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Abstract

A path on a polygonal terrain is gentle if it does not ascend or descend too steeply, i.e., its

gradient is below a given threshold θ at every point. The constriction to gentle paths makes

the shortest path problem more realistic as vehicles usually can not traverse arbitrarily

steep slopes. We give a (1 + ε)-approximation algorithm for the shortest gentle path

problem. The running time lies in O
(
n5.5 log n

ε

)
where n denotes the number of vertices

of the terrain and is thus independent of the geometry of the terrain. Furthermore we

discuss the open question whether the shortest gentle path problem is NP-hard and since

we could not prove hardness develop ideas for an exact algorithm.

Zusammenfassung

Ein Pfad auf einem polygonalen Terrain heißt flach wenn er nicht zu stark ansteigt oder

fällt, das heißt wenn seine Steigung für alle Punkte unter einer gegebenen Schranke θ

bleibt. Die Beschränkung auf flache Pfade macht das Problem einen kürzesten Weg zu

finden realistischer, da Fahrzeuge in der Realität keine beliebig steilen Strecken befahren

können. In dieser Arbeit wird ein Approximationsalgorithmus mit einem relativen Fehler ε

für das Kürzeste-Flache-Wege-Problem vorgestellt, der unabhängig von der Geometrie des

Terrains eine Laufzeit von O
(
n5,5 log n

ε

)
hat. Dabei bezeichnet n die Anzahl der Knoten

des Terrains. Zusätzlich wird die offene Frage diskutiert, ob das Kürzeste-Flache-Wege-

Problem NP-schwer ist. Da dies in dieser Arbeit nicht gezeigt werden kann, beschäftigt

sich ein Kapitel mit der Entwicklung eines exakten Algorithmus.
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1. Introduction

Shortest path problems have intrigued computer scientists for a long time. They are

algorithmically interesting and have been well researched. But there are also many very

different variations of the problem. One distinction between several variations is the type

of search space in which we search for the shortest path. The most commonly known

problem is probably the shortest path problem on weighted graphs for which we have

many algorithms among them Dijkstra’s famous algorithm [Dij59]. In this thesis, however,

we will not consider graphs as our search space but terrains. A terrain can be seen as a

landscape with hills and valleys which is modeled in our case by a polygonal surface.

In common two-dimensional topographic maps the measured distance between two points

represents only the horizontal distance between these points in the real world. Thus in

many common geographical shortest path problems the gradient and the vertical distance

that has to be covered by a path are simply omitted. But in some conceivable cases the

elevation gain is quite important maybe even more so than the horizontal distance. For

example the difficulty of a hike in the Alps might be measured just by the difference in

altitude that has to be covered or a robot might not be able to ascend very steep slopes.

The shortest gentle path problem on terrains takes the gradient of a path as an important

factor into account.

The terrain in our case is given as the surface of a triangulated mesh (see Figure 1.1 for an

example). The shortest gentle path problem searches for the shortest path whose gradient

is at no point outside a boundary called the slope constraint, i.e., a path that is nowhere

too steep, neither rising nor falling.

There are some publications on the topic of this problem available as well as on the

shortest anisotropic path problem which is a generalization we will describe in section

1.1 but it is still not known if the problem is NP-hard. For some related problems that

are also special cases of the shortest anisotropic path problem, polynomial approximation

algorithms have been developed, e.g. [LMS99] and [ALM09]. Until now there were only

practical approximation approaches for the shortest gentle path problem but no algorithm

with a polynomial worst case runtime. For example Liu and Wong presented a method

to simplify the terrain such that the shortest gentle path problem can be solved faster

[LW11]. They demonstrated the efficiency of their algorithm by the means of experiments
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2 1. Introduction

Figure 1.1: Example of a terrain modeled by a mesh.

but not by proving a worst case runtime.

The shortest gentle path problem is closely related to the shortest descending path problem,

in which paths are not allowed to ascend at any point, since the problems both have terrains

as the underlying structure and the only constraint on the paths is that the gradient has

to stay in a certain interval. Thus we first took a look at the proposed algorithms for

shortest descending paths. The problem is NP-hard and as such cannot be solved exactly

by a polynomial algorithm unless P = NP. The currently best approximation algorithm

that is independent of the terrain geometry was proposed by Cheng and Jin [CJ12]. It

computes a (1 + ε)-approximate shortest descending path in O
(
n4 log n

ε

)
time for any

ε ∈ (0, 1). As it turns out the ideas of the algorithm can be used to find an approximation

algorithm for the shortest gentle path problem too.

In Chapter 2 we introduce terminology, formally define the problem, prove some prop-

erties of shortest gentle paths and describe the previously mentioned algorithm for the

shortest descending path problem [CJ12]. Its basic idea is to solve a similar but easier

problem exactly and then use the solution to find lower and upper limits for the solution

of the original problem. These limits are then used to bound the error that is made in

the approximation algorithm. The approximation algorithm itself uses a structure called

sequence tree that was first introduced by Chen and Han and upholds a certain property

that ensures that the tree does not grow exponentially [CH90]. With the help of this

tree the algorithm can iterate through all prospective solutions and find an approximate

shortest descending path.

In Chapter 3 the algorithm for shortest descending paths is adapted to the shortest gentle

path problem. This results in a (1 + ε)-approximation algorithm that has a runtime which

lies in O
(
n5.5 log n

ε

)
.

Since the shortest gentle path problem is not known to be hard there could also be a

polynomial algorithm that solves the problem exactly. In Chapter 4 we formulate an idea

for such an exact algorithm for the shortest gentle path problem. The basic concept is to

trace a path from the origin to the destination by characterizing the bend angles at each

edge of the terrain. For the shortest descending path problem this idea was implemented

by Ahmed [Ahm09]. Unfortunately the adaption to the shortest gentle path problem is

quite complex and results ultimately in an exponential worst case runtime for the exact

algorithm.

2



1.1. Related Work 3

1.1 Related Work

Many different shortest path problems on terrains have been studied. Without any re-

strictions the shortest path on a terrain can be found in O(n2) time, n being the number

of vertices in the terrain, as shown by Chen and Han [CH90]. In their paper they intro-

duced a data structure called sequence tree and a property called one-angle-one-split for

this structure that allowed them to control the running time of their algorithm. This data

structure and property will also be used in our thesis to the same effect.

The weighted region problem is a generalization of the general shortest path problem as

it adds a weight to each face of the terrain. The cost of a path through a face is then

measured by the length multiplied with the weight of the face. For this problem Mitchell

and Papadimitriou found the first approximation algorithm that runs in O(n8L) time,

with L being the precision of the problem instance [MP91]. It uses a continuous Dijkstra

approach while most later algorithms use Steiner points to discretise the search space and

convert the terrain into a weighted graph. Alexandrov, Maheshwari and Sack use a Steiner

point approach to find a (1+ε)-approximation in O(C(T ) n√
ε

log n
ε log 1

ε ) time, where C(T )

describes geometric parameters and the weights of the faces of the surface [AMS05]. Zun

and Reif get a runtime of O(nε (log 1
ε + log n) log 1

ε ) that is independent of the geometry of

the terrain using a similar approach [SR06].

The anisotropic path problem adds extra flexibility to the weighted region problem. Here

the weight of a path within a face depends also on the direction of the path. With

this problem it is possible to model the effects that friction or gravity will have on a

vehicle that moves along a path. It is also possible to model the shortest gentle path

problem as a special anisotropic path problem because the slope constraint is actually a

constraint on the possible directions of paths within each face. The most widely used

model was introduced by Rowe and Ross [RR90]. It takes many criteria into account, for

example inclines that are too steep, limits of breaks, or hillsides that are so steep that

they cannot even be traversed on a horizontal path because the danger of overturning or

slipping is to great. Impermissible directions that arise due to these criteria can be covered

by so-called switchback paths that zigzag to and fro using directions that are only just

permissible. These paths we will also use in our algorithm for the shortest gentle path

problem. Contrary to our algorithm all approximation algorithms for the model of Rowe

and Ross are based on a Steiner point approach (see [LMS99] and [SR05] for examples).

On the topic of gentle paths only few papers have been published. In [LW11] Liu and

Wong describe a method to simplify the surface. They then use a classic breadth-first

search strategy to find the shortest gentle path on the simplified surface. The speedup

in comparison to an exact algorithm for the shortest gentle path problem and depending

on the required accuracy of the solution was measured in experiments. Opposed to this

experimental approach, Ahmed et al. [ALM09] describe a fully polynomial-time approx-

imation scheme (FPTAS) that solves the shortest gently descending path problem. This

problem combines the property that a path is not allowed to ascend with the constraints of

gentle paths and is thus a more realistic model for descending paths as very steep descends

are forbidden. Again they preprocess the terrain and discretise it by the use of Steiner

points. The running time of the algorithm lies in O
(
n2X
ε log

(
nX
ε

))
where X is a factor

that depends on the terrain geometry.

As another problem with a slope constraint we also considered the shortest descending

3



4 1. Introduction

path problem. There are some exact algorithms for special terrains (e.g. concave or convex)

but on general terrains we have only approximation algorithms. Ahmed et al. [ADL+10]

present a (1 + ε)-approximation algorithm with a running time of O
(
n2L
εh log2 nL

εh

)
where

L is the length of the longest edge in the terrain and h is the smallest height of a triangle

of the terrain. With a running time of O
(
n4 log n

ε

)
Cheng and Jin’s algorithm [CJ12] has

a higher dependency on n but is independent of the terrain geometry.

4



2. Preliminaries

In this chapter we introduce some basic terminology, formally define the shortest gentle

path problem and prove some properties of shortest gentle paths. Furthermore we describe

Cheng and Jin’s algorithm for the shortest descending path problem [CJ12] as we will adapt

it later to the shortest gentle path problem.

2.1 Paths on Terrains

A terrain is a two dimensional surface consisting of polygons in the three dimensional

space R3 that projects injectively onto the horizontal plane. As input for the algorithm we

are given a terrain T with n vertices and two points in the terrain, the source s and the

destination t. The three coordinates of a point x are called x1, x2 and x3 with x3 being

the height of the point.

From here on only triangulated terrains are considered, but as every terrain with n vertices

can be triangulated inO(n) time this is no real limitation. If s and t are not already vertices

of T , they are added as such and connected to all other vertices of their respective faces.

All paths from s to t are directed and can be divided into segments. A segment is a

maximal continuous subpath that is contained in one face. The endpoints of segments are

always called nodes in contrast to the vertices of the terrain. They always lie on edges of

T .

The face sequence of a path is a list of the faces the path traverses in this order. If a

segment lies completely on the edge between two faces we can randomly choose which face

gets represented in the face sequence. Additionally if the path passes through a vertex

we pretend that the path makes a short detour around the vertex and add the faces that

are traversed by this detour (see Figure 2.1). In this thesis we will also use the term

edge sequence that is defined as the sequence of the common edges between each pair of

neighboring faces in the face sequence (see Figure 2.2).

5



6 2. Preliminaries

f4

f1

f2

f3

P

Figure 2.1: Detour around a vertex. In this case f1, f2 and f3 are added to the face sequence
for the path P .

t

e2 e3

e4 e5e1

s

Figure 2.2: Example of a path with the edge sequence (e1, e2, e3, e4, e5).

2.2 Shortest Gentle Paths

A path is called gentle if at every point its absolute gradient is less than or equal to the

given threshold θ > 0. For a subpath with endpoints x and y that is a line segment, its

absolute gradient, also called slope, is sl(xy) =
∣∣∣arcsin

(
|y3−x3|
‖y−x‖2

)∣∣∣.
Shortest Gentle Path Problem (SGP Problem).

Given a terrain T , a threshold θ > 0 and two points s and t on T , find the shortest path

from s to t on the terrain T that is gentle with respect to θ.

For a given edge sequence σ a locally shortest gentle path (LSGP) between two points s

and t on the terrain is the shortest path between s and t that has edge sequence σ and is

gentle.

Now we want to characterize shortest gentle paths and prove the existence of such paths.

Thus we first consider the case that the two points s and t lie on the same face of T . Now

we have two possible cases: Either the line segment st between s and t is gentle or it is

too steep.

In the first case st is obviously the SGP between s and t. In the second case we can use

a gentle path that zig-zags forth and back along the direction of the line segment from s

to t and has gradient −θ if s3 > t3 or gradient θ if s3 < t3 at each point. Such a path is

called a switchback path (see Figure 2.3). If we find such a switchback path, it must be

a shortest gentle path because using a gentle path with the maximal possible inclination

at every point we need at least a path of length |s3−t3|sin(θ) to overcome the height difference

6



2.2. Shortest Gentle Paths 7

between the endpoints. This length is exactly the length of the switchback path since it

has always this exact gradient and proceeds from s to t.

x

y

Figure 2.3: Example of a switchback path.

With the previously made observations we can formulate a Lemma that describes the

behaviour of shortest gentle paths.

Lemma 1. A shortest gentle path always consists of a sequence of line segments.

Proof. Assume there is a shortest gentle path P that does not only consist of line segments.

Then there must be a subpath between a point x and a point y that is not made up of

straight line segments such that it is contained in one face of the terrain. If the straight line

segment from x to y is gentle, as mentioned before, this is the only possible shortest gentle

path between the two points and thus P could not be a shortest gentle path in contradiction

to the assumption. Now if the line segment from x to y is too steep we already know that a

switchback path that consists of a sequence of straight line segments is a possible solution.

