmetic mean between upperY and lowerY of the up-scaled region in
every column. We note that imperfections due to rounding errors occur. The leftmost
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column of Rsmall is scaled up and used as xstart. Again, this choice is not unambiguous,
since several columns of the original image correspond to one column of Rsmall. Despite
these limitations, the hybrid approach is able to find convex shapes Rhybrid of any form
and orientation. From now on, the baseline-convex algorithm designates Algorithm 7 with
the naive input parameters, as described in Section 3.13.8.

3.14.1. Computational complexity

The computational complexity of the hybrid algorithm depends on the scaling factor. If we
choose

√
n×√m as the dimensions for I ′, the resulting computational complexity will be

dominated by the complexity of the baseline-convex algorithm: O(n5/2 log2 n+n3 log n) =
O(n3 log n). The size of the draft image to be computed by the complete algorithm can
be varied to balance output quality against performance.

3.14.2. Iterating

The input parameters obtained by the hybrid approach are not necessarily optimal. Two
properties of the resulting convex region Rhybrid indicate the potential for improvements:

1. If the total weight of the leftmost column of Rhybrid is smaller than or equal to zero,
xstart should be increased to avoid including it.

2. If the total weight of the top row or the bottom row of Rhybrid is smaller than or equal
to zero, d needs to be adapted. This adaption does not apply if the top or bottom row
with negative weight is the only row intersecting Rhybrid in some columns. In other
cases, the row in question should be omitted from the region and is only included in
the current solution because an outlier in d forces the algorithm to do so.

The first step will be executed at most width(I)/width(I ′) times and the second step
at most height(I)/height(I ′) times, which are the number of possible columns respective
rows in I corresponding to one column respective row in I.
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4. Evaluation

4.1. Anomalies

The shapes computed by our algorithms share the limitations of the underlying system of
line segments. As Christ et al. [CPS10] discuss, the line segments and therefore our regions
are not invariant under translation, rotation and mirroring, as the construction depends
on the sum of absolute coordinates. Apart from that, some anomalies inconsistent with
an intuitive understanding of convexity occur, as noted in Section 3.8.

4.2. Experimental setup

To evaluate the time requirements of the algorithms and the sparsity of the data struc-
tures, we generated random diamonds on top of white noise to use them as input images.
An example can be seen in Figure 4.2. These images varied in size to examine scalability.
Additionally we used the implementation to find digitally convex regions in images derived
by magnetic resonance imaging, as shown in Figure 4.1. That was not part of the runtime
test, instead served to illustrate a possible application. For the MRI-images, we chose a
fixed threshold of 190 within a range of 0 to 255 for brightness values. In randomized
images, the threshold was chosen randomly as well, between 0 and 255. We used the
algorithms described in Sections 3.3, 3.13.5 and 3.14 to find convex regions in the afore-
mentioned images. The scaling factor used for the hybrid algorithm’s implementation was

Figure 4.1.: 256 × 256-image of a brain tumor, derived by MRI. This image was released
under the Creative Commons BY-SA license by Wikipedia user Bobjgalindo
at http://commons.wikimedia.org/wiki/File:MRI_brain_tumor.jpg
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28 4. Evaluation

Figure 4.2.: 300× 300-image of a diamond on top of white noise

√
n in an image of dimensions n× n. When not called the hybrid algorithm, the baseline-

convex algorithm denotes Algorithm 7 with the input derived by a scanline approach, as
described in Section 3.13.8. The algorithms were implemented in Java 1.6.0 and executed
with the OpenJDK Runtime Environment (IcedTea6 1.9.5) on Linux 2.6.34. The hardware
consisted of an 8-core machine equipped with 32GB of random access memory and Intel
E5430 processors, clocked at 2.66GHz. Since the parallelizations proposed in Section 4.4.4
were not implemented, only a single core was used.

4.3. Experimental results

4.3.1. Limitations

Memory consumption was the limiting factor for each algorithm. The testing machine
was equipped with 32GB of random access memory. With this, the complete algorithm
was able to reliably compute convex regions in images with a width and height of 70
pixels. Regions in quadratic images whose width was in the range of 80− 90 pixels could
sometimes be computed, since the memory consumption varies with the actual image.
For images larger than 100 × 100, the complete algorithm was unable to obtain a result
with the specified memory. The baseline-convex algorithm reliably operated on images
consisting of up to 2000 × 2000 pixels. Regions in images larger than 4000 × 4000 could
not be computed. The results for inputs between these marks varied and depended on the
actual number of regions created.

