
Generating Graphs
with Guarantees on Partition Costs

Study Thesis of

Florian Merz

At the Department of Informatics
Institute of Theoretical Informatics

Group Algorithmics I

Reviewer: Prof. Dr. rer. nat. D. Wagner
Second reviewer: Prof. Dr. rer. nat. Peter Sanders
Advisor: Dipl.-Inform. A. Schumm
Second advisor: Dr. rer. nat. Robert Görke

Duration:: 01. February 2011 – 31. July 2011

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu





iii

Abstract

Partitioning a graph is to divide its set of vertices into a fixed number of equally sized
disjoint subsets minimizing the number of edges between them. In this work, we describe an
algorithm to generate large random graphs such that an optimal solution to this problem
is known. For this task, we first generate dense subgraphs such that we know a lower
bound on the size of the minimal cut for each of these subgraphs. We then connect the
subgraphs by few edges such that the partition induced by these subgraphs is known to
be optimal. This algorithm has expected linear run-time.

Zusammenfassung

Graphpartitionierung ist das Problem, die Knotenmenge eines Graphen in disjunkte, gleich
große Teilmengen aufzuteilen, welche die Anzahl der Kanten zwischen diesen Teilmengen
minimiert. In dieser Arbeit beschreiben wir einen Algorithmus, um große Zufallsgraphen
generieren, zu denen wir eine optimale Partitionierung kennen. Um dies zu erreichen,
generieren wir zuerst dichte Teilgraphen, für welche wir die untere Schranke für die Größe
deren minimalen Schnittes kennen. Diese Teilgraphen verbinden wir danach mit einigen
wenigen Kanten, so dass die durch die Teilgraphen induzierte Partitionierung optimal ist.
Die erwartete Laufzeit dieses Algorithmus ist linear.
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1. Introduction

Partitioning a graph is to divide its set of vertices into a fixed number of equally sized dis-
joint subsets minimizing the number of edges between them. This is needed to decompose
data for parallel computation or to optimize circuit layouts. Finding such a partition is
NP-complete, which motivated the development of heuristics in the last decades.

Commonly, those algorithms are assessed by means of their performance on real world
data. However, those data are limited and in most cases optimal partitions are unknown.
Because of the latter, we focus on generating random graphs for which we can provide a
guarantee on their partition costs. To achieve this we give an algorithm that generates
such a graph bottom-up. Based on knowledge about minimal cuts during the generation
process we can provide partitions, whose edge cuts are known to be optimal. We use an
initial selected partition of the vertices to build up a graph step by step, keeping track of
the minimal cut of all subgraphs which occur in the process.

This process limits the variety of graphs that can be generated and results in graphs in
which the vertices have similar degrees. Also the traces of the building process are still
visible but can be covered by modifications made in a post-processing step. Additional
edges could be added in order to create more diverse graphs but we provide only the base
upon which such modification can be designed.

Furthermore we implement our algorithm in order to test it against existing partitioning
algorithms.

Related Work

The graph partitioning archive [9], which was set up as part of [8], provides a platform
to test graph partitioning algorithm on selected graphs. Partitioners as METIS [5] and
KaPPa [4] among many others compete in finding near to optimal partitions of those test
graphs.

A large number of methods to generate random graphs have been developed over the last
decades, as for example the G(n, p) [3] and G(n,m) [2] models, as well as the small-world
[10] and preferential attachment [1] models.

In [6], a generator for graphs with known minimum cut structure is presented. To this
end, in the first step, a random cactus representation of the minimum cuts is chosen and
in the second step, a graph with this structure is generated. Our goal is to generate large
random graphs that incorporate guarantees on their partition costs. To the best of our
knowledge, this exact problem has not been addressed before.
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2. Preliminaries

In this chapter we introduce the notation we use in the rest of this work and clarify the
problem we solved.

2.1 Notation

Most of the notation we use is taken from [7].

Undirected graphs

An undirected graph or graph is a pair G = (V,E), with a finite set of vertices V and a set
of edges E, which are unorderd pairs in V . In this work we only consider simple loopless
graphs, where each edge is unique and edges of the form {u, u} don’t exist.

An edge e = {u, v} connects the vertices u and v and if such an edge e exists u and v
are called connected or adjacent, and e is incident to u and v. In this case v is called a
neighbor of u. Two edges e and e′ are called connected or adjacent if they share a vertex,
otherwise they are called disjoint.

Two graphs are called disjoint if their vertex sets are disjoint. Given two disjoint graphs
G = (V,E) and G′ = (V ′, E′), we denote:

G+G′ := (V ∪ V ′, E ∪ E′).

For an edge e = {u, v} with e /∈ E, we denote:

G+ e := (V,E ∪ {e}),

similarly for a set of edges E′′ with E′′ ∩ E = ∅, we denote:

G+ E′′ := (V,E ∪ E′′).

Subgraphs

Given a graph G = (V,E), a subset V ′ ⊆ V spans a set of edges:

E[V ′] := {{u, v} ∈ E | u, v ∈ V ′}

A graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E is called subgraph of G. If E′ = E[V ′], G′

is called the subgraph induced by V ′. Another subset E′ ⊆ E induces GV [E′] := (V,E′).