Since the switchback path has the maximal gradient at every point every other path from

x to y that has a lower gradient at some point must be inevitably longer. Thus P cannot

be a shortest gentle path which is a contradiction to the assumption.

Now we still need to show that such a switchback path always exists. The admissible

directions for each point x on the terrain are defined as all directions such that there is a

line segment from x with this direction that lies on the terrain and is gentle (see Figure

2.4). Since θ is always greater than 0, each inner point of a face has either two symmetrical

ranges of admissible directions or all directions are admissible. If x lies on an edge of a

face but not on a vertex there is at least one range of admissible directions within this

face. Only if x is a vertex of T there might be no admissible direction. In this case there

is no SGP from x to t.

Lemma 2. For every two points x and y in a face f of T that are not vertices and every

slope constraint θ < 90◦, an SGP between them exists that lies completely inside this face.

Proof. Without loss of generality let x3 ≤ y3. If the line segment between x and y is

gentle this is the SGP. Otherwise we want to find a switchback path. For every point in

the interior of the triangle the only possible directions with slope exactly θ are the two

boundaries of the ranges of admissible directions that have a positive gradient. If a point

lies on an edge of the triangle, there is still at least one such boundary direction.

7



8 2. Preliminaries

Figure 2.4: Admissible directions for a point on a face of T .

From x on we can arbitrarily choose one of these boundary directions. Then we follow

this direction until we cross a boundary line of the ranges of admissible directions of y

or we reach an edge of the face. If we reached an edge we stop the line segment just

before reaching it and take the other boundary direction from there. If we continued the

line segment up to the edge, the second boundary direction might lie outside the current

face. We repeat the process with the new directions until we reach a boundary line of y

(see Figure 2.3). This will always happen because, if the path reaches the height of y it

must either have crossed one of the boundary lines or must go exactly to y. Furthermore,

the height increases proportional to the length of the path and the path can always be

extended with another switchback. When a boundary line of y is reached, we can just

follow it straight to y. Since we always used line segments with gradient θ we constructed

a switchback path and thus found an SGP.

The length of one segment of an SGP depends only on its beginning and end point x, and

y and can be expressed as

l = max

(
|x3 − y3|

sin(θ)
, ‖x− y‖

)
That is true because either the direct connection between the two points is admissible or

there is a switchback path between the points. In the first case the path has a gradient

with an absolute value that is smaller or equal to θ. Thus a path that would have gradient

±θ at any point would be shorter. In the second case the switchback path is obviously

longer than the line segment between x and y. Therefore we can use the maximum of both

lengths to calculate the length of the SGP.

Using Lemma 2 we can also say that for every pair of points s and t on a terrain T , every

threshold 0 < θ < 90◦ and every possible edge sequence σ there exists a gentle path and

with that also an SGP. The only exception is if either s or t are at a vertex that has no

admissible directions in the first resp. last face in the face sequence.

For every gentle path we define the corresponding simplified path as the path that we get

by substituting every segment by the direct connection between the nodes at the ends of

the segment. Note that the simplified path is not always gentle.

Now we can solve the shortest gentle path problem by solving the general shortest path

problem for a special norm that represents the length of a segment of an SGP between two

8



2.3. The Approximation Algorithm for Shortest Descending Paths 9

points. This norm is defined as ‖x‖s = max
(
|x3|

sin(θ) , ‖x‖2
)

with x ∈ R3 being the vector

between the endpoints of the segment. Doing this we get a simplified path that can be

converted back to an SGP. We only have to test if an SGP exists by testing if there is an

admissible direction for s and t.

Lemma 3. ‖x‖s = max
(
|x3|

sin(θ) , ‖x‖2
)

with x ∈ R3 is a norm.

Proof. To prove that ‖ · ‖s is a norm we need to show that the following conditions are

satisfied for all x,y ∈ R3, α ∈ R:

|α| · ‖x‖s = ‖α · x‖s
‖x‖s = 0⇒ x = 0

‖x + y‖s ≤ ‖x‖s + ‖y‖s

The first two inequalities are trivial, the third is proven below.

‖x + y‖s = max

(
|x3 + y3|

sin(θ)
, ‖x + y‖2

)
≤ max

(
|x3|

sin(θ)
+
|y3|

sin(θ)
, ‖x‖2 + ‖y‖2

)
≤ max

(
|x3|

sin(θ)
+
|y3|

sin(θ)
, ‖x‖2 + ‖y‖2,

|x3|
sin(θ)

+ ‖y‖2, ‖x‖2 +
|y3|

sin(θ)

)
= max

(
|x3|

sin(θ)
, ‖x‖2

)
+ max

(
|y3|

sin(θ)
, ‖y‖2

)
= ‖x‖s + ‖y‖s

In Chapter 3 we describe an approximation algorithm for the SGP problem and Chapter

4 contains ideas for an exact SGP-algorithm.

2.3 The Approximation Algorithm for Shortest Descending

Paths

This section describes the approximation algorithm for the shortest descending path prob-

lem as described by Cheng and Jin in [CJ12]. The algorithm for shortest gentle paths in

Chapter 3 is based on this approach. Here we will only give an overview over the main

ideas of the algorithm that are needed to understand the algorithm in Chapter 3. The

details and proofs can be found in [CJ12].

A shortest descending path (SDP) between a source s and a destination t on a terrain is

a shortest path that never increases in height on the course from s to t.

The algorithm first computes a lower and upper bound for the length of an SDP and

then uses these bounds to limit the error and the runtime of the actual approximation

algorithm. To find these bounds the SDP-Problem is solved using the maximum norm

instead of the Euclidean norm. This problem will be called L∞SDP and can be solved

exactly in O(n3 log n) time. Using the inequality of the Euclidean and the maximum norm

‖x‖∞ ≤ ‖x‖2 ≤
√

3‖x‖∞ for x ∈ R3 we get opt∞ ≤ opt2 ≤
√

3opt∞ with opt∞ denoting

the length of an SDP for the maximum norm and opt2 the one for the Euclidean norm.

9



10 2. Preliminaries

The L∞SDP and the approximate SDP are computed similarly. In both cases we iterate

over all possible edge sequences, compute the lengths of the corresponding locally shortest

descending paths and return the shortest one. In the case of the L∞SDP we can compute

the local paths exactly and thus get an exact solution; for the general SDP we can only

approximate the local paths and thus get an approximate solution.

2.3.1 Computing the L∞SDP exactly

To compute the L∞SDP we define the L∞LSDP (the locally shortest descending path)

analogue to the LSGP as a shortest descending path that has a given edge sequence. An

L∞LSDP can easily be found in polynomial time using linear programming. Cheng and Jin

also describe a combinatorial algorithm that reduces the runtime to compute all required

L∞LSDPs in O(n3 log n). That algorithm will not be described in this thesis. None the

less it can also be used to reduce the runtime of the our algorithm described in Section

3.1.1.

Knowing how to compute an L∞LSDP we can iterate over all possible edge sequences by

using a structure called sequence tree that was first proposed by Chen and Han [CH90].

The basic idea is to grow a tree of all possible edge sequences in breadth first manner from

s outwards until the maximum depth, which is the number of faces in T , is reached. The

tree can stop growing at this point because if we assume there were an SDP that visits at

least one face twice, we could always find a shorter path that visits this face only once by

shortcutting the loop the SDP would have to make. This path is also descending and thus

a shortest descending path visits each face at most once.

Each node α in the sequence tree corresponds to a face corner (fα, vα), the corner of fα
at vertex vα. The edge eα denotes the edge of fα that is opposite to vα. The initial tree

has only one root node. Then for each possible first edge in the edge sequence we grow a

child node that represents the face corner opposite of the edge in the face that s does not

belong to (see Figure 2.5: For eα1 we grow the child α1 corresponding to (fα1 , vα1)).

From this level on, every leaf node corresponding to a face corner (fα, vα) can grow exactly

two children. This is true because we can leave the face fα only through one of its edges

through which we did not enter. These edges correspond to a face corner of the next

face we enter through them. The child node that corresponds to the edge that follows vα
directly in clockwise (resp. anticlockwise) order around the border of fα is called the right

(resp. left) child. Since every node α except the root node corresponds to an edge eα the

path from the root node to α in the sequence tree corresponds to a distinct edge sequence

that we can also associate with α.

Unfortunately the tree grows exponentially, therefore a way to prune paths that are not

relevant is needed. For this purpose we use the so-called one-corner one-split property :

One face corner may correspond to multiple nodes in the sequence tree but only one of

these nodes may have two children. This property is enforced while growing the tree. Thus

when growing two children for a node would violate the one-corner one-split property either

one of these children is pruned or one of the children of the conflicting node is pruned.

By enforcing this property it is assured that at most O(n2) nodes are created during the

process of growing as shown by Chen and Han [CH90].

To find out which of the children we can safely prune, we use the concept of dominance.

A node α corresponding to the face corner (f, v) and the edge sequence σα dominates

10
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s
vα1

vβ2

fα4

eα1 fα1

eβ2

fβ2

fα5

fβ1

fα3

fα2

vβ1

vα5

vα4

vα3

vα2

(a) The relevant part of the terrain

α1 α2 α3 α4 α5

β2 β1

(b) The corresponding sequence tree

Figure 2.5: The edge sequence corresponding to node β2 in (b) is (eα1 , eβ2).

a node β corresponding to the same face corner (f, v) and the edge sequence σβ if the

L∞LSDP Pα from s to v with edge sequence σα is shorter than the L∞LSDP Pβ from s

to v with edge sequence σβ (see Figure 2.6). If both path lengths are the same, the node

with the shorter corresponding edge sequence dominates the other. To decide which child

of β should be pruned we need to determine if β is dominated on the left or right. Let e1

be the first edge in the longest common suffix of σα and σβ. Let further eα be the edge

before e1 in σα and eβ the edge before e1 in σβ. If e1 is the first edge in σα or σβ take the

vertex s instead of eα or eβ respectively. If (e1, eα, eβ) lie in clockwise (resp. anticlockwise)

order around their common face, α dominates β on the right (resp. left) (see Figure 2.6).

eβ

e1

eα

e2
e3

v
f

Pβ

Pα

Figure 2.6: In the picture the node α that corresponds to the edge sequence σα =
(. . . , eα, e1, e2, e3) and the L∞LSDP Pα dominates β that corresponds to the
edge sequence σβ = (. . . , eβ, e1, e2, e3) and the L∞LSDP Pβ on the right.

If α dominates β on the right (resp. left) the right (resp. left) child γ of β can be pruned

and thus the one-corner one-split property is restored. The complete proof of this can

be found in [CJ12, Lemma 3.1]. The idea is to show that the L∞LSDP Qβ with edge

sequence σβ to any point r on the edge eγ that lies directly after v in clockwise (resp.

counterclockwise) order around f is at least as long as the L∞LSDP Qα to r with edge

sequence σα (see Figure 2.7).

The complete algorithm for the L∞SDP problem works like this: During the execution of

the algorithm we store at every face corner the corresponding tree node that is currently

not dominated by any other node if it exists. Then we start with the initial sequence tree.

In each round we grow all possible children for every leaf in the tree and compute the

11



12 2. Preliminaries

eβ
e1

eα

v

eγ

f

Pα

vγ

r

Qα

Qβ

Figure 2.7: The proof of |Qα| ≤ |Qβ| uses that the L∞LSDP Qβ must intersect Pα at some
point.

corresponding L∞LSDPs. When growing a child α we check if there is already a node

stored for the current face corner. If that is the case, we find out which of the nodes

dominates the other and prune the tree accordingly. Then the record stored at the face

corner gets updated if necessary. When the number of levels equals the number of faces in

T we stop growing the tree and return the minimum length of all L∞LSDPs that terminate

in t.

The runtime of the complete L∞SDP algorithm is dominated by the time needed to com-

pute the lengths of all the L∞LSDPs. This runtime is, as mentioned earlier, O(n3 log n).

Thereby we get the following theorem:

Theorem 1 ([CJ12]). Let s and t be two points on a terrain with n vertices. The L∞
shortest descending path from s to t can be computed in O(n3 log n) time.

2.3.2 Approximating the SDP

Before describing the actual approximation algorithm we can already use the bounds that

we found to restrict the search for an SDP to a part of the terrain. Since we have opt∞ ≤
opt ≤

√
3opt∞, every (1+ε)-approximation of an SDP with ε ∈ (0, 1) has independently of

the concrete value of ε a length of at most 2opt ≤ 2
√

3opt∞. Thus we can clip the terrain

at the edges of a cube with its center at s and side length 4
√

3opt∞. Now every (1 + ε)-

approximation of an SDP has to lie completely in the clipped terrain. The triangulated

resulting terrain is referred to as T ∗. Furthermore no edge in an SDP can be longer than

12opt∞ as this is the length of the diagonal of the cube that includes the whole clipped

terrain. These bounds are used to make the runtime independent of the terrain geometry.

To approximate the length of an SDP we use the same approach as before. Since it is

difficult to compute an exact LSDP we will approximate the lengths of the LSDPs needed

in the algorithm. For this purpose we use an algorithm of Ahmed [Ahm09, Section 3.3.7]

that gives us an approximate LSDP with an additive error of at most |σ|εopt∞
κn2m(m+1)

and a

runtime of O(|σ|2 log
(
n
ε

)
) where σ is the given edge sequence, m is the number of faces in

T ∗ and κ is a constant chosen such that fewer than κn2 nodes are ever created during the

construction of the sequence tree.