4.3.2. Output

Figure 4.1 was too large for the complete algorithm, so we used the baseline-convex and
the hybrid algorithm. The resulting regions are shown in Figure 4.3a and Figure 4.3b.
The weights of the returned regions are 53810 and 54235, for the baseline-convex and
hybrid algorithm, respectively. Obviously, the solution of the baseline-convex region is not
optimal. While the hybrid algorithm’s solution is very likely not optimal either, it shows
one weakness of the other approach: The shape is slightly diagonal, therefore unobtainable
by the baseline-convex algorithm, as discussed in Section 3.13.8.

Despite this advantage, the hybrid algorithm does not always yield better results than
the baseline-convex one. An example for this would be Figure 4.2 and the results shown
in Figure 4.4a and Figure 4.4b. In this example, the hybrid result is inferior due to the
rounding errors mentioned in Section 3.14. Executing the algorithm again with a different
value for xstart would achieve a better result.
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(a) Result of the baseline-
convex algorithm, weight of
53810.

(b) Result of the hybrid algo-
rithm, weight of 54235.

Figure 4.3.: Regions in Figure 4.1

(a) Result of the Baseline-convex al-
gorithm, weight of 591095.

(b) Result of the hybrid algorithm,
weight of 585579.

Figure 4.4.: Regions in Figure 4.2
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Figure 4.5.: Test image for occupancy measurements

Figure 4.6.: Solutions computed by the baseline-convex algorithm on Figure 4.5 for thresh-
olds 120, 140, 160, 180 and 240

4.3.3. Time and occupancy measurements

As noted in Section 3.3.2, only very few of the possible O(n5) regions are created. We call
the ratio of occupied cells to total cells the occupancy rate. The occupancy rate does not
correlate with image size, instead it depends on the brightness of the input image. While
regions of negative weight cannot be discarded immediately, they are still much more
likely to be redundant. An image brighter with respect to the threshold will result in more
candidate regions and higher occupancy. The running time correlates strongly with the
number of computed candidate regions. We executed the baseline-convex and the hybrid
algorithm with different thresholds on a random input image, shown in Figure 4.5. The
computed regions for some of the thresholds are shown in Figure 4.6. The ratio of occupied
cells to total cells decreased with a rising threshold. The decrease was minor at first and
became significant as the threshold passed the average pixel weight, see Figure 4.7.

The time requirements rose as expected from the asymptotic complexity. Figures 4.8 and
4.9 show the average time in seconds for 50 executions of the baseline-convex and complete
algorithm, respectively.

4.3.4. Approximation quality

Since the complete algorithm turned out to be prohibitively computationally expensive
for large images, we developed the baseline-convex algorithm as an approximation. To
evaluate the quality of these approximations, we executed all three algorithms on ten test
images of size 50×50. As apparent in Table 4.1, the approximation quality varies. The poor
results of the hybrid algorithm can be attributed to the small image size: The draft image
to generate suitable input data only had dimensions of 7 × 7, therefore rounding errors
could influence the result substantially. Unfortunately, due to the limitations discussed in
Section 4.3.1, we were unable to compare the hybrid and complete algorithms on suitably
large images.
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Figure 4.8.: Average time for the execution of 50 instances of the baseline-convex algorithm

4.4. Possible optimizations

We finally describe some optimizations to improve the performance on test data which,
however, leave the asymptotic computational complexity unchanged. For this reason, we
did not discuss them in Chapter 3. From the improvements described in this Section, only
the custom data structure is used. We implemented the removal of dominated regions
mentioned in Section 4.4.3, but with mixed results. The performance on some test images
improved, on others hardly any regions were removed and the performance worsened due
to the overhead.

4.4.1. Choice of data structure

In the algorithm description of chapter 3, we always used arrays in five and three di-
mensions, respectively. This conforms to the five possible parameters a region has in
Algorithm 1. In experimental data, the arrays turned out to be filled very sparsely, as
seen in Figure 4.7. To use less memory, we used maps to store the weight and previous y-
coordinates of the computed regions. The tuple of (x, uy, ly, uc, lc) serves as a key. Among

31



32 4. Evaluation

10 20 30 40 50

0

20

40

60

80

100

width of input image

el
ap

se
d

ti
m

e
in

se
co

n
d
s

Figure 4.9.: Average time for the execution of 50 instances of the complete algorithm

Complete Baseline Hybrid ratio Baseline ratio Hybrid

808 579 234 70% 28%
6042 4466 4182 73% 69%
976 579 102 59% 10%
3763 3626 3043 96% 80%
660 446 584 67% 88%