3



4 2. Preliminaries

Degrees, Cuts and Partitions

Let G = (V,E) be a graph, for a vertex v ∈ V we denote by δG(v) or δ(v) the set of edges
incident to v. And by NG(v) := NE(v) := N(v) the set of neighbors of v.

The number of edges incident to v is called degree of v. We denote: degG(v) := |δG(v)|.
If G = (V,E) is a graph and U ⊆ V , we denote:

δG(U) := {e = {u, v} ∈ E | u ∈ U, v ∈ V \ U},

which are the edges connecting U and V \U . Any subset F of E for which a U ⊆ V with
F = δ(U) exists, is called a cut of G. Further we denote for the size of F called cut size:

dG(U) := |δ(U)| = |F |.

The minimal size of a of cut of G is denoted by:

MinCut(G) := min({|δ(U)| | U ⊆ V }).

Any cut F of G with size |F | = k is called a k-cut of G. If k = MinCut(G) it is called a
minimal cut. For s ∈ U and t /∈ U , the cut δ(U) is called an s-t cut. Also if S ⊆ U and
T ⊆ V \U , δ(U) is called an S-T cut. Moreover, for any subset S ⊆ V and T := V \ S we
denote:

FST := δ(S) = δ(T ).

For the subsets U,U ′ ⊂ V and a cut F = δ(U), we denote:

F [U ′] := {e ∈ F | e ∈ E[U ′]}.

F [U ′] is called the induced cut of E[U ′] by F .

A k-partition P of G is a mapping of V into disjoint subsets Vi with b |V |k c ≤ |Vi| ≤ d
|V |
k e

such that the union
⋃

1≤i≤k Vi = V . The set of edges between the subsets is denoted by
EP . A minimal k-partition P is a k-partition that minimizes EP . In the following we will
refer to the subsets Vi as blocks.

2.2 Problem Statement

The graph partitioning problem consists of dividing the set of vertices of a given graph into
subsets, which are equally sized, and have few edges between them. Therefore we consider
a graph G := (V,E) and a given integer k. Our goal is to partition V into k disjoint
subsets V1, . . . , Vk such that all subsets have equal size and the number of edges between
the subsets is minimized.

Our goal is to develop a fast algorithm, which generates a random graph and provides a
minimal k-partition for that graph. Since the graph partitioning problem is NP-complete
we cannot calculate a k-partition for the generated graph, instead we have to define a
k-partition and generate the edges in a way that we can prove that this k-partition is
minimal. How to generate those edges is the essential problem we address in this work. To
make guarantees on the costs of a k-partition we abandon the idea of covering all possible
graphs, and focus on performance and correctness.

Therefore the formal problem statement of this work:
Given a set of vertices V , an integer k and the edge cut l of an optimal k-partition, we
want to generate a k-partition P and a set of edges E such that P is a minimal k-partition
with an edge cut l of the graph G := (V,E).
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3. Graph Generator

The basic idea of our graph generator is to build a graph bottom-up. We generate the set
of vertices and divide them into blocks, which will be the blocks of an optimal k-partition
P of the graph we generate. Our goal is to generate a set of edges EP of a predefined size
between those blocks, such that this set of edges minimizes the size |EP | of the k-partition
P . The idea is to generate EP based on knowledge about the minimal cuts of the blocks.
Hence we have to generate sets of edges for each block, such that we have guarantees on
the minimal cut of each block.

To generate a block with a defined minimal cut size, we divide the block into small subblocks
and generate edges, such that each of those subblocks has the same minimal cut size than
the desired minimal cut size of the block. Then we insert edges between the subblocks of
each block creating new subblocks with the same assertions on the minimal cut size. We
repeat this step until only one subblock is left for each block. These final subblocks have
a predefined minimal cut size and therefore represent the blocks we wanted to generate.

Note that theoretically, we could also use the graph generator presented in [6] to generate
the blocks. However, as this involves iteratively computing the cactus representation of
the graph, it would be too expensive for our purpose.

In the final step the edges between the blocks are generated. Our graph generator generates
a graph and an optimal k-partition for this graph dependent on the number of vertices n
and the minimal cut size of all blocks c. The size of the edge cut of the optimal k-partition
will be k·c

2 in this case.

In this chapter we first present an abstract of the algorithm, starting with a short descrip-
tion in prose, followed by a more detailed pseudo code. Further we introduce some data
structures we use and explain details how the algorithm works.

3.1 Overview

As mentioned before the idea of our algorithm is to build a graph bottom-up, carrying
along guarantees of minimal cuts. Suppose c is the desired minimal cut size of each block,
we divide our Algorithm 1 into three phases.

1. Generating the initial subblocks of size 2c.

2. Fusing the subblocks to k blocks.

5



6 3. Graph Generator

3. Insert edges between the blocks.

In the following we explain those three phases based on Algorithm 1.

Phase 1

At first we generate vertices and divide them equally into the desired number of blocks
k. Now we divide those blocks again, as done in Algorithm 1, this time they are grouped
into subblocks of a size 2c. In the following we refer to blocks and subblocks as graphs.
Then we insert edges into the initial subblocks, until the degree of every node at least the
desired minimal cut size c. After this step the initial subblocks have minimal cut size of
at least c. We prove this in Proposition 1.