For pruning Cheng and Jin do not use the actual length of the approximate LSDPs but

rather a newly defined notion of the quasi-length of a path. The quasi-length is not only

dependent on the actual length of the path but also on the length of its edge sequence.

12



2.3. The Approximation Algorithm for Shortest Descending Paths 13

Define the quasi-length of a path P in T ∗ as ‖P‖ + εopt∞
m+1 |σP |. The quasi-dominance

between nodes is defined analogously to the dominance for L∞SDP, the only difference

being that the notion of quasi-length is used instead of just the length.

The rest of the algorithm works exactly as before and after the tree stops growing the

minimum length of a path from s to t that corresponds to a node in the tree is returned.

The proof of correctness of the algorithm will not be made here but can be found in [CJ12].

With the constants in the additive error of the LSDP approximation and the definition of

quasi-length, we get a (1 + ε)-approximate SDP in O
(
n4 log

(
n
ε

))
time.

Theorem 2 ([CJ12]). Let s and t be two points on a terrain of n vertices. For any

ε ∈ (0, 1), a (1 + ε)-approximate shortest descending path from s to t can be computed in

O
(
n4 log

(
n
ε

))
time.

13





3. Approximate Shortest Gentle Paths

In this chapter the adaption of Cheng and Jin’s algorithm [CJ12] for the shortest descend-

ing path problem to the shortest gentle path problem is described. With this algorithm we

can compute an approximate gentle path with a relative error of ε in O
(
n5.5 log n

ε

)
time.

As in the paper by Cheng and Jin we find a lower and upper bound for the length of the

shortest gentle path. Then we can use these bounds to clip the terrain and for our error

assessment. Having found the bounds we first solve the local problem, that is to say we

compute the shortest gentle path that has a given edge sequence. Then we iterate over all

possible edge sequences with the help of a sequence tree.

3.1 Lower Bound

The idea to finding a lower bound for the SGP is to find a lower bound for the length of

a segment of a shortest gentle path and solve the problem using this lower bound instead

of the actual segment length. Remember that the exact length of a segment is

‖x‖s = max

(
‖x‖2,

|x3|
sin(θ)

)
.

Now we define a new norm ‖ · ‖b as

‖x‖b := max

(
‖x‖∞,

|x3|
sin(θ)

)
= max

(
|x1|, |x2|,

|x3|
sin(θ)

)
for x = (x1 x2 x3)T ∈ R3.

This is a norm because the following conditions are satisfied for all x,y ∈ R3, α ∈ R:

|α| · ‖x‖b = ‖α · x‖b

‖x‖b = 0⇒ x = 0

‖x + y‖b ≤ ‖x‖b + ‖y‖b

15



16 3. Approximate Shortest Gentle Paths

Obviously ‖x‖b ≤ ‖x‖s and ‖x‖∞ ≤ ‖x‖b are true. Furthermore with the definitions of

‖ · ‖s and ‖ · ‖b and the inequality ‖x‖2 ≤
√

3‖x‖∞ we get the following inequalities:

‖x‖b ≤ ‖x‖s ≤
√

3‖x‖b

Thus we found a lower and upper bound for an SGP if we can solve the simple shortest

path problem with respect to the newly defined norm ‖ · ‖b. We call this problem the

Lb-shortest gentle path (LbSGP) and the corresponding local problem LbLSGP.

3.1.1 Local Problem

As in Chapter 2 we start by solving the local problem LbLSGP, that means we compute a

shortest path for a given edge sequence σ = (e1, . . . , ek). Let uj and vj be the endpoints

of ej for j ∈ {1 . . . k}. Then

pj =


s if j = 0

(1− ζj)uj + ζjvj if j ∈ {1 . . . k}
t if j = k + 1

with ζj ∈ [0, 1] can be used to describe the endpoints of segments of the path from s to

t. With lj being an upper bound of the segment length the local problem using ‖ · ‖b can

now be expressed as:

min
k∑
j=0

lj subject to ‖pj+1 − pj‖b ≤ lj

or in the long form:

min

k∑
j=0

lj

subject to

−lj ≤
pj+1,3 − pj,3

sin(θ)
≤ lj ,

−lj ≤ pj+1,1 − pj,1 ≤ lj

and

−lj ≤ pj+1,2 − pj,2 ≤ lj .

The constraints in the local problem are all linear and thus the exact solution can be

computed using linear programming techniques. This can be done in O(n3.5L) time with

an algorithm by Karmarkar [Kar84] where n is the number of variables and L is the number

of bits of the input.

16



3.1. Lower Bound 17

The local problem can also be solved using the combinatorial algorithm used by Cheng and

Jin [CJ12]. There are some modifications needed to adopt the algorithm for the shortest

gentle path problem. These modifications and the original algorithm can be found in

Appendix A.

With this algorithm it takes only O(n3 log n) total time to compute the solution to all

local problems arising during the construction of the sequence tree.

3.1.2 Sequence Tree

To be able to use the sequence tree approach like Cheng and Jin [CJ12], we have to

show that after a constant number of levels the sequence tree represents all required edge

sequences. For this we will prove the following lemma.

Lemma 4. For each start and end point for which an LbSGP exists there also exists an

LbSGP between them that visits no face more than once.

Figure 3.1: Example of how to shortcut the path.

Proof. Assume an LbSGP visits a face more than once. Then we have a point where the

path enters this face first and a point where a path exits the face last (see Figure 3.1).

Because of the triangle inequality the b-norm of the direct connection is less than or equal

to the b-norm of the subpath of the LbSGP that lies between these two points. Thus the

path we get if we substitute this subpath by the direct connection between the two points

is also an LbSGP and visits the face only once. By repeating this substitution until every

face is visited at most once we get an LbSGP with the desired attributes.

Now we can stop growing the sequence tree as soon as the number of levels equals the

number of faces in the terrain since by then we find at least one LbSGP for every start and

end point between which an LbSGP exists. As described in Chapter 2 we need to enforce

a one-corner one-split property to keep the size of the sequence tree manageable. Again

we use the concept of dominance to prune irrelevant parts of the tree.

Definition 1. A node α corresponding to the face corner (f, v) and the edge sequence σα
dominates a node β corresponding to the same face corner (f, v) and the edge sequence σβ
if the LbLSGP Pα from s to v with edge sequence σα is shorter than the LbLSGP Pβ from

s to v with edge sequence σβ (see Figure 3.2). If Pα = Pβ, α dominates β if |σα| ≤ |σβ|.
Ties are broken arbitrarily.

17



18 3. Approximate Shortest Gentle Paths

Let α dominate β. Furthermore let e1 be the first edge in the longest common suffix of σα
and σβ and eα and eβ the predecessors of e1 in σα and σβ respectively. If e1 is the first

edge in σα (resp. σβ) let eα (resp. eβ) be s. If e1, eα and eβ lie in clockwise order around

their common face, α dominates β on the right. Otherwise α dominates β on the left.

If a node is dominated on the right (resp. left) by any other node corresponding to the

same face corner we will prune its right (resp. left) subtree or not grow the right (resp.

left) child in the first place. Now we have to show that we do not prune a relevant subtree,

i.e., we do not prune a node or an ancestor of a node that represents a shortest gentle

path from s to t. If node α dominates node β on the right (resp. left) we show that α

cannot be a descendant of β and show that if we would grow the right child for α and

β and would compare the lengths of the LbLSGPs up to any point on the corresponding

edge, the length of the LbLSGP with edge sequence σα would always be at least as short

as the length of the LbLSGP with edge sequence σβ.

eβ

e1

eα

e2 e

v

er

f

x

Pα r

Qα

Qβ

Figure 3.2: Path Qβ must intersect path Pα.

The following Lemma is similar to Lemma 3.1 in [CJ12]. There are only slight modifications

needed in the proof due to the differences between the underlying problems.

Lemma 5. Let α and β be two nodes of the sequence tree with corresponding edge sequences

σα and σβ that correspond to the same face corner (f, v) and edge e such that α quasi-

dominates β on the right (resp. left). Let er be the edge that follows e immediately in

anticlockwise (resp. clockwise) order around the boundary of f .

(i) α is not a descendant of β.

(ii) For every point r ∈ er and every LbLSGP Qβ with edge sequence σβ from s to r, the

LbLSGP Qα with edge sequence σα from s to r satisfies ‖Qα‖b ≤ ‖Qβ‖b; if ‖Qα‖b = ‖Qβ‖b,
then |σα| ≤ |σβ|.

Proof. Part (i): Assume that α is a descendant of β. Then σβ is a prefix of σα. This means

that the two paths have the same edge sequence until they enter face f . As above let Pα
be the LbLSGP from s to v with edge sequence σα and Pβ be the LbLSGP from s to v with

edge sequence σβ. Then Pβ terminates in v while Pα exits f through another edge only to

come back to f later. This is a contradiction to the assumption that ‖Pα‖b ≤ ‖Pβ‖b since

we could shortcut Pα such that it terminates in v directly after it first enters f . Then it

would be shorter than Pβ which is an LbLSGP for this edge sequence.

Part (ii): W.l.o.g. assume that α dominates β on the right. Since Qβ enters the face that

is bounded by eα, eβ and e1 on the left of Pα and exits f on the right of it, it has to cross

18



3.2. Approximation Algorithm 19

Pα somewhere in between at a point called x (see Figure 3.2). If there is more than one

intersection in between, let x be the last one along Pα.

Then we have

‖Qα‖b ≤ ‖Pα,[s,x]‖b + ‖Qβ,[x,r]‖b
and

‖Pβ‖b ≤ ‖Qβ,[s,x]‖b + ‖Pα,[x,v]‖b
added, this gives

‖Qα‖b + ‖Pβ‖b ≤ ‖Qβ‖b + ‖Pα‖b

Since α dominates β we have either ‖Pα‖b < ‖Pβ‖b or ‖Pα‖b = ‖Pβ‖b and |σα| ≤ |σβ|. In

the first case ‖Qα‖b < ‖Qβ‖b and in the second case ‖Qα‖b ≤ ‖Qβ‖b and |σα| ≤ |σβ|.

Theorem 3. Let s and t be two points on a terrain with n vertices. The Lb shortest gentle

path from s to t can be computed in O(n3 log n) time.

Proof. For every leaf that is created in the sequence tree we need to compute the corre-

sponding LbLSGP. This can be done in O(n3 log n) time for all nodes ever created during

the algorithm as we have seen in Chapter 3.1.1. Then we still need to check for dominance

on the left or right. For this we store at each face corner the node, if it exists, that is

currently not dominated by any other. Now we can check for dominance in O(1).

To check if a node is dominated on the left or right we have to follow both paths backwards

until the paths cross different edges and prune the tree accordingly. As we have seen before

the sequence tree has at most as many levels as there are faces in the terrain and the number

of faces in the terrain is obviously in O(n). Thus for all paths that correspond to nodes

in the sequence tree the number of edges in the edge sequence is also in O(n). Then we

can also check for dominance on the left or right in O(n).

Chen and Han [CH90] then proved that for a tree with the one-corner one-split property

only O(n2) nodes are created during its construction. For all these nodes we have to do

the check for dominance.

So altogether the algorithm needs O(n · n2 + n3 log n) = O(n3 log n) time. Since with

the exception of pruning all possible edge sequences are tried during the execution of the

algorithm and since we have shown in Lemma 5 that we do not prune a shortest gentle

path the algorithm will always find a correct solution in the given running time.

3.2 Approximation Algorithm

Now that we found the necessary bounds we can start with the original SGP problem.

For the LbSGP optb and the SGP opt we have optb ≤ opt ≤
√

3optb. Those are exactly

the same bounds for the b-norm as used by Cheng and Jin for the SDP problem and the

maximum norm [CJ12]. Thus every argument using these bounds can be done similarly

with optb instead of opt∞. In particular we can clip the terrain at the boundary of a cube

centered at s with a side length of 4
√

3optb.

19



20 3. Approximate Shortest Gentle Paths

3.2.1 Local Problem

Similar to Chapter 3.1.1 the local problem can be described as follows:

min
k∑
j=0

lj

subject to

−lj ≤
pj+1,3 − pj,3

sin(θ)
≤ lj ,

and

‖pj+1 − pj‖2 ≤ lj

with

pj =


s if j = 0

(1− ζj)uj + ζjvj if j ∈ {1 . . . k}
t if j = k + 1

and k denoting the number of edges in the edge sequence. Furthermore uj , vj are the

endpoints of the edge on which pj lies and ζj ∈ [0, 1].

3.2.1.1 Approximation of the LSGP with Second Order Cone Programming

Second order cone programming is a special case of semidefinite programming that is itself

a special case of convex programming. All linear and convex quadratic programs can be

described as second order cone programs.

Definition 2. Second order cone program (SOCP)

An SOCP is a convex optimization problem of the following form:

min fTx

subject to ‖Aix+ bi‖ ≤ cTi x+ di
with i = 1, . . . , N, x, f, ci ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni and di ∈ R

The name derives from the fact that all constraints are given in the form of second order

cones. A second order cone is defined as K = {(x, y) : ‖x‖ ≤ y} x ∈ Rp, y ∈ R.