29832 24451 26886 81% 90%
6171 6143 4973 99% 80%
912 580 301 63% 33%
695 552 217 79% 31%
976 704 95 72% 9%

Average 75% 51%

Table 4.1.: weights of the three algorithms’ solutions on 10 random input images
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the possible data structures are a flat map and a nested map, with one map for every tuple
of (x, uy, ly). Inspired by Invariant 2, the nested map for (x, uy, ly) is the smallest map
guaranteed to be non-empty. Even though the primary purpose is to conserve memory, the
performance improves, too. In the steps described in Sections 3.5, 3.6 and 3.7, iterations
over empty cells can be omitted, therefore the computational complexity depends on the
number of actual regions. The complexity to enumerate every region in the current column
is linear for nested maps and may or may not be linear for flat maps, depending on map
implementation. In the baseline-convex implementation, a nested map is used.

4.4.2. Remove obsolete old regions

To be relevant in the search for a maximum-weight region, any region computed has to be
of maximum weight itself or be the predecessor of the maximum-weight region. Regions
with a weight lower than the maximum encountered so far can therefore be deleted, if
they do not have any non-overwritten successors. All regions in the current column would
have to be retained, since it is not yet known whether any successors will be saved in W .
Removing obsolete old regions does not improve the asymptotic space complexity, since in
the worst case, every of the O(m2 · (n+m)2) regions in the current column i has a number
of predecessors linear in n, leading again to a space requirement of O(n ·m2 · (n + m)2).
Still, some memory consumption improvements could be attained. If the retrieval costs
of the data structure in use depend on the total number of regions stored, this results in
performance improvements.

4.4.3. Remove dominated regions

If a region R dominates another region R′ (see Definition 8), R′ can be removed without
interfering with the result. In Section 3.9, R′ is removed only if it shares the values
i, uy, ly, uc, lc with R. We could compare all regions in (i, uy, ly) in pairs to find additional
dominated regions and remove them. This is best done using a two-dimensional skyline
algorithm, which leads to a computational complexity dominated by the sorting step.

4.4.4. Possible parallelizations

The algorithmic steps described in Sections 3.4, 3.5, 3.6 and 3.7 could be done in par-
allel if the architecture permits concurrent reading. With O(m2) processors, the naive
implementation outlined in Section 3.12.2 can be implemented with a time complexity of
O(m2 · (n+m)2) per column, which results in an overall complexity of O(n ·m2(n+m)2).
This could be achieved by computing every O(m2) possible extensions of a single region
in parallel.

4.4.5. Implementation details

When using map structures to store the computed regions, as discussed in Section 4.4.1,
many key objects are created and discarded. The use of object pools or customized data
structures would result in some performance gains. We used Java for our implementation,
switching to another language optimized for speed will very likely improve performance as
well.
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5. Conclusion

5.1. Findings

We designed and implemented an algorithm for the computation of weight-maximal dig-
itally convex regions in arbitrary input images and interchangeable total orders. The
optimal solution can be found in O(n5 log n) time and approximations in O(n3 log n) for
images of size n × n. There are applications in image recognition, for example medical
imaging where convex regions are often of interest. While the rather high space and time
complexity limit the algorithms usefulness in practical applications, our approach has some
potential to be expanded upon.

5.2. Future work

5.2.1. Performance improvements

Some straightforward improvements are mentioned in Section 4.4. Implementing these,
especially the parallelization, will result in noticeable performance gains. Additional im-
provements could be achieved by finding a suitable heuristic for the potential to estimate
a lower bound for the weight-maximal region and discard unsuitable regions earlier. As
we did not prove a lower bound for the computational complexity, there might be room
for improvement as well.

5.2.2. Building pyramids

Apart from the maximum-weight region for a given threshold, a pyramid of regions for a
set of thresholds is often of interest, for example to approximate mountains in noisy input
images. Chun et al. [CST03] discussed the pyramid problem for point-stabbed regions,
which are similar to and a superset of the digitally convex regions. The naive approach
would be to execute our algorithm for every desired threshold and compose the resulting
regions to a pyramid. While this is straightforward, one could also build a pyramid by
modifying the data structure and algorithm. Since a different threshold is only a constant
difference, a modified algorithm could generate regions for several thresholds in parallel
and create a pyramid in this process.
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Appendix

A. Source code

The source code of the implementation is available under the GPLv3 and can be found at
http://gitorious.org/digital-convex-regions. The current commit at the time of
writing is 31f1e08921ffddf1d3f3215c95fab68edd45762a.
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