Phase 2

For the next step we connect the set of initial subblocks either by:

Method A: recursively joining two random subblocks by inserting c random edges between
them and replacing the two joined subblocks in the set by the new one, see Algorithm
2.

Method B: grouping the subblocks into sets containing 2c subblocks. For each set we
connect the subblocks of this set randomly until the minimal cut size of all the
subblocks is at least c, similarly to the first phase. Now we have a new set of
subblocks which we join the same way, see Algorithm 3.

The resulting subblocks contain all vertices of each block. According to Proposition 2 and
Proposition 3, after this step the minimum cut size in each block is at least c.

Phase 3

After the first two phases, we have k blocks, which we join again by inserting random
edges. We choose the edges in a way that we can assure that the degree of each block is
less than 2c and the amount of edges we insert is smaller than k·c

2 . After this step the
mapping into the blocks is a minimal k-partition of the resulting graph, as we prove in
Proposition 4 and 5 of Chapter 4.

3.2 Building the Graph

In this section we will describe step by step how we generate a graph, starting by explaining
the input required.

Input

The input needed by our algorithm is a set of vertices V , represented by the number of
vertices n, the number of blocks k and the lower bound for the minimal cut size c. This
minimal cut size will determine the number of edges between the block. For a given input
the edge cut of a minimal k-partition will be of size k·c

2 , which we prove in Proposition 5.

How to Store a Graph

To store the graph structure of a block we use an adjacency matrix, more precise an upper
triangular matrix which carries the degree of each vertex on its diagonal. The first idea
is to use an own adjacency matrix for each subblock, which stores the structure of the
subblock, but we achieved to decrease the memory cost and running-time by a factor of
two by storing the subblocks directly in the adjacency matrix of the block (Figure 3.1).

6



3.2. Building the Graph 7

Algorithm 1: Graph Generator

Data : set of vertices V , number of blocks k, minimal cut size c
Result: set of edges E, and a minimal k-partition of G = (V,E)
E ← ∅;1

B ← {b1, . . . , bk}, arbitrary k-partition of V ;2

foreach bi in B do3

//phase 1

subblocks ← {s1, . . . , so}, arbitrary o-partition of bi with o = d |bi|2c e;4

foreach S in subblocks do5

while ∃x in S with deg(x) < c do6

x← choose uniformly at random among all v ∈ S with deg(v) < c;7

if ∃y in subblock with deg(y) < c then8

y ← choose uniformly at random among all v ∈ S with deg(v) < c;9

else10

y ← choose uniformly at random among all v ∈ S with deg(v) = c;11

end12

E ← E ∪ {x, y};13

end14

end15

//phase 2
fuse subblocks(subblocks, c, E);16

end17

//phase 3
while number of new edges added < k·c

2 and ∃bi, bj ∈ B with18

deg(bi) < 2c− 1 ∧ deg(bj) < 2c− 1 do
pick two random elements bi and bj of B, with deg(bi) < 2c− 1∧ deg(bj) < 2c− 1;19

e← edge between random vertex in bi and random vertex in bj , which is not an20

element of E;
E ← E ∪ {e};21

end22

Algorithm 2: fuse subblocks method A

Data : set of sets of vertices subblocks, minimal cut size c, set of edges E
Result: set of edges E, such that MinCut(G[

⋃
s∈subblocks s] + E)

while |subblocks| > 1 do1

pick two random elements a, b of subblocks;2

A← set of c unique edges between vertices in a and vertices in b, chosen3

uniformly at random;
E ← E ∪A;4

subblocks ←
(
subblocks ∪ {a ∪ b}

)
\ {a, b};5

end6

7



8 3. Graph Generator

Algorithm 3: fuse subblocks method B

Data : set of sets of vertices subblocks, minimal cut size c, set of edges E
Result: set of edges E, such that MinCut(G[

⋃
s∈subblocks s] + E)

while |subblocks| > 1 do1

new subblock ← select 2c random elements of S;2

A← edges between the elements of new subblock, in a way that c ≤ d(s) ≤ c+ 13

for all s ∈ new subblock;
subblocks

(
← subblocks \ new blocks

)
∪ {⋃s∈new subblock s};4

E ← E ∪A;5

end6



. . . 0 0 0 0

Si 0 0

. . . 0 0

. . . 0

. . .



Figure 3.1: The adjacency matrix of a subblock Si stored in an adjacency matrix of a block

This is done by a subblock data structure that keeps track of the location of the adjacency
matrix of the subblock in the adjacency matrix of the block. This allows us to fuse two
adjacent subblocks by simply adjusting the location of the new subblock we generated,
which saves us the effort of transferring the entries of the two fused adjacency matrices
into the new one.

In the following adding or inserting an edge means that we set the according entry in
the adjacency matrix of the current block to one and increase the diagonal entry of the
incident edges by one, to keep track of their degree. We start with the initial phase 1 of
Algorithm 1.

Divide V into Blocks

The first step is to divide the set of vertices V into k blocks. Since the vertices are
represented by numbers we divide them into sequences of size n

k and n
k + 1. Thus the

vertices of each block can be calculated by knowing an offset and its size. We store this
data in a Block data structure.

Since we can build the k blocks independently the following steps can be done either
sequentially or in parallel. However, keep in mind that we have to execute them for each
block. The first step to build a block is to initialize an empty adjacency matrix to store
the edges and the degree of each vertex. Now we continue with the next step of phase 1
of Algorithm 1.