The LSGP problem can be formulated as an SOCP as seen below.

min fTx

20



3.2. Approximation Algorithm 21

subject to

0 ≤
(

1
uj,3−vj,3

sin θ
vj+1,3−uj+1,3

sin θ

) lj
ζj
ζj+1

+
uj+1,3 − uj,3

sin θ

0 ≤
(

1 −uj,3−vj,3
sin θ −vj+1,3−uj+1,3

sin θ

) lj
ζj
ζj+1

− uj+1,3 − uj,3
sin θ

lj ≥

∥∥∥∥∥(uj − vj vj+1 − uj+1

)( ζj
ζj+1

)
+ uj+1 − uj

∥∥∥∥∥
2

with

fT = (1 . . . 1︸ ︷︷ ︸
k

0 . . . 0︸ ︷︷ ︸
k+1

), x ∈ R2k+1, xT = (l0 . . . lk ζ1 . . . ζk).

The dimensions are

n = 2k + 1, N = 3(k + 1) and ni =

{
3 for i = 2k + 3, . . . , 3k + 3

0 otherwise
.

Now the LSGP can be approximated using a general SOCP algorithm. Here we use an

algorithm presented by Lobo et al. [LVBL98] that gives a (1 + δ) -approximation for a

given SOCP and runs in O(k3.5 log 1
δ ) as pointed out by Ahmed and Lubiw [AL09].

The algorithm uses the primal dual potential reduction method which is a specialization of

the interior point method. As with interior point methods the algorithm uses a sequence

of barrier functions that tend to infinity at the edges of the feasible space. Then the opti-

mization problem can be reduced to optimizing a sequence of functions with no additional

constraints by multiplying each barrier function with the objective function.

Cheng and Jin use an additive error bound for the local problem to limit the overall error

[CJ12]. The error we get from the SOCP algorithm is relative but it is also possible to

limit the additive error by using the bounds we already computed. We have an upper

bound for the length of the LSGP and also for the lengths of edges in the terrain. Now

we need an upper bound for the length of a segment in the LSGP. This upper bound also

depends on the biggest height difference in a triangle of the terrain and the parameter θ.

The biggest difference in height between two points in the terrain is limited by 4
√

3optb.

Thus the length of a segment is at most

max

(
12optb,

4
√

3optb
sin θ

)
= 4
√

3optb ·max

(√
3,

1

sin θ

)
.

So if the length of the face sequence is |σ| then the length of the LSGP is limited by

4
√

3|σ|optb ·max

(√
3,

1

sin θ

)
.
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22 3. Approximate Shortest Gentle Paths

That gives

opt ≤ (1 + δ)opt ≤ opt + δ · 4
√

3|σ|optb ·max

(√
3,

1

sin θ

)
.

So the additive error is limited by

δ · 4
√

3|σ|optb ·max

(√
3,

1

sin θ

)
.

Theorem 4. Let s and t be two points on a terrain with n vertices and σ an edge sequence

for a path from s to t. For any δ ∈ (0, 1) an approximate LSGP with an additive error of

at most 4
√

3 · δ|σ|optb ·max
(√

3, 1
sin θ

)
can be computed in O

(
|σ|3.5 log 1

δ

)
time.

3.2.2 Sequence Tree

Remember that in Lemma 4 we showed that in the case of the b-norm we can stop growing

the sequence tree after at most m levels when m is the number of faces in the terrain.

Note that the same proof also works if we substitute the Euclidean norm for the b-norm in

Lemma 4. Define µ = optbε
κn2m(m+1)

and µ̃ = optbε
m+1 just as in Cheng and Jin do. The constant

κ is chosen such that the number of nodes created in the sequence tree is at most κn2.

Analogously to Cheng and Jin we define the notions of quasi-length and quasi-dominance.

Definition 3. The quasi-length of a path P with edge sequence σP is defined as ‖P‖ +

|σP | · µ̃.

A node α corresponding to the face corner (f, v) and the edge sequence σα quasi-dominates

a node β corresponding to the same face corner (f, v) and the edge sequence σβ if the quasi-

length of an approximate LSGP Pα from s to v with edge sequence σα and an additive

error of at most |σα|µ is at most the quasi-length of an approximate LSGP Pβ from s to

v with edge sequence σβ and an additive error of at most |σβ|µ (see Figure 3.2). Ties are

broken arbitrarily.

Let α quasi-dominate β. Furthermore let e1 be the first edge in the longest common suffix

of σα and σβ and eα and eβ the predecessors of e1 in σα and σβ respectively. If e1 is the first

edge in σα (resp. σβ) let eα (resp. eβ) be s. If e1, eα and eβ lie in clockwise order around

their common face, α quasi-dominates β on the right. Otherwise α quasi-dominates β on

the left.

The algorithm works exactly as in the b-norm case with the difference that we check for

quasi-dominance instead of normal dominance. As in Lemma 5 for the b-norm case we

prove that we do not prune important paths using the notion of quasi-dominance. The

following Lemma and its proof are again mostly analogous to Cheng and Jin [CJ12].

Lemma 6. Let α and β be two nodes of the sequence tree with corresponding edge sequences

σα and σβ that correspond to the same face corner (f, v) and edge e such that α quasi-

dominates β on the right (resp. left). Let er be the edge that follows e immediately in

anticlockwise (resp. clockwise) order around the boundary of f .

(i) α is not a descendant of β.

(ii) For every point r ∈ er and every LSGP Qβ with edge sequence σβ from s to r, the

LSGP Qα with edge sequence σα from s to r satisfies ‖Qα‖ ≤ ‖Qβ‖+(|σβ|−|σα|)·µ̃+|σβ|·µ.
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3.2. Approximation Algorithm 23

Proof. As we have seen in Theorem 4 we can compute approximate LSGPs Pα and Pβ
from s to v with edge sequences σα and σβ respectively. As the error depends on δ which

we can choose freely between 0 and 1 we can find Pα and Pβ such that they have an

additive error of at most |σα|µ and |σβ|µ respectively.

Part (i): Assume that α is a descendant of β. Then σβ is a prefix of σα. This means that

the two paths have the same edge sequence until they enter face f . Then Pβ terminates

in v while Pα exits f through another edge only to come back to f later. We shortcut the

path Pα by taking the shortest path directly to v after Pα entered f for the first time. For

the resulting path Pγ the edge sequence σγ is equal to σβ. Obviously we have ‖Pγ‖ < ‖Pα‖
and since α quasi-dominates β also ‖Pα‖+ |σα|µ̃ ≤ ‖Pβ‖+ |σβ|µ̃. Because |σβ|+ 1 ≤ |σα|
we get

‖Pγ‖+ (|σβ|+ 1)µ̃ < ‖Pα‖+ |σα|µ̃ ≤ ‖Pβ‖+ |σβ|µ̃.

Altogether we have ‖Pγ‖ + µ̃ < ‖Pβ‖. Let l be the length of an LSGP from s to v with

edge sequence σβ. Then we get ‖Pβ‖ ≤ l+ |σb|µ and with that ‖Pγ‖+ µ̃−|σb|µ < l. Since

µ̃ = κn2mµ > mµ ≥ |σβ|µ we get ‖Pγ‖ < l which is a contradiction since l is the length

of an LSGP with the same start and endpoint and the same edge sequence as Pγ .

Part (ii): W.l.o.g. we assume that α quasi-dominates β on the right. As in Lemma 5 we

know that Qβ and Pα intersect in a point called x (see Figure 3.2).

Then we have

‖Qα‖ ≤ ‖Pα,[s,x]‖+ ‖Qβ,[x,r]‖
and

‖Pβ‖ ≤ ‖Qβ,[s,x]‖+ ‖Pα,[x,v]‖+ |σβ|µ
added, this gives

‖Qα‖+ ‖Pβ‖ ≤ ‖Qβ‖+ ‖Pα‖+ |σβ|µ

Since α dominates β we have ‖Pα‖ ≤ ‖Pβ‖ + (|σβ| − |σα|)µ̃. By inserting this into the

previous inequality we get ‖Qα‖ ≤ ‖Qβ‖+ (|σβ| − |σα|)µ̃+ |σβ|µ.

Now the algorithm can construct the sequence tree while enforcing the one-corner one-split

property. When the tree has reached a depth of m the algorithm stops growing the tree

and returns the shortest approximate LSGP that was computed during the construction

of the tree and that terminates in t.

3.2.3 Analysis

Theorem 5. Let s and t be two points on a terrain with n vertices. For any ε ∈ (0, 1)

a (1 + ε)-approximate shortest gentle path from s to t can be computed in O
(
n5.5 log n

ε

)
time.

Proof. With Theorem 3 we know that we can compute the length optb of an LbSGP in

O(n3 log n) time. An approximate LSGP can be computed in O
(
|σ|3.5 log 1

δ

)
as we have

seen in Theorem 4. We have |σ| ≤ n for all LSGPs that are computed during the execution

of the algorithm because the sequence tree has only n levels and thus the edge sequence

cannot be longer. Thus the runtime is also in O
(
n3.5 log 1

δ

)
.
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24 3. Approximate Shortest Gentle Paths

The additive error in the approximation of the length of an LSGP has to be at most |σ|µ
for the analysis to work analogously to [CJ12]. Thus we have

|σ|µ = δ|σ|optb4
√

3 max

(√
3,

1

sin θ

)

⇔ |σ|optbε
κn2m(m+ 1)

= δ|σ|optb4
√

3 max

(√
3,

1

sin θ

)
⇔ δ =

ε

4
√

3 max
(√

3, 1
sin θ

)
κn2m(m+ 1)

.

Then for each LSGP the runtime is

O
(
n3.5 log

1

δ

)
= O

(
n3.5 log

(
4
√

3 max(
√

3, 1
sin θ )κn2m(m+ 1)

ε

))
= O

(
n3.5 log

n

ε

)
.

With the one-corner one-split property only O(n2) nodes are ever created during the

construction of the sequence tree. For each of these nodes the associated LSGP must be

approximated. Since the construction and pruning of the sequence tree can be done in

O(n3) time just as in the b-norm case we get a total runtime of O
(
n5.5 log n

ε

)
.

The proof of correctness is exactly the same as in [CJ12] as we used the same values for µ

and µ̃. The original proof can be found in Appendix B.
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4. Towards an Exact Algorithm

To solve the shortest gentle path problem exactly, we only need to be able to compute the

exact locally shortest gentle path. With the possibility to compute LSGPs we can use the

sequence tree approach as before to find an exact SGP. Thus this chapter will focus only

on the problem to find a shortest gentle path with a given edge sequence.

The basic concept is to trace a path from the origin to the destination by characterizing

the bend angles at each edge of the edge sequence. For the shortest descending path

problem such an approach was implemented by Ahmed [Ahm09]. We try to use the same

idea for the shortest gentle path problem and find that there are indeed restrictions on

the behavior of shortest gentle paths at terrain edges but also that one segment does not

always determine a unique direction for the next one. Instead for one segment there might

be a whole interval of directions the next segment could have.

We use this knowledge about shortest gentle paths to describe an algorithm that traces a

shortest gentle path from a point s to a point t on the terrain through a given sequence

of faces. The approach is to look at each edge in the sequence successively and compute

for every point on the current edge the locally shortest gentle path to it. For each edge we

save in the function l the lengths of the LSGPs from s to every point on this edge. This

length function is continuous and piecewise differentiable. To find the length function for

the next edge we use the knowledge we gained about the possible bend angles. We handle

each interval on the first edge for which l is differentiable individually. For each point in

each of these intervals we look at the direction of the path segment that terminates in that

point and expand this path to the current edge, such that the two segments together are

an LSGP (see Figure 4.1 for an example). As before we always use the simplified path

and compute the length with ‖ · ‖s. Being given a simplified path we can always construct

a gentle path with the same length. If we get several LSGPs for one point on the second

edge we have to compare the lengths of the LSGPs and save only the shortest one. That

means that we have to take the lower envelope of all the length functions we get for the

different intervals on the first edge. This gives us the length function for the second edge.

The same procedure is repeated for all edges the path has to cross. To find the shortest

gentle path from s to t we then just have to add the length of a shortest gentle path from

each point on the last edge to t to the computed length function of the last edge and find

the minimum of the resulting function.
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26 4. Towards an Exact Algorithm

interval 3

s

interval 2

interval 4
interval 5

interval 1

edge 1

edge 2

Figure 4.1: Example paths from s to the second edge. In this case we have only one interval
on the first edge and five intervals on the second edge (bounded by thick drawn
paths). Over each of these intervals the length function is differentiable.

In most of the cases of different intervals that arise during the execution of the algorithm it

is easily possible to trace the paths to the next edge. Just in one case we cannot compute

the length function for the next edge from the length function we have for the interval

on the previous edge (see Case 5 in Chapter 4.3). Here we have to use an approximation

but otherwise all functions can be computed exactly. Unfortunately this algorithm has an

exponential running time in the worst case.

4.1 Preliminaries

First we show that LSGPs from the same origin need not cross.

Lemma 7. Let s be a vertex of the terrain and σ an edge sequence. For any two points c

and d on the final edge we can find LSGPs with the edge sequence σ to c and d respectively

that do not cross.

s

b

c
a

d

x

Figure 4.2: Two intersecting paths with the same edge sequence.

Proof. First we assume that we have found two LSGPs with the same edge sequence that

do cross. Then we consider the first crossing point x on the paths seen from s. Let the

entry and exit points on the edges of the face in which x lies be labeled a to d as seen in the

picture. We can assure that the paths cross exactly in x even if the direct path between a

26



4.1. Preliminaries 27

and d or b and c is too steep for a gentle path. Then with the triangle inequality we get:

‖x− a‖s + ‖c− x‖s ≥ ‖c− a‖s

and

‖x− b‖s + ‖d− x‖s ≥ ‖d− b‖s

Adding these two inequalities gives

‖c− b‖s + ‖d− a‖s ≥ ‖c− a‖s + ‖d− b‖s.

Thus since our paths are LSGPs the paths s → a → c and s → b → d must also be

LSGPs. For further crossings we do exactly the same and thus get two LSGPs that do not

cross.

Lemma 8. Let s be a vertex of the terrain and σ an edge sequence. Then there exists an

LSGP to every inner point of the final edge in the edge sequence iff there is at least one

possible initial direction for a gentle path starting in s.

Proof. If there is a gentle path with the given edge sequence, then an LSGP with this edge

sequence exists also. With Lemma 2 we can always find a gentle path for a given edge

sequence if there is a valid initial direction.

Lemma 9. Let s be a vertex of the terrain and σ an edge sequence. Further let P denote

an LSGP from s to a point x on an edge uv of the edge sequence and a and b two inner

points on the next edge in the edge sequence vw. If P can be extended to a and b then it

can also be extended to any point on the line segment ab.

s

u

v

w

x

a

by

c

Figure 4.3: The set of points on vw to which p can be extended forms an interval.

Proof. Let c be a point on the line segment ab. Then there is with Lemma 8 at least one

LSGP from s to c with the edge sequence σ. Let the intersection of this path with uv be

called y (see Figure 4.3). If x 6= y, y has to be to the left or to the right of x. W.l.o.g.

assume that y lies to the right side of x. Then we can use Lemma 7 to show that the path

s→ x→ c must also be an LSGP. This argument is independent on the exact position of

c and thus we get that p can be extended to every point on ab.
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28 4. Towards an Exact Algorithm

Thus the points to which one LSGP can be extended form one interval on the next edge.

Let σ be an edge sequence of length k with the edges uivi for i ∈ {1 . . . k}. The function

g(ζ1, . . . , ζk) = ‖p1 − s‖s +
∑k−1

i=1 ‖pi+1 − pi‖s with pi = ζiui + (1 − ζi)vi and ζi ∈ [0, 1]

describes the length of all gentle paths that obey the edge sequence σ. The function

l(ζk) = infζ∈C g(ζ, ζk) with ζ = (ζ1, . . . , ζk−1) and C = [0, 1]k−1 describes the length of an

LSGP to each point on the last edge ukvk.

Lemma 10. The function l(ζk) is convex.

Proof. The function g is convex since |x| and ‖x‖2 are convex and sums and maxima of

convex functions are also convex. We have also given that if a function g(x, y) is convex

in (x, y), then the function f(x) = infy∈C g(x, y) is also convex iff C is a convex set. Since

C = [0, 1]k−1 is a convex set, l(ζk) = infζ∈C g(ζ, ζk) is also convex.

Lemma 8 showed that if there is a possible initial direction for a gentle path the length

function l is defined for all ζk ∈ [0, 1].

4.2 Path Tracing from One Point

Given the last segment of a traced path, our goal is now to extend this path to the next

edge in the edge sequence. This is done such that the last and current segment together

form an LSGP.

u

w

v

t

b

c

a

φ

ψ

Figure 4.4: The path to b is extended to the edge vw.

Given are two neighboring triangles of the terrain with vertices t, u, v, w as seen in Fig-

ure 4.4. The path enters the first triangle at the edge tv and transfers to the second

triangle across edge uv. This path segment is given. Let vw be the next edge in the edge

sequence. The last given segment of the traced path has nodes a on tv and b on uv. The

angles ∠abv and ∠vbc will be called ψ and φ. Now we try to find all points c on vw such

that the path from a to c via b is an LSGP.

First we determine the intervals on vw for which the direct path would be too steep. These

intervals will be called steep. The rest of the line segment can then be reached by direct

gentle paths and will be called flat. The intervals are found by computing the points c
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4.2. Path Tracing from One Point 29

on vw for which the line segment bc has slope θ (see Figure 4.5). To do this we solve the

equations sin θ = |b3−c3|
‖c−b‖2 and c = v+ s ·−→vw with s ∈ [0, 1] for c which results in a quadratic

equation. Thus we can get up to two such points c and with that up to three intervals on

vw. By testing a point in one interval we can determine which intervals are the steep ones

and which are flat.

u

w

v

t

b

flat

a

flat

steep

sl = θ

Figure 4.5: Example for steep and flat intervals.

The problem can now be described as follows:

Problem 1. Given are a terrain T and in the terrain two adjacent faces with the vertices

t, u, v and u, v, w. Furthermore a point a on tv and a point b on uv that is parametrized

by b = ζu+ (1− ζ)v with ζ ∈ [0, 1].

The task is to find all points c on vw such that the shortest gentle path from a to c via b

is also a shortest gentle path from a to c.

For each such c we know that ‖b− a‖s + ‖c− b‖s = minx∈uv ‖x− a‖s + ‖c− x‖s. Define

l(λ, ξ) = ‖x− a‖s + ‖c− x‖s with x = λu+ (1− λ)v and c = ξw+ (1− ξ)v. Now we want

to find all possible values for ξ such that l(ζ, ξ) = minλ∈(0,1) l(λ, ξ). To do that we set

the derivative at ζ equal to zero: dl
dλ(ζ, ξ) = 0. There are only a few cases for which the

derivative is not defined. These cases will be handled individually; They are: sl(ab) = θ,

sl(xc) = θ or ζ ∈ {0, 1} which means that b = u or b = v.

In the following we will consider several cases. In Cases 1 to 3 we will assume that b lies in

the interior of uv. The case that b = u or b = v will be handled separately. We divide the

cases by the gradient of the segment ab. We consider sl(ab) > θ, sl(ab) < θ and sl(ab) = θ.

If sl(ab) 6= θ, the derivative dl
dλ(ζ, ξ) is not defined if bc has gradient θ. Otherwise it is

defined and we can use it to get candidates for c. Here we differentiate again between

several cases depending on the gradient of the segment bc. We solve the equation for each

case separately and thus get possible values for ξ for each of the cases. Now we still have

to check for all of the candidates if the case we computed them for occurs e.g. we test

if the candidate we computed in the flat case also lies in a flat interval. If we found no

candidates we still have to test if we get a minimum for ξ with sl(bc) = θ. This test is done

by evaluating l for one point on each side of b on uv. Since l is convex we know that if l

is larger for the two points than for b, we have a minimum at b and thus ξ is a candidate.
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30 4. Towards an Exact Algorithm

Case 1: Line Segment ab is Steep – sl(ab) > θ

In this case l(λ, ξ) = |x3−a3|
sin θ + max(‖x− c‖2, |x3−c3|sin θ ) if λ lies in a sufficiently small neigh-

borhood of ζ. Now we want to find all ξ such that dl
dλ(ζ, ξ) = 0. To calculate the derivative

we look at two different cases again.

Case 1.1: Line Segment bc is Steep – l = |x3−a3|
sin θ + |x3−c3|

sin θ

(a) a3 < x3 < c3 or a3 > x3 > c3 We have

l(λ, ξ) =
1

sin θ
(−a3 + ξw3 + (1− ξ)v3)

⇒ dl

dλ
= 0

Thus in this case all possible values for c are candidates.

(b) x3 > a3, c3 or x3 < a3, c3 We have

dl

dλ
= ±2(u3 − v3)

sin θ

⇒ dl

dλ
= 0 ⇔ u3 = v3

This means that in this case there are no candidates except when u3 = v3. Then all

possible values for c are candidates.

Case 1.2: Line Segment bc is Flat – l = |x3−a3|
sin θ + ‖x− c‖2

We have

dl

dλ
= ±u3 − v3

sin θ
+

1

‖x− c‖2
·

3∑
i=1

(xi − ci)(ui − vi)

= ±u3 − v3

sin θ
+
< x− c, u− v >
‖x− c‖2

= ±u3 − v3

sin θ
+ ‖u− v‖2 · cosφ

Therefore

dl

dλ
= 0 ⇒ cosφ = ± u3 − v3

sin θ · ‖u− v‖2

The “±” in this case is “+” if x3 > a3 i.e. segment ax is ascending and “−” if x3 < a3 i.e.

segment ax is descending. Thus there is at most one candidate in this case which only

depends on u and v and is completely independent of the location of a. Note that we only
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4.2. Path Tracing from One Point 31

get a candidate if uv is gentle as otherwise the absolute value of the fraction in the last

equation would be greater than 1.

Case 2: Line Segment ab is Flat – sl(ab) < θ

In this case we have l(λ, ξ) = ‖x − a‖2 + max(‖x − c‖2, |x3−c3|sin θ ) if λ lies in a sufficiently

small neighborhood of ζ. And again we have two cases depending on the maximum:

Case 2.1: Line Segment bc is Steep – l = ‖x− a‖2 + |x3−c3|
sin θ

We have

dl

dλ
=

1

‖x− a‖2
·

3∑
i=1

(xi − ai)(ui − vi)±
u3 − v3

sin θ

=
< x− a, u− v >
‖x− a‖2

± u3 − v3

sin θ

= ‖u− v‖2 · cosψ ± u3 − v3

sin θ

Therefore

dl

dλ
= 0 ⇒ cosψ = ± u3 − v3

sin θ · ‖u− v‖2

Thus there are no candidates in this case, except the incoming angle ψ has the exact value

given above. In this case all values for c are candidates.

Case 2.2: Line Segment bc is Flat – l = ‖x− a‖2 + ‖x− c‖2

We have

dl

dλ
=

1

‖x− a‖2
·

3∑
i=1

(xi − ai)(ui − vi) +
1

‖x− c‖2
·

3∑
i=1

(xi − ci)(ui − vi)

=
< x− a, u− v >
‖x− a‖2

+
< x− c, u− v >
‖x− c‖2

= ‖u− v‖2 · cosψ + ‖u− v‖2 · cosφ

= ‖u− v‖2 · (cosψ + cosφ)

Therefore

dl

dλ
= 0 ⇒ cosψ = − cosφ = cos(180◦ − φ) ⇒ ψ = 180◦ − φ
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32 4. Towards an Exact Algorithm

The last deductions are true because u 6= v and ψ, φ ∈ [0◦, 180◦]. So in this case there is

at most one candidate and for this candidate the incoming and outgoing angle ψ and φ at

b add to 180◦. That means the path unfolds to a straight line at b.

Case 3: Line Segment ab Has Slope θ – sl(ab) = θ

In this case the derivative is not defined. But we can still compute the derivative from

the left and right side. Point c is a solution iff one of these derivatives is positive and the

other negative or one of the derivatives is zero.

Case 4: Point b is a Vertex – b ∈ u, v

In this case we only have to check if the derivative of the length function is positive or

negative. If b = u all ξ for which dl
dλ(ζ, ξ) ≥ 0 are candidates; if b = v all ξ for which

dl
dλ(ζ, ξ) ≤ 0 are candidates.

4.2.1 Approach for Tracing Paths from One Point

First the flat and steep intervals are determined. After that, depending on the slope of

the segment ab, the candidates for point c are determined. Then the candidates that do

not lie in the right segment are discarded. If there are no candidates left we test the case

that the second segment has slope θ. The candidates that are left now are valid and they

form an interval as shown in Lemma 9. Note that there might be no candidates at all.

In the case that we have more than one candidate left, the length of the corresponding

paths can be given as a function l of the position of c within vw.

In cases 1 and 2 we only get more than one candidate if bc is steep. If the endpoints of

the interval are ξ1w + (1 − ξ1)v and ξ2w + (1 − ξ2)v with ξ1 ≤ ξ2 the length function in

these cases is

l(ξ) = ‖b− a‖s +
|ξw3 + (1− ξ)v3 − b3|

sin θ
for ξ1 ≤ ξ ≤ ξ2

which is a linear function.

In the cases 3 and 4 the length function can be more complex since we can get candidates

for flat and steep second segments. Thus the length function in this case is

l(ξ) = ‖b− a‖s + inf

{
‖ξw + (1− ξ)v − b‖s,

|ξw3 + (1− ξ)v3 − b3|
sin θ

}
for ξ1 ≤ ξ ≤ ξ2.

4.3 Path Tracing for an Interval

Now that we know how to trace one path we want to generalize this idea and trace all

paths at the same time. We do this edge by edge in the sequence. So we start with the

first edge in the sequence and compute the function of the length of an LSGP for all points

x on this edge. For the first edge this is ‖x− s‖s. Now we trace LSGPs for every point x
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4.3. Path Tracing for an Interval 33

to the next edge. Since we cannot actually do this for every point separately we split the

first edge into several intervals and trace all paths for these whole intervals. The length

function l is piecewise differentiable. We divide the first edge into intervals over which l

is differentiable and points for which l is not differentiable. Then we trace the paths for

each of the intervals and compute the corresponding length functions for the next edge.