Generate the 2c Sub Blocks

Given a block, we divide it equally into subblocks of size 2c, in case 2c is a divider of the
size of the block, else we also allow subblocks of size 2c− 1. We do this in the same way
as we divided the initial set of vertices, and store the offset, which is the number of the

8



3.2. Building the Graph 9

first vertex, and the size of the subblock for each subblock in a SubBlock data structure.
To keep track of the subblocks of a block we store references to them in our Block data
structure.

Next we build the 2c subblocks of the current block. The goal is to generate a graph with
a minimal cut size c. We achieve this by iterating over the vertices inserting edges, which
are chosen at random and are incident to this vertex until its degree equals c. Since it’s
not possible to satisfy the property that every vertex has a degree of exactly c we allow a
degree of c+ 1 if necessary. The pseudo code in Algorithm 4 clarifies this.

Algorithm 4: generate 2c subblock

Data : set of n′ vertices V ′, minimal cut size c
Result: set of edges E, such that the minimal cut size of the resulting graph is at

least c
E ← ∅;1

foreach v in V ′ do2

P ← random permutation of V ;3

foreach u in P do4

if deg(v) < c and u 6= v and deg(v) < c then5

E ← {u, v};6

end7

end8

end9

//This time allow a degree of c+ 1 if necessary
foreach v in V ′ do10

P ← random permutation of V ;11

foreach u in P do12

if deg(v) < c and u 6= v and deg(v) < c+ 1 then13

E ← {u, v};14

end15

end16

end17

After initializing the 2c subblocks we can proceed with phase 2 of Algorithm 1.

Fusing the Sub Blocks

In our implementation we focus on Method A as in Algorithm 2, so we abandon Method
B for the moment and explain in detail how we create the order in which we fuse the
subblocks to obtain a block.

Due to our division of the block into the initial 2c subblocks the adjacency matrix of our
resulting graph is a block matrix with the initial subblocks on its diagonal. It looks like
this:



B1 0 0 0 0

B2 0 0 0

. . . 0 0

. . . 0

B n
2c·k
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10 3. Graph Generator

To fuse the subblocks consecutively at random we generate a binary tree containing the
indices of the subblocks as leaves, which represents the order we use to fuse the subblocks.
The vertex labels, in this case the number of a vertex according to the adjacency matrix,
are irrelevant for the output, because we only consider unlabeled graphs. We can use
this to generate the binary tree to optimize the fusion process. In detail we can generate
a binary tree that always fuses a subblock with his neighbor subblock according to its
index. This assures that we can have subblocks with continuously numbered labels after
each fusion step. Thus we save the overhead of keeping track of the scattered parts of the
adjacency matrix in which the vertices of a subblock are being stored. We only have to
set the offset and size of the new SubBlock data structure accordingly. Therefore we use
this kind of binary tree for its impact on the run-time of the selection of a random vertex
of a subblock, which can now be done by picking a random number of at most the size of
the subblock and adding the offset.

We use a random permutation of the indices of the subblocks to build a binary tree. In
order to create a binary tree with n′ leafs, each representing one subblock, we use a random
permutation p := {i1, . . . , in′−1} of the first n′ − 1 indices of the subblocks. Those indices
are by construction consecutive. Now we join the subblock with index i1 with the subblock
with index i1 + 1 and index the resulting subblock with i1 + 1. To illustrate this, consider
a set of subblocks with indices from 0 to 9 and a random permutation of the first nine
indices (702345186). After the first step we have the following tree:

8

7 8

Next we take the index i2 according to the permutation and join it with i2 + 1. In general,
we consecutively join ij and ij + 1. This next step results in:

1

0 1

8

7 8

The next two steps are:

1

0 1

3

2 3

8

7 8

and:

1

0 1

4

3

2 3

4

8

7 8

And finally the resulting binary looks like this:

10



3.3. Run-Time 11

9

6

1

0 1

6

5

4

3

2 3

4

5

6

9

8

7 8

9

To fuse two subblocks we consecutively choose a random vertex from each subblock. If the
edge between those two doesn’t already exist, we add it. In case it already exists we have
to choose two new vertices. This happens in Algorithm 2 as part of Algorithm 1. After c
edges have been inserted we create a new SubBlock data structure for our new subblock.
Then we add it to the list of subblocks of the current block and delete the two subblocks
we used to create it.

After joining the subblocks according to the binary tree we created previously only one
subblock remains. This subblock represents the block we wanted to build. As for the last
step, we now have to generate the edges between the blocks.

Obtaining the Edges Between the Blocks

In phase 3 of Algorithm 1 we generate k·c
2 edges between the k blocks, this is independent

of the actual structure of the blocks. It only depends on the number of vertices in each
block. Thus they can be obtained in a separate process. To do this we assume the vertices
are labeled sequentially across the blocks, therefore all we have to do is pick k · c random
pairs of vertices representing the edges and assure that:

1. each block has a degree of at most 2c− 1,

2. the edges are unique.

This can be done by choosing two different blocks at random, and choose one random
vertex of each. Now we add this pair to our selection if its not already in there. After we
chose 2c− 1 vertices of a block, this block is removed from the list of blocks to assure that
the first condition. is satisfied. We repeat this until at most k·c

2 pairs have been selected.