Afterwards we have to find the infimum of all the length functions we computed. The

resulting function is the length function for the next edge. Now we can continue with

the next edge until we reach the last one. Then we just have to compute the length of

every point on the last edge to the destination t and add this to the length function of this

point. Then we compute the minimum and get the length of the LSGP from s to t. Now

we consider how to trace the different intervals from one edge e1 = uv to the next edge in

the edge sequence e2 = vw. The edge before e1 in the edge sequence will be called e0. If

e1 is the first edge we will call s e0. As before we consider different cases depending on

the last segments.

Case 1: The Segments Between e0 and e1 are Steep

The length function in this case is always linear. This is true because the steep segments

always either originate in one common point or the segments before were also steep. Thus

we have one common point from which on all segments are steep. Then the lengths of the

paths only depends on the overall height difference from the common origin to the last

edge and this is linear.

Case 1.1: Steep Extension

steep

e0

e1

e2

a

Figure 4.6: Path tracing for an interval of steep paths if the second face is also steep. The
border paths have all slope θ.

As in Case 1.1 in Chapter 4.2 all points on e2 that can be reached with a steep path are

candidates if the path ascends or descends for both segments or if u3 = v3 (see Figure

4.6). Otherwise there are no candidates. The length function over the interval on e2 is

still linear and can be computed easily.

Case 1.2: Flat Extension

As in Case 1.2 in Chapter 4.2 there is at most one candidate for every point in the interval

on e1 and the outgoing angle is fixed and only depending on u and v. This means that

we get a family of parallel lines and thus an interval of candidates on e2 (see Figure 4.7)
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34 4. Towards an Exact Algorithm

or no candidates at all. Since the segments are parallel their length function is linear over

the interval and thus the whole length function is also linear and can be computed easily.

flat

e0

e1

e2

a

Figure 4.7: Path tracing for an interval of steep paths for Cases 1.2 and 1.3.

Case 1.3: Extension with Slope θ

If we have a steep extension all possible extensions with slope θ are already included in

this case. Thus we only have to consider this case if one of the segments ascends and the

other one descends and u3 6= v3. Otherwise, if we have no steep extension it means that

there are no steep paths at all and thus also no paths with slope θ. In the relevant cases

we just add extensions with slope θ for all points on e2 that have not been reached by

an extension yet to the list of candidates. The length function in these cases of parallel

extensions with slope θ is also linear and can be computed easily.

Case 2: The Segments Between e0 and e1 are Flat and Their Supporting

Lines Meet in One Point

This case occurs if the paths originate in the same point y on one of the previous edges

in the sequence and all segments from then on are also flat and thus with Case 2.2 in

Chapter 4.2 the incoming and outgoing angles at every edge add to 180◦. This means that

if we unfold the terrain along these paths the paths unfold to straight lines that meet in

one point. Thus the length function in this case is k + ‖b− x‖2 for a constant length k, a

fixed point x and b on e1. Look at Figure 4.8 for an example in which we can see all the

different cases that are described below.

Case 2.1: Steep Extension

With Case 2.1 in Chapter 4.2 we know that we can extend a path only for one specific

incoming angle. Since the incoming angles are different for all segments we can have at most

one path that can be extended. In this case all possible steep extensions are candidates.

The length function over the interval on e2 is linear since the segments between e1 and e2

all originate in one point and all segments are steep.

Case 2.2: Flat Extension

Again we look at the corresponding case for the tracing of one path. In Case 2.2 in Chapter

4.2 the outgoing angle of the extension must add to 180◦ with the incoming angle of the
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steep

ψ

parallel

parallel
flat

flat

e0

e1

e2

a

Figure 4.8: Path tracing for an interval of flat paths whose supporting lines meet in one
point. The parallel paths in this figure all have slope θ. The thick paths mark
the borders between the different intervals.

last segment. That means that for the whole interval on e1 we get flat extensions such

that if we unfold the terrain at the current edge the extensions with their last segments

form straight lines. This means that for the edge e2 we will get an interval of Case 2

again. If we unfold the terrain along the traced paths we get straight lines that originate

in one common point. Thus the length function can be computed easily by finding the

intersection z of the straight lines that contain the segments between e1 and e2. Then the

length function is the sum of ‖c− z‖2 and the path length from s to y.

Case 2.3: Extension with Slope θ

If there are still points c on the edge e2 for which we could not find a path in the previous

two cases, we have to check the possibility that a path could be extended from a point

b on e1 to c with a segment that has slope θ. Note that these extensions cannot cross

any of the other extensions we already traced. This is true because the paths are LSGPs

from their last common point y onward and with Lemma 7 we would get a second LSGP

from y through b to a point on the next edge. Since we did not find this path in the first

two cases this is a contradiction. For all points b that can be extended in this way we

know that the incoming angle is not the angle specified in Case 2.1 and if we consider the

extension such that incoming angle equals outgoing angle this path would be steep. Thus

in this case we have up to two intervals on e1 that can be extended in this way (see Figure

4.8). The length function in this case is the length function for e1 plus the linear function

for the extension. Thus the whole length function is the sum of a constant value, a linear

function and ‖b− x‖2 for a fixed point x and b on e1.

Case 3: The Segments Between e0 and e1 are Flat and Parallel

This case only occurs if Case 1.2 occurred for the last interval. Thus the length function

is linear as described there.
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Case 3.1: Steep Extension

Again by looking at Case 2.1 in Chapter 4.2 we see that we can extend each segment only

if the incoming angle equals a special value that depends only on u and v (see Figure 4.9).

Thus if the segments have exactly this incoming angle, all possible steep extensions are

candidates, otherwise there are no candidates at all. If there are candidates the length

function for the interval on e2 is obviously also linear.

steep

ψ

e0

e1

e2

Figure 4.9: Example for a steep extension of an interval of flat parallel paths.

Case 3.2: Flat Extension

Case 2.2 in Chapter 4.2 shows that in this case the incoming and outgoing angle at e1

must be equal (see Figure 4.10). Thus either the candidates are flat parallel lines or if the

extensions would be steep, we have no candidates at all. In the former case the length

function is still linear and can be computed easily.

flat

e0

e1

e2

Figure 4.10: Example for a flat extension of an interval of flat parallel paths. The marked
angles must be equal such that if the two faces are unfolded into one plane,
the path is a line segment. The Figure can also be used as an example for
Case 3.3. Now the angles need not be equal, just the extension paths must
all have slope θ.

Case 3.3: Extension with Slope θ

If we have found steep extensions, all possible paths with slope θ are also included in this

case. Otherwise we add if possible extensions with slope θ for all points c on e2 to which

we have found no extension yet to our candidates. The length function for a ray of parallel

extensions with slope θ is also linear.
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Case 4: There is Only One Last Segment and It Has Slope θ

This case can be handled just as Case 3 in Chapter 4.2. There might be up to two points

on e2 for which the length function is not differentiable. The length function for each of

the intervals in between these points is either linear if it is a steep interval or k+ ‖c− b‖2
with k denoting the length of the path up to e1, b the node on e1 and c a point in the

interval of e2. If the interval is flat we get the latter length function.

Case 5: The Segments Between e0 and e1 are Parallel and Have Slope θ

In the previous case we had just one segment with slope θ. Then we could just compute the

right and left derivative and check if one is positive or zero and the other is negative or zero.

In this case we try to do the same for all parallel segments. We get an interval of possible

extensions for each segment. Now we have to compare the path lengths corresponding

to these infinitely many intervals to get the shortest ones. In the case that the extended

segment is steep it is easy to compare these lengths but if the extended segment is flat we

need to use differentiation to find the shortest paths and this is only possible if the length

function of the paths up to e0 = uv is linear. Otherwise we cannot find the exact best

path for each point on e1 = vw. This case occurs only if the length function up to uv is

not linear which is the case if previously in the path there were segments that were flat

and whose supporting lines met in one point.

Case 5.1: Segment bc is Steep

Without loss of generality we assume that segment ab is ascending. We get two derivatives

one from the left and one from the right. In one we consider ab to be steep and in the

other one we consider it to be flat. The derivatives are

‖u− v‖2 · cosψ ± u3 − v3

sin θ
and 0 or

2(u3 − v3)

sin θ
.

If bc is ascending we have “+” in the first derivative and 0 in the second, if bc is descending

we have “−” in the first derivative and 2(u3−v3)
sin θ in the second. Now we have to review two

cases: First one of the derivatives could be equal to 0 and second one of the derivatives is

positive and the other negative.

If bc is ascending the second derivative is always 0. Otherwise 2(u3−v3)
sin θ = 0 iff u3 = v3 and

‖u− v‖2 · cosψ ± u3−v3
sin θ = 0 for exactly one value of the incoming angle ψ. If one of these

cases occurs it occurs for all incoming segments and independently of the outgoing angle

and thus all steep extensions are candidates.

In the second case one of the derivatives has to be positive and the other one negative.

Since the derivatives cannot be 0 the segment bc must be descending. We assume that the

second derivative 2(u3−v3)
sin θ is positive. Then:

‖u− v‖2 · cosψ − u3 − v3

sin θ
< 0 ⇔ cosψ <

u3 − v3

‖u− v‖2 sin θ

If the incoming angle ψ fulfills this inequality all steep paths for all points b are candidates.

If 2(u3−v3)
sin θ is negative the results are similar.
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38 4. Towards an Exact Algorithm

In each of the cases above we get infinitely many overlapping intervals. Now we still have to

decide which of the many possible paths to each point c on vw is the shortest. If the length

function is linear it is possible that the paths are all equally long for one specific gradient.

Otherwise the shortest paths are the whole interval for bmin = minb

{
l(b) + |c3−b3|

sin θ

}
and for

all other b a path with gradient θ parallel to the boundary of the whole interval (see Figure

4.11). Thus for steep extensions we get up to three intervals and the length functions for

the extensions are linear.

steep

sl = θ

sl = θ

sl = θ

e0

e1

e2

Figure 4.11: Example for a steep extension of an interval of parallel paths with slope θ.

Case 5.2: Segment bc is Flat

In this case the two derivatives (left and right) are

‖u− v‖2 · (cosψ + cosφ) and ‖u− v‖2 · cosφ+
u3 − v3

sin θ
.

First we consider the case that one derivative is equal to 0. If ‖u−v‖2 ·(cosψ+cosφ) = 0 we

get that ψ = 180◦ − φ. Thus we always get an interval of parallel segments as candidates;

we only have to verify that the segments are indeed flat. If ‖u − v‖2 · cosφ + u3−v3
sin θ = 0

we get cosφ = u3−v3
sin θ‖u−v‖2 . In this case we either get an interval of parallel segments with

outgoing angle φ or no candidates at all, if the equation cannot be fulfilled.

If none of the derivatives is equal to zero one has to be positive and the other negative.

Then ‖u − v‖2 · cosφ must lie between −u3−v3
sin θ and −‖u − v‖2 · cosψ. Thus there is an

interval of possible outgoing angles φ that depends only on u, v and ψ and hence is equal

for all points b. Note that the boundary values of this interval correspond to the cases with

one derivative equal to zero. To use only valid candidates we now intersect the interval

with the interval of angles φ that give flat segments and call the resulting interval I. To

get the best path for every point c on vw we examine the complete path lengths. For a

fixed point c, the path ending there has length fc(λ) = ‖c− λu+ (1− λ)v‖2 + l(λ) with λ

being the parametrization of a point on uv.

If l(λ) is linear the derivative with respect to λ is dl
dλ = ‖u− v‖2 · cosφ+ k for a constant

k. Then we get dl
dλ = 0 ⇔ cosφ = − k

‖u−v‖2 . If φ /∈ I, the boundary value of I that

is closest to the value of φ gives us the candidates. In both cases we get a ray of parallel

segments as candidates. The length function for this segment is obviously linear.

If l(λ) is not linear we cannot compute the derivative that easily to get the shortest paths.

Also the new segments need not always be parallel. This case seems to be difficult to

handle and thus we would have to discretise the interval on uv. Then we have only an
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finite number of length functions and can approximate the shortest paths by finding the

infimum of these functions. In all other cases we can determine the exact length functions.

Case 6: There is Only One Last Segment and It Ends in u or v

This case can be handled just as in Case 4 in Chapter 4.2 which considers the same problem

but with path tracing for one path. For the length function we are in the same situation

as in Case 4 in this section. Thus we get up to two points for which the derivative is

not defined and the intervals in between have length functions that are either linear or a

composition of a linear function and the Euclidean norm.

4.4 Algorithm for the Shortest Gentle Path Problem

Once the path tracing problem for one interval is handled the overall algorithm is rather

simple. As mentioned before we only need to be able to compute the locally shortest gentle

path. Then we can iterate over all locally shortest gentle paths by constructing a sequence

tree as we did in Chapter 3. Given an edge sequence the algorithm first computes the

length function from the starting point to all points on the first edge. From here on we

always trace the paths from the current edge to the next one for all intervals. For each

interval on the current edge we also save the relevant information on the segments that

create the interval. For a steep interval no supplementary information is needed but for

other intervals we need to save some information to be able to compute the path extensions.

For an interval of parallel paths we save the incoming angle while for an interval of paths

with a common origin we save the crossing point of the supporting lines of the segments.

Together with the length function for the current edge this is all the information we need

to trace the paths from each interval to the next edge and compute the corresponding

length functions.

Now we have a family of length functions for the next edge whose domains might still

intersect. This means that the individual path tracing for each interval has produced

more than one candidate for some points. Thus we have to compute the infimum of all

length functions to find the best candidate for each point.