3.3 Run-Time

In this section we take a look at the average case run-time of our implementation given
the input data:

• n: the number of vertices |V |
• k: the number of blocks

• c: the lower bound for any minimal cut size

At first we initialize the k blocks. To do this we have to calculate the offset and size for
each of them. This takes O(1) for each block. Next, we have to initialize the adjacency

matrix for each block, which runs in O(
(
n
k

)2
) for one block. This sums up to O(n

2

k ) to
initialize all k blocks.

11



12 3. Graph Generator

To build a block we first generate the 2c subblocks for this block. Generating the initial
subblocks takes O( n

c·k ), since initializing one subblock, which means appointing the size
and offset, runs in O(1). Building a 2c subblock using Algorithm 4 runs in O(c2), so it
takes O( c·nk ) to build all initial subblocks of a block.

Next we generate the binary tree to obtain the order in which we fuse the subblocks, this
runs in O( n

c·k ). Now we can fuse the subblocks in the calculated order, this takes n
c·k fusion

steps, and each runs in O(c), because on one hand we have to check for every edge we
insert if it’s unique, which runs in O(1) and on the other hand the expected number of
collisions is in O(1), since the error probability is constant. This results in a run-time of
O(nk ) to build a block.

To generate k blocks we have a run-time in O(n
2

k ), which is dominated by the initialization.
Now we have to generate the edges between them. To generate one edge we have to pick
two random distinct blocks from a list of possible blocks, this can be done in O(1), then
we select one random vertex of both blocks, also in O(1) and assure that the resulting
edge has not already been added. This last step runs in O(c · k). We can assume that the
occurrence of doubly chosen edges, can be discarded since in most cases n >> c. Anyway
the error probability is as before constant, therefore expected value for the number of
repetition to choose an edge is also constant. To insert c·k

2 edges we have a run-time of
O(c2 · k2).
Summing up the run-times of the three phases the algorithm can be implemented with
an average run-time in O(n

2

k + c2 · k2) which is in O(n
2

k ). In Section 5.3 we discuss the
run-time of an improved version of Algorithm 1.

12



4. Proof of Correctness

In this chapter we prove that the k-partition our Algorithm 1 generates is a minimal k-
partition of the corresponding generated graph. We prove propositions about the minimal
cut sizes for each phase of Algorithm 1, and use those to finally prove the minimality of
our generated k-partition.

4.1 A Simple 2c Subblock

In phase 1 of Algorithm 1, the initial subblocks are small graphs with at most 2c vertices.
To assure that their minimal cut size is at least c we make sure that each vertex has a
degree of at least c.

Proposition 1. Given a graph G := (V,E) with |V | ≤ 2c and for all v ∈ V it holds that
deg(v) ≥ c. Then MinCut(G) ≥ c

Proof. Let FST be a cut of G, which divides V into S and T . Without loss of generality,
it is l := |S| ≤ c. For any vertex si ∈ S the following holds:

deg(si) ≥ c ∧ degG[S](si) ≤ l − 1 =⇒ degout = degG[T∪{si}](si) ≥ c− l + 1

=⇒ |F | =
∑
si∈S

degout(si) ≥ l · c− l2 + l ≥l≤c c

Thus the 2c graphs we generate in Phase 1 of our Algorithm 1 each have a minimal cut
size of at least c.

4.2 Joining Sub Blocks

Method A

In phase 2 of Algorithm 1, using method A, we join two subblocks by inserting at least c
random edges. According to the following proposition, this provides a new subblock with
a minimal cut size of at least c.

Proposition 2. Given two disjoint sets of vertices V1 and V2. Let G := (V1∪̇V2, E) with
dG(V1) ≥ c, MinCut(G[V1]) ≥ c and MinCut(G[V2]) ≥ c. Then, the following holds:

13



14 4. Proof of Correctness

MinCut(G) ≥ c.

Proof. If we take a look at the different cuts FST of G, there are three cases.

1. S = V1: in this case |F | ≥ c because it contains exactly the c edges of δG(V1).

2. T ∩ V1 6= ∅ ∧ S ∩ V1 6= ∅: ∃s, t ∈ V1 : s ∈ S, t ∈ T . In this case F induces an s-t cut
F ′ in G[V1] with |F | ≥ |F ′| ≥ c.

3. T ∩ V2 6= ∅ ∧ S ∩ V2 6= ∅: analogous to 2.

Hence, the new subblock satisfies our only constraint, that its minimal cut size is at least
c.

Method B

Using method B as in Algorithm 3 we basically perform the same task as in phase 1. We
create new subblocks using at most 2c old ones.

Proposition 3. Let G = (V,E) be a graph and B := {V1, . . . , Vl} be a partition of V . If:

• l ≤ 2c,

• ∀Vi ∈ B : MinCut(G[Vi]) ≥ c,

• ∀Vi ∈ B : dG(Vi) ≥ c.

MinCut(G) ≥ c holds.

Proof. Let F := FST be a minimal cut of G, we distinguish two cases:

1. F ⊂ ⋃Vi∈B δ(Vi): In this case the same arguments as in Proposition 1 apply and
|F | ≥ c.

2. ∃Vi ∈ B : ∃s, t ∈ Vi : s ∈ S, t ∈ T : Let F [Vi] be the cut of G[Vi] that is induced by
F . Because of MinCut(G[Vi]) ≥ c, |F | ≥ |F [Vi]| ≥ c.

Thus, we also achieve that the minimal cut size of our new graph is at least c.

4.3 Joining Blocks

Given k blocks, each with a minimal cut size of at least c, we want to connect those blocks
by generating edges between them. As we described in Algorithm 1 we achieve this by
inserting k·c

2 edges between the blocks. At first we describe the connection between the
minimal cut size of a graph and a k-partition of this graph.

Proposition 4. Given a graph G := (V,E) with MinCut(G) = c and a k-partition P of
G. For the size of EP , it holds that:

|EP | ≥
k · c

2

14
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Proof. Suppose P partitions V into disjoint sets Pi, i = 1, . . . , k. For each Pi, the cut CPi

which separates Pi and
⋃

j 6=i Pj has a size of at least c because MinCut(G) = c. Also for
each edge e = (v, u) ∈ EP with v ∈ Pi and u ∈ Pj it holds that e ∈ CPi ,e ∈ CPj and
e /∈ CPl

for l 6= i and l 6= j. Thus the sum
∑

Pi
|CPi | ≥ k ∗ c counts all edges of EP exactly

two times. This implies

|EP | =
∑
CPi

2
≥ k · c

2

We use this minimal size of EP as an upper bound for the edge cut of the k-partition.
Therefore we insert in phase 3 of Algorithm 1 at most k·c

2 edges.

In conjunction with Proposition 1 and Proposition 2 and 3, in which we prove that the
blocks we build in phase 1 and phase 2 of Algorithm 1 have a minimal cut size of at least
c, we now prove in Proposition 5 that the k-partition we generate is in fact a minimal
k-partition of the corresponding graph.

Proposition 5. Given a graph G := (V,E) and a set V := {V1, . . . , Vk}, a k-partition of
V with:

• MinCut(G[Vi]) ≥ c

• dG(Vi) ≤ 2c− 1

Then, P :=
⋃k

i=1 δG(Vi) is a minimal k-partition of G with size |EP| ≤ k·c
2 . An example

of such a partition is illustrated in Figure 4.1

Figure 4.1: A graph G = (V,E) and a 7-partition P

Proof. Suppose there is a k-partition P with |EP | < |EP|.

If EP ⊂ EP there exists an edge e = {u, v} ∈ EP with e /∈ EP and thus there exists i 6= j
such that u ∈ Vi and v ∈ Vj . Since Vi and Vj are separated by P but e connects them, P
separates G into at most k − 1 subgraphs.

On the other hand, if EP 6⊆ EP, there exists a Vi ∈ V and an edge ei ∈ EP with ei ∈ E[Vi].
Let us assume such an edge exists in 1 ≤ l ≤ k different E[Vi]. Each of those edges
ei := {s, t} induces an s-t cut Ci of G[Vi] (See 4.2). Because of MinCut(G[Vi]) ≥ c, the
size of any s-t cut is at least c, thus |Ci| ≥ c.

15



16 4. Proof of Correctness

I

O

Figure 4.2: graph G = (V,E) from Figure 4.1 and a candidate for another 7-partition P.
The colored blocks belong to I, and the color visualizes which parts belong
together. The white blocks are the same as in Figure 4.1 and are element of
O.

Let I := {Vi ∈ V | EP ∩ E[Vi] 6= ∅} be the set of Vi’s which are separated by P . Let
O := V \ I be the set of Vi’s not separated by P . Further denote VI :=

⋃
Vi∈I Vi and

VO:=
⋃

Vi∈O
Vi

.

Thus El :=
⋃

Vi∈I δG[VI ](Vi) is the set of edges between the Vi ∈ I in the graph G reduced

to VI . Since we assumed that |I| = l the size of El is at most l·(2c−1)
2 , as illustrated in

Figure 4.2 for l = 4.

The remaining edges of EP are EP \EI and are a subset of EP. This yields the following
size of EP :

|EP | ≥ |EP| − |El|+ l ∗ c ≥ |EP| −
l · (2c− 1)

2
+ l ∗ c ≥ |EP|+

l

2

This contradicts with |EP | < |EP|.

If we allow b |V |k c ≤ |Vi| ≤ d
|V |
k e we have to assure that for any Vi with |Vi| = b |V |k c + 1

every vertex in Vi has at most c− 1 edges connecting itself to any other Vj ∈ V.

16



5. Improvements

In this chapter we present two improvements of Algorithm 1 to cover the tracks of the
block-building process. First we will introduce them in theory, second we will describe
how they can be integrated into the algorithm and evaluate their impact on the run-time.

5.1 Breaking Locality

Due to the initial subblocks and their strong internal connectivity, we will now try to
transport edges from the lower levels to the upper ones. We offer two techniques which
can be combined.

5.1.1 Using Circles

G1 G2

u

v

ei

ej

Figure 5.1: A circle generated in phase 2 of Algorithm 1.