To this end we first compute all intersections of the length functions. Then we use an

algorithm that is similar to the gift wrapping algorithm for the convex hull problem [Jar73].

We sort all intersection points from left to right. Then we start with the leftmost point. If

there is more than one point, we take the lowest. This point must be part of the infimum

function. Now we consider all functions that intersect at this point and find the function

with the lowest gradient. This function must be part of the infimum at least up to the

next intersection. This next intersection we consider now and again find the function with

the lowest gradient extending from this point. Thus we can trace the infimum function

through the intervals until we reach one of the rightmost points. The result is a function

that gives for each point on the edge the length of an LSGP from s to this point.

When we have computed the length function for the last edge in the edge sequence we still

need to add the s-norm distance to t for every point on the edge. Then the minimum of

the resulting function is exactly the length of an LSGP from s to t .
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40 4. Towards an Exact Algorithm

Now we can iterate through all possible edge sequences with the help of the sequence tree

and find the globally shortest gentle path from s to t.

4.5 Algorithm Complexity

If we could compute the exact locally shortest gentle path in polynomial time, the overall

runtime would also be polynomial. Each of the steps in the algorithm can be done in

polynomial time. The problem is that the number of intervals we have to consider for

each edge in the edge sequence grows in the worst case exponentially. Thus the worst case

runtime of the complete algorithm must also be exponential.

For example consider one interval of flat segments that have a common projected origin.

This interval can generate up to five intervals on the next edge (one steep interval, two

intervals of parallel segments with slope θ and two flat intervals). If the next face is flat it

is possible that we get up to two new intervals of flat segments that originate at the point

where the steep interval meets with the intervals of slope θ (see Figure 4.12). At the next

edge these intervals can also produce five new intervals. If this development continues we

get an exponential number of intervals and thus also an exponential worst case runtime.

flat face

flat
flat

. . .

Figure 4.12: Sketch of a terrain in which the number of intervals on each edge increases
exponentially.

4.6 Discussion

The shortest gentle path problem is not known to be NP-hard, neither is it known to

be polynomially solvable. Thus it is still possible that a polynomial algorithm exists

which solves the problem exactly. Still it seems more likely that the shortest gentle path

problem is indeed NP-hard. For closely related problems such as the shortest descending

path problem no exact polynomial algorithm has been found in spite of the attention this

problem received during the last years. Furthermore we know that the also related weighted

region problem is unsolvable in the algebraic computation model over Q [DCGM+12]. In
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the algebraic computation model any number that can be obtained from the rational

numbers Q by applying a finite number of the operations +, −, ·, / and n
√

with n ∈ N≥2

can be computed exactly.

On the other hand at least at a first view the hardness of the shortest gentle path problem

does not seem easy to prove. All hardness proofs for different shortest path problems

we found were based on the idea presented by Canny and Reif [CR87]. They reduce

the three dimensional shortest path problem with polyhedral obstacles to 3SAT. For this

purpose they show how a set of obstacles with an altogether polynomial complexity can

be constructed such that all paths shorter than a threshold represent a satisfying variable

assignment for a previously chosen 3SAT formula.

To this end they introduce three gadgets that are each made up of a set of obstacles.

A path splitter will double the number of shortest paths by splitting each path in two.

By putting n path splitters behind one another we can thus create 2n distinct shortest

paths. Each of these paths will now represent one variable assignment. Then we have

path shufflers that reorder the paths such that the first half of the paths corresponds to

all variable assignments with a specific variable set to 1. Then we need just one obstacle,

called a literal filter, in front of one half the paths to get elongated paths iff a specific

variable is set. With these three components we can build a search space that represents

an arbitrary 3SAT formula such that the shortest paths correspond to satisfying variable

assignments.

The idea has been picked up and adjusted for other problems, e.g., by Gray and Evans for

optimistic paths on uncertain terrains [GE04]. Unfortunately it cannot be applied to the

shortest gentle path problem because we cannot reorder distinct paths on a terrain. In

three dimensions it is easily possible to shuffle the 2n paths as seen in [CR87]. Gray and

Evans model the uncertainty by giving an interval for the height of each vertex instead of

a fixed value. Then the paths can lie anywhere within the three dimensional space that is

bordered above and below by the surfaces that we get if we set the height of every vertex

to the maximal resp. minimal value. Again the third dimension of the search space makes

it possible to construct the path shuffler.

For the shortest gentle path problem this is not possible because the terrain surface is

strictly two dimensional. When shuffling the paths we would inevitably get intersections

between them. But then the paths wouldn’t be distinct anymore since they could have

come from either direction before the intersection. Only if the problem has an additional

constraint that makes it possible to distinguish the intersecting paths we can construct

the needed path shuffler. This is the case for the shortest anisotropic path problem with

few bends. The constraint on the number of bends makes it possible to intersect two

distinct paths. Using this Ahmed and Lubiw proved the NP-completeness of the shortest

anisotropic path problem with few bends [AL08].

We still could try to construct the needed problem instance without path shufflers. But

then we would need O(2n) obstacles in the form of hills or valleys to implement the literal

filters which would obviously result in a terrain with an exponential number of vertices.

Thus the proof of Canny and Reif [CR87] cannot be adapted for the shortest gentle path

problem.
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5. Conclusion

In this thesis we developed the first polynomial (1 + ε)-approximation algorithm for the

shortest gentle path problem. The runtime lies in O
(
n5.5 log n

ε

)
and is as such independent

of the terrain geometry. The idea for the algorithm was introduced by Cheng and Jin [CJ12]

for shortest descending paths and in this thesis we adapted their algorithm to the shortest

gentle path problem. In contrast to most of the approximation algorithms for anisotropic

path problems this approach is not based on the simplification of the terrain with Steiner

points but on Chen and Han’s sequence tree [CH90] and the possibility to find close lower

and upper bounds for the solution. Another advantage of the algorithm is that its runtime

does not depend on the terrain geometry but only on the number of vertices in the terrain.

Since the adaption of this algorithm from the shortest descending path problem to the

shortest gentle path problem worked that well it might be an interesting question if one

could use the algorithm to find better approximation algorithms for other shortest path

problems as well. Another natural and quite interesting question is whether the shortest

gentle path problem is NP-hard. We have investigated this question but it does not seem

easy to prove or refute the hardness of the problem.

As we could not establish the hardness of the problem we tried to find a polynomial

algorithm that gives an exact solution for the shortest gentle path problem. This goal we

could not achieve but in the process we developed specifications on how shortest gentle

paths progress after they reached an edge of the terrain. These specifications are similar

to the specification of the bend angles for the shortest descending path problem that was

published by Ahmed [Ahm09]. Unfortunately with the shortest gentle path problem the

angle of the next path segment is not always uniquely defined by the last segment as it is

for the shortest descending path problem. Instead we often get a range of possible next

segments. None the less these ranges give some rules to how shortest gentle paths progress

through a terrain.
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6. Appendix

A Combinatorial Solution to the LSGP Problem

There are only slight modifications needed to solve the local problem using the combi-

natorial approach described by Cheng and Jin [CJ12, Chapter 3.2] which is cited below.

Afterwards the modifications to adopt the algorithm to the shortest gentle path problem

are briefly explained.

A.1 Excerpt from [CJ12]: Chapter 3.2 A Combinatorial L∞ LSDP Algo-

rithm

This section describes a faster algorithm for computing an L∞ LSDP from s to a vertex

vα with edge sequence σα whenever a new node α is created in the sequence tree. For

simplicity, we will not mention the edge sequence of the LSDP as it is fixed by the sequence

tree.

Our method computes all L∞ LSDPs from s to points on the two edges of the face fα
incident to vα. Suppose that we have already computed all L∞ LSDPs from s to points on

eα. Our strategy is to extend these paths to L∞ LSDPs to the two edges of fα incident to

vα. A point in a terrain edge with endpoints a and b can be written as pζ = (1− ζ)a+ ζb

for some ζ ∈ [0, 1]. We represent the L∞ LSDP lengths from s to ab by a function

Fab : Iab → R. That is, Fab(ζ) is the L∞ LSDP length from s to pζ ∈ ab. The domain Iab
of Fab is a subinterval of [0, 1], and it is possible that Iab 6= [0, 1] due to the descending

constraint.

Refer to Figure A.1. Let e be an edge of fα incident to vα. Let u be the other endpoint

of e. Let u and w be the endpoints of eα. We parametrize eα and e by λ, τ ∈ [0, 1],

respectively. That is, pλ = (1− λ)u+ λw and pτ = (1− τ)u+ τvα. The LSDP to a point

pλ ∈ eα is extended to a point pτ ∈ e by appending the segment pλpτ . The L∞ length

of pλpτ is ‖τ(vα − u)− λ(w − u)‖∞. We require pλpτ to be descending, so there is the

constraint that (vα,z − uz)τ ≤ (wz − uz)λ.
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vα

u

w

e

eα

fα

Figure A.1: The configuration of fα.
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F eα

Figure A.2: In (a), the graph of L is on the positive side of H7, and the projection of L
in the τλ-plane is inside the unit square. In (b), Feα is shown bold in the λ%-
plane, and each segment on it is extended into a strip. The resulting surface
is F eα .

Consider a three-dimensional space in which the horizontal plane is the τλ-plane. We label

the vertical axis by % which takes on real values. Define seven planes as follows.

H1 : % = (vα,x − ux)τ − (wx − ux)λ

H2 : % = −(vα,x − ux)τ + (wx − ux)λ

H3 : % = (vα,y − uy)τ − (wy − uy)λ
H4 : % = −(vα,y − uy)τ + (wy − uy)λ
H5 : % = (vα,z − uz)τ − (wz − uz)λ
H6 : % = −(vα,z − uz)τ + (wz − uz)λ
H7 : (wz − uz)λ− (vα,z − uz)τ = 0

The graph of |(vα,x−ux)τ−(wx−ux)λ| is the upper envelope of H1 and H2. Similarly, the

graphs of |(vα,y−uy)τ − (wy−uy)λ| and |(vα,z−uz)τ − (wz−uz)λ| are the upper envelops

of H3 and H4, and H5 and H6 respectively. We conclude that the graph of ‖pλpτ‖∞ is the

upper envelope of the six planes Hi for i ∈ [1, 6].

Define the function L(τ, λ) to be the L∞ length of a descending segment pλpτ . Thus, L is

convex and piecewise linear. We call the halfspace (wz − uz)λ ≥ (vα,z − uz)τ the positive

side of the vertical plane H7. Then, the graph of L is the subset of the graph of ‖pλpτ‖∞
that lies on the positive side of H7. See Figure A.2(a) for an illustration. The graph of L

consists of triangular faces that share the origin as a common vertex because Hi contains

the origin for i ∈ [1, 7].

We claim that Fe is convex and piecewise linear, which can be established by induction

on the construction of the sequence tree as follows. The edges opposite s correspond to

the children of the root in the initial sequence tree. For every such edge e′, if a point q

moves linearly along e′, then sx − qx, sy − qy and sz − qz change linearly. It follows that
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Fe′ , which gives ‖sq‖∞, is a convex, piecewise linear function of constant complexity.

Consider the induction step in which we want to compute Fe from Feα . By the induction

assumption, Feα is convex and piecewise linear. As illustrated in Figure A.2(b), sweep

each segment `i in Feα in a direction parallel to the τ -axis to obtain a strip `i × [0, 1].

Let F eα be the resulting convex surface. So F eα(τ, λ) = Feα(λ). F eα + L is convex and

piecewise linear because it is the addition of two convex piecewise linear functions, clipped

by the vertical plane H7 and the two vertical planes that are orthogonal to the λ-axis and

contain the endpoints of Ieα . Since Fe(τ) = minλ∈Ieα F eα(τ, λ) +L(τ, λ), Fe is also convex

and piecewise linear. The following two results summarize the above.

Lemma 11. For every terrain edge e′, Fe′ is a convex piecewise linear function.

Lemma 12. If Feα is given and it has k segments, then Fe can be constructed in O(k log k)

time.

Proof. The graph of F eα + L is the upper envelope of 6k planes, clipped by the vertical

plane H7 and the two vertical planes that are orthogonal to the λ-axis and contain the

endpoints of Ieα . So F eα +L can be computed by intersecting 6k+ 3 halfspaces in 3D. By

geometric duality, it is equivalent to computing the 3D convex hull of 6k+ 3 points, which

can be done in O(k log k) time [Cha96]. By sweeping a plane from λ = 0 to λ = 1, it takes

O(k) time to trace the polyline on the graph of F eα +L that achieves the minimum value

for every λ, which gives Fe.

The critical issue is how the complexity of Fe depends on the complexity of Feα because it

will affect the time to be spent in creating the children of vα in the sequence tree. The proof

of the above lemma gives a trivial upper bound of 6k+3, where k is the complexity of Feα .

This bound is not useful, as it becomes 2O(|σα|+1) as the construction proceeds down the

sequence tree. The rest of this section is devoted to showing that the complexity of Fe is at

most the complexity of Feα plus a fixed constant. Then, Lemma 12 implies that computing

the L∞ LSDPs at any node of the sequence tree takes O(n log n) time. Therefore, during

the construction of the sequence tree, the total time spent in constructing all L∞ LSDPs

is O(n3 log n).

We call a value λ0 ∈ Ieα a breakpoint of Feα if λ0 is the λ-value of a vertex of the graph of

Feα , including the endpoints of Ieα . For every τ ∈ Ie, define

λτ = min{λ : Fe(τ) = Feα(λ) + L(τ, λ)}.

Lemma 13. For τ0, τ1 ∈ Ie, if τ0 < τ1, then λτ0 ≤ λτ1.

Lemma 14. For any τ0 ∈ Ie, at least one of the following three possibilities hold:

(i) λτ0 is a breakpoint of Feα,

(ii) (τ0, λτ0) are the first two coordinates of some point on an edge of the graph of L, or

(iii) τ0 and λτ0 satisfy the equation of the plane H7.

Consider increasing τ from the smaller endpoint of Ie to the larger endpoint. As τ increases,

the point (τ, λτ ) traces a locus η in the τλ-plane. Let L be the projection of the graph

of L clipped by the plane H7 on the τλ-plane. Divide η into segments at its intersections
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τ

λ

H7

Figure A.3: The λ-values of the dotted horizontal lines are the breakpoints of Feα . The
monotonic locus η shown in bold is divided into segments at its intersections
with the dotted lines and the edges of L. A segment of η is either horizontal
or on an edge of L.

with edges of L and points whose λ-values are breakpoints of Feα . Each segment of η

corresponds to a segment of Fe. In the following, we bound the number of segments in η.

We examine η in the τλ-plane as τ increases. By Lemmas 13 and 14, η is monotonic, and

each of segment in η either lies on an edge of L, or is parallel to the τ -axis and has the

λ-value of a breakpoint of Feα . Notice that η could be disconnected. While tracing η, we

may jump from a point (τ0, λτ0) in the direction of positive λ-axis to a point (τ0, λ
′). It

happens when for every λ ∈ [λτ0 , λ
′], Feα(λ) + L(τ0, λ) = Feα(λτ0) + L(τ0, λτ0), because

λτ0 is preferred to all such larger λ. In summary, η follows an edge of L, or moves in the

direction of positive τ -axis, or makes a jump in the direction of positive λ-axis. Figure A.3

shows an example.

We first bound the number of jumps η makes. Suppose η jumps from a point (τ0, λτ0) in

the direction of positive λ-axis in a face g of L. Let `0 be the segment in g covered by this

jump, i.e., (τ0, λτ0) is the lower endpoint of `0, and `0 is parallel to the λ-axis. Refer to

Figure A.4. As explained earlier, Feα(λ)+L(τ0, λ) remains the same for all (τ0, λ) ∈ `0. In

other words, Feα must cancel the term in L(τ0, λ) that involves λ. The face g corresponds

to some plane Hj , so within g the value of L is determined by the equation of Hj . The

term involving λ in the equation of Hj is fixed. This implies that `0 can continue to

extend in g, while keeping Feα(λ) +L(τ0, λ) independent of λ, until the upper endpoint of

`0 reaches a λ-value that is a breakpoint of Feα , or `0 hits an edge of g. In the first case,

`0 cannot extend any further because we would switch to the next segment in Feα , and

the equation of Hj can no longer cancel the term in Feα that involves λ. On the other

hand, there is no edge of L to follow in the interior of g. Therefore, if `0’s upper endpoint

is in g’s interior, then by Lemma 14, η will continue from the upper endpoint of `0 in the

direction of positive τ -axis until η reaches an edge of g. From this point onward, η cannot

make any further jump into g in the direction of positive λ-axis because Feα is convex and

therefore a different segment of Feα cannot cancel the term in the equation of Hj that

involves λ. For the second case that `0 extends all the way across g, η will have to traverse

a segment in the direction of positive τ -axis to enter g again. Such a segment corresponds

to a breakpoint of Feα . Therefore, by the same argument as before, η cannot jump in g

again after encountering a breakpoint of Feα . We conclude that η makes at most one jump

in the direction of positive λ-axis in each face of L.

Let k be the number of breakpoints of Feα . Let k′ be the number of faces in L. The above

analysis shows that η makes at most k′ jumps. Since η is monotonic, the upper endpoints
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ℓ0
ℓ0
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τ
(τ0, λτ0)(τ0, λτ0)

Figure A.4: The black dot is the point (τ0, λτ0). On the left, `0 stops in g’s interior and
then turns right in the direction of the positive τ -axis. On the right, `0 extends
all the way across g.

of segments in η that lie on edges of L have different λ-values. Such an upper endpoint

is either at some τ -value that η makes a jump, or at some λ-value that is a breakpoint of

Feα . So there are at most k + k′ such upper endpoints, which implies that η has at most

k + k′ segments that lie on edges of L.

It remains to bound the number of the segments in η that are parallel to τ -axis. Consider

two such segment h1 and h2 of η in the same face g of L. We claim that η must make a

jump in g between h1 and h2. Suppose not. Since η does not make a jump between h1 and

h2, the right endpoint of h1 must be on the lower boundary edge of g. After h1, η remains

on or below the lower boundary edge of g until h2, because it does not jump into g before

that. This is impossible because the left endpoint of h2 must be above the lower boundary

edge of g in order that h2 lies in g. Therefore, if η has two segments in a face of L that

are parallel to the τ -axis, then η must make a jump between them. Since η makes at most

one jump in a face, we conclude that η has at most two segments parallel to τ -axis in each

face. Hence, η has at most 2k′ such segments in total that are parallel to the τ -axis..

The following result summarizes the above analysis.

Lemma 15. If Feα has k segments, then the number of segments in Fe is at most k+3k′ =

k +O(1), where k′ is the number of faces in L.

Since the sequence tree has O(n) height, Lemma 15 implies that for each node α created,

Feα has O(n) segments, and so Lemma 12 implies that the L∞ LSDP computation at α

takes O(n log n) time. As O(n2) nodes are created in constructing the sequence tree, the

total time needed is O(n3 log n).

Lemma 16. It takes O(n3 log n) total time to compute the L∞ LSDPs from s to vα for

all nodes α created in constructing the sequence tree.

A.2 Modifications

If H5 := 1
sin θH5 and H6 := 1

sin θH6 then the graph of ‖pλpτ‖b is the upper envelope of

H1 . . . H6. H7 is not needed because the path does not need to be descending. In our case

we have Iab ∈ {(0, 1), (0, 1], [0, 1), [0, 1]} for every edge ab in the edge sequence because it

is possible that there is no gentle path from a vertex to another point in the triangle.

We assume that Ie = [0, 1] for all edges e and ignore the fact that there might be no gentle

path with the computed length if one endpoint is a vertex. But there is always a gentle

path with the same edge sequence that is only by an arbitrarily small amount longer than
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the computed length and that does not go through the vertex. Thus this assumption can

only cause an arbitrarily small error in the computed length.

So as in [CJ12] it takes O(n3 log n) total time to compute the solution to all local problems

arising during the construction of the sequence tree.

B Excerpt from [CJ12]: Proof of the Correctness of the Ap-

proximate SDP Algorithm

Lemmata referred to in the proof of correctness:

Lemma 17. Let µ = εopt∞
κn2m(m+1)

. Given a destination v and an edge sequence σ in T ,

we can compute in O(|σ|2 log(nε )) time an approximate LSDP in T from s to v with edge

sequence σ, so that this approximate LSDP has an additive error at most |σ|µ.

Lemma 18. Let α and β be two tree nodes that correspond to the same face corner (fα, vα)

such that α quasi-dominates β on the right (resp. left). Let e be the edge that follows eα
immediately in anticlockwise (resp. clockwise) order around the boundary of fα.

(i) α is not a descendant of β.

(ii) For every point r ∈ e and every LSDP Qβ with edge sequence σβ from s to r, the LSDP

Qα with edge sequence σα from s to r satisfies ‖Qα‖ ≤ ‖Qβ‖+ (|σβ| − |σα|) · µ̃+ |σβ| · µ.

Proof of correctness from [CJ12]:

Lemma 19. For any ε ∈ (0, 1), our algorithm returns a (1 + ε)-approximate SDP from s

to t.

Proof. Recall that m denotes the number of faces in T , which bounds the number of levels

in the sequence tree. Let opt be the SDP length from s to t. Let P0 be an SDP from s to

t. So ‖P0‖ = opt, and |seq(P0)| < m as P0 does not visit any face more than once.

Suppose that the final sequence tree contains a node γ0 such that vγ0 = t and σγ0 = seq(P0).

Lemma 17 gives an approximate LSDP Pγ0 such that ‖Pγ0‖ ≤ ‖P0‖+ |σγ0 |µ < opt+mµ <

opt + εopt∞ ≤ (1 + ε)opt. Our algorithm returns a path of length at most ‖Pγ0‖.

Suppose that there is no such node γ0 in the final sequence tree. There must exist two

nodes β0 and α1 in some intermediate sequence tree such that σβ0 is a prefix of σγ0 , and

the child of β0 that would be an ancestor of γ0 is pruned due to the quasi-dominance of α1

over β0. By Lemma 18(i), α1 remains after pruning. We will show that there is an almost

equally good descending path from s to t whose edge sequence has α1 as a prefix.

W.l.o.g., assume that α1 quasi-dominates β0 on the right, so the right child of β0 is pruned.

Refer to Figure B.5. Let e be the edge that immediately follows eβ0 in anticlockwise order

around the boundary of fβ0 . Since the pruned right child of β0 would be an ancestor of γ0,

P0 must pass through the edge e at some point p. By Lemma 18(ii), there is a descending

path Qα1 from s to p with edge sequence σα1 such that

‖Qα1‖ ≤ ‖P0[s, p]‖+ (|σβ0 | − |σα1 |)µ̃+ |σβ0 |µ
< ‖P0[s, p]‖+ (|σβ0 | − |σα1 |)µ̃+mµ. (6.1)
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vβ0

P0
vγ0 = t

êα1

êβ0

e

p

eβ0

Qα1

fβ0

Figure B.5: P0 consists of the grey solid and grey dashed links. The grey dashed path is not
represented in the final sequence tree because α1 quasi-dominates β0 on the
right. The grey solid path has edge sequence σβ0 . Lemma 18(ii) guarantees
a bold solid path Qα1 from s to p with edge sequence σα1 . Concatenating
Qα1 with the grey dashed path gives a descending path from s to t with edge
sequence σγ1 .

Let σγ1 be the concatenation of σα1 and the suffix of σγ0 after σβ0 . So |σγ0 | − |σγ1 | =

|σβ0 | − |σα1 |. The descending path Qα1 · P0[p, t] from s to t has edge sequence σγ1 . Thus,

the LSDP P1 from s to t with edge sequence σγ1 exists, and

‖P1‖ ≤ ‖Qα1‖+ ‖P0[p, t]‖
< ‖P0‖+ (|σβ0 | − |σα1 |)µ̃+mµ (By (6.1).)

= ‖P0‖+ (|σγ0 | − |σγ1 |)µ̃+mµ (6.2)

= opt + (|σγ0 | − |σγ1 |)µ̃+mµ.

Suppose that the final sequence tree does not contain the node β1. Then, we want to

repeat the argument above the define another LSDP P2 from s to t which is only slightly

longer. In general, for i ≥ 0, inductively assume that there is a LSDP from s to t with

edge sequence σγi such that

‖Pi‖ ≤ opt + (|σγ0 | − |σγi |)µ̃+ imµ. (6.3)

Since ‖Pi‖ ≥ opt, we have (|σγi | − |σγ0 |)µ̃ ≤ imµ. For i < κn2, imµ < κn2mµ = µ̃, so

|σγi | − |σγ0 | < 1. The length of an edge sequence is an integer, so |σγi | ≤ |σγ0 | < m.

In our algorithm, the sequence tree is grown until its height reaches m. So if the final

sequence tree does not contain the node γi, then there must be tree nodes βi and αi+1

corresponding to the same face corner such that αi+1 quasi-dominates βi, σβi is a prefix of

σγi , and the child of βi that would be an ancestor of γi is pruned due to the qusi-dominance

of αi+1 over βi. Then σγi+1 is the edge sequence obtained by replacing the prefix σβi of

σγi by σαi+1 . We can define a LSDP Pi+1 from s to t with edge sequence σβi+1
such that,

analogous to (6.2), ‖Pi+1‖ ≤ ‖Pi‖ + (|σγi | − |σγi+1 |)µ̃ + mµ. It follows from (6.3) that

‖Pi+1‖ ≤ opt + (|σγ0 | − |σγi+1 |)µ̃ + (i + 1)mµ. Therefore, we can carry out the inductive

analysis as long as i < κn2.

The path Pi is only defined by the pruning of βi. Therefore, the pruning of βi happens

later than the pruning of βi−1 during the execution of the algorithm. Pruning can only

happen after the creation of a new leaf. Thus, the sequence tree is pruned less than κn2

times because fewer than κn2 nodes are ever created. Hence, the inductive argument must

stop at P` for some ` < κn2, and the final sequence tree contains the node γ` with edge
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sequence σγ` = seq(P`). After creating γ`, we apply Lemma 17 to compute Pγ` . Thus,

‖Pγ`‖ ≤ ‖P`‖+ |σγ` |µ
≤ opt + (|σγ0 | − |σγ` |)µ̃+ `mµ+ |σγ` |µ
< opt + |σγ0 |µ̃+ κn2mµ

< opt + (m+ 1)µ̃

= opt + εopt∞

≤ (1 + ε)opt.

The path returned by our algorithm has length at most ‖Pγ`‖, so it is a (1+ε) approximate

SDP.
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