In phase 2 of our Algorithm 1, when we join graphs G1 and G2 to a new graph G, a circle
like in Figure 5.1 can occur. It is a circle of the form: v, v′ ∈ V1, u, u′ ∈ V2 and the edges
e = {v, v′}, e′ = {v, u} and e′′ = {v′, u′} exist. Furthermore a path from u to u′ exists in
G2 because G2 is connected. If such a circle occurs we may delete e from G, but only if no
other edge has been deleted using a circle which contained e′ or e′′. The removal of such
an edge does not interfere with the fact that MinCut(G) ≥ c.

Deleting Circles

Proposition 6. Let G = (V,E) and ∅ 6= V1, V2 ⊂ V , with

17



18 5. Improvements

• V1∪̇V2 = V

• d(V1) = d(V2) = c

• MinCut(G[V1]) ≥ c

• MinCut(G[V2]) ≥ c

Let us partition the edges in δ(V1) into disjoint pairs , i.e. M := {{ei, ej} | ei, ej ∈ δ(V1)}
with |M | = c

2 and
⋃

o∈M o = δ(V1) . This is a set of unordered tuples of edges between V1
and V2.
Furthermore we define a set of deletable edges

D := {{u, v} ∈ E[V1] | ∃{ei, ej} ∈M : u ∈ ei ∧ v ∈ ej}.

If we delete D, MinCut(G) ≥ c holds.

Proof. Let the set of border nodes of V1 be B := {u ∈ V1 | ∃e ∈ δ(V1) : u ∈ e} and FST be
a cut of G. W.l.o.g., it is T ∩ V2 6= ∅. At first we observe two cases::

Case 1: S ∩V2 6= ∅ (see Fig.5.2 (i)): In this case |F | ≥ c, because if we reduce F to G[V2]
its a cut of G[V2] which has a size of at least MinCut(G[V2]), since we didn’t delete
any edges of G[V2]. Therefore |F | ≥ MinCut(G[V2]) ≥ c.

Case 2: S ∩V2 = ∅ : In this case we take a closer look at D:

1. F ∩D = ∅ : Now either S = V1 =⇒ |F | = d(V1) = c (see Fig.5.2 (ii)) or F
can be reduced to it’s cut FV1 of G[V1] and since it doesn’t contain any of the
deleted edges |F | ≥ |FV1 | ≥ MinCut(G[V1]) = c (see fig.5.2 (iii)).

2. |F ∩D | = k 6= 0 : (see fig.5.2 (iv)) W.l.o.g. for a {ui, vi} ∈ D let ui ∈ S.
Then because the cut F separates ui and vi, vi ∈ T applies. Further ∃u′i ∈
V2 : {ui, u′i} ∈ δ(V1) and because of u′i ∈ V2, it follows that u′i ∈ T . Hence,
C also separates ui and u′i. Those edges {ui, u′i} ∈ δ(V1) ∩ F sum up to a
size of k. F also induces a cut F ′ separating V1 ∩ S and V1 ∩ T in G[V1]
with |F ′| ≥ MinCut(G[V1]) ≥ c. Now if we examine F ′[G[E \ D]] the cut is
reduced by exactly the |F ∩ D| = k edges we deleted, thus |F ′[G[E \ D]]| ≥
MinCut(G[V1])−k ≥ c−k. Now we see that F cuts at least k edges of δ(V1) and
c−k edges of E[V1]. Hence, because of δ(V1)∩E[V1] = ∅ it is |F | ≥ c−k+k = c.

By deleting those edges we can decrease the internal connectivity of the joined graphs. It
is also possible to additionally insert edges between G1 and G2 systematically to produce
new circles, until we have deleted c

2 edges.

5.1.2 Triangles

Another way to break the locality after joining G1 and G2 to G is to create triangles like
in Figure 5.3 between G1 and G2. To do so we pick a random edge e = {u, u′} in G1 and
a random node v of G2. Then we insert the edges e′ = {u, v} and e′′ = {u′, v} and delete
e. This modification also doesn’t interfere with MinCut(G) ≥ c.

18
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V2V1

V2V1

V2V1

V2V1

(i) (ii)

(iii) (iv)

Figure 5.2: Graph G = (V,E) with V1, V2 ⊂ V

G1 G2

G1 G2

s

s′

s

s′
e1

t

t

e2

e3

Figure 5.3: Triangle between G1 and G2
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20 5. Improvements

Inserting Triangles

Proposition 7. Let G = (V,E) be a graph, V1, V2 ⊂ V with:

(i) V1∪̇V2 = V

(ii) dG(V1) ≥ c ∧ dG(V2) ≥ c
(iii) MinCut(G) ≥ c

Given three edges e1 := {s, s′}, e2 := {s, t} and e3 = {s′, t} with e1 ∈ E and e2, e3 /∈ E,
s, s′ ∈ V1 and t ∈ V2.

For E′ := (E \ {e1}) ∪ {e2, e3}) and the graph G′ = (V,E′) MinCut(G′) ≥ c holds.

Proof. Let G′′ = (V,E′′) be the graph with E′′ = E ∪ {e2, e3}. We have 2 cases:

1. ∃ minimal cut FST of G′′ with e1 ∈ F : F separates s and s′. Let s ∈ S and
s′ ∈ T . Now either t ∈ T or t ∈ S holds. In the former case |F | ≥ c + 1 because
dG(S) ≥(iii) c and e2 /∈ E1. Else if t ∈ S, it follows that e3 ∈ F =⇒ |F | ≥ c + 1
for the same reason as before. In both cases dG′(S) ≥ c because of |E′| = |E′′| − 1.
Therefore MinCut(G′) ≥ c holds.

2. ¬∃ minimal cut F of G′′ with e1 ∈ F : For any cut F ′ of G′′ with e1 ∈ F ′

|F ′| ≥ MinCut(G′′) + 1 holds. Because of |E′| = |E′′| − 1, which means we only
delete one edge, every cut is decreased by at most 1. Thus MinCut(G′) ≥ c holds.

5.1.3 Combining Both

In Algorithm 5 we combine Proposition 6 and Proposition 7 by deleting an edge in each
circles that occurs and using the rest of the inserted edges, which have not been incident
to a deleted edge, to insert triangles. We use an existing edge between V1 and V2 to insert
a triangle, therefore we only have to insert one additional edge. We prove that this graph
still has a minimal cut size of at least c in the following two propositions.

Let G := (V,E) be a graph, V1, V2 ⊂ V with:

• V1∪̇V2 = V

• δ(V1) ≥ c
• MinCut(G[V1]) ≥ c
• MinCut(G[V2]) ≥ c

Furthermore, let D be a set of deletable edges as of Proposition 6 and let C be the set of
edges, which have been involved in a circle.

C := {ei, ej ∈ δ(V1) | {ei, ej} ∈M ∧ ∃{u, v} ∈ E[V1] : u ∈ ei ∧ v ∈ ej}.

Let R := δ(V1) \C be the remaining set of edges between V1 and V2 and G′ := (V,E \D).

Proposition 8. In G′ a cut F with F ∩ R 6= ∅ and F 6= δ(V1) has a size of at least
c+ |F ∩R|.

Proof. Without loss of generality we assume F ∩ E′[V1] 6= ∅. We have two cases:

1. F ∩D = ∅: Then |F ∩ E′[V1]| ≥ c since MinCut(G[V1]) ≥ c. Hence |F | ≥ c + |F ∩
δ(V1)| ≥ c+ |F ∩R|.
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5.2. Improved Algorithm 21

2. |F ∩D| = k 6= 0: As we saw in the second part of Case 2 of the proof of Proposition
6 F contains at least k edges of δ(V1) more precisely of C and c− k edges of E′[V1].
Therefore |F | ≥ |F ∩C|+ |F ∩E′[V1]|+ |F ∩R| ≥ k+ (c−k) + |F ∩R| = c+ |F ∩R|.

Now we can combine the deletion of circles and insertion of triangles.

Proposition 9. Let B be the set of edges eligible to insert a triangle. B := {{u, v} ∈
E[V1] | e ∈ R : u ∈ e} is a set of edges incident to an edge of R. Hence for each
edge ei = {u, v} ∈ B exists an edge e′i = {u, v′} ∈ R with u ∈ V1 and v ∈ V2. Let
A := {{v, v′} | {u, v} ∈ B} be a set of edges, that contains an edge e′′i for every pair ei, e

′
i,

so that ei, e
′
i and e′′i is a triangle as of Proposition 7.

The graph G′′ := (V, (E ∪A) \ (C ∪B)) has minimal cut size of at least c.

Proof. The graph G′ := (V,E \ C) has a minimal cut size of at least c according to
Proposition 6. Therefore we have to show that this still holds if we delete B.

Suppose an S-T cut F := FST of G′′ and Let B′ := δG′(S) ∩ B. If B′ = ∅ then F | ≥ c
since MinCut(G′) ≥ c. On the other hand if |B′| = k 6= 0, F contains k edges of B. Since
each of these edges is, by construction, part of a triangle in G′′, F also contains either one
edge of R or one edge of A for each of these edges.

We can divide the set of edges B′ into the two subsets B′R, which are the edges whose
incident edge of the triangle that is contained in F is an element of R, and B′A, which is
defined analogously. For each edge of B′A that has been deleted in G′′ an incident edge
contained in A has been added which is also contained in F , thus we decrease the size of
F and increase it again. Therefore deleting the edges of B′A doesn’t alter the size of F .
The edges B′R imply that F contains |B′R| edges of R. This means that by Proposition 8
the size of δG′ is at least c+ |B′R|, therefore if we delete B′R the size of F is at least c.

The last proposition proves that using the inserted edges of a fusion of two subblocks can
be used to delete circles if possible and we can insert triangles using the edges, that were
not involved to delete circles as we do in Algorithm 5.

5.2 Improved Algorithm

Both methods can be used in phase 2 of Algorithm 1. Since the deletion of circles (5.1.1)
decreases the actual amount of edges we prefer it over inserting triangles (5.1.2), also we
can use the existing edges between two newly fused subblocks to lower the amount of
inserted edges to one. In Algorithm 5 we enhanced Algorithm 2.

5.3 (Improved) Run-Time

The deletion of circles and the insertion of triangles can have a huge impact on the run-
time of our algorithm. While the deletion of circles, as in Section 5.1.1, only costs an
additional lookup among the newly inserted edges of the current fusion process, which
requires O(c) steps, inserting triangles , as in Section 5.1.2, can cost much more. In our
case we have to choose between run-time and required memory, which is needed to choose
a random neighbor of a vertex. Either we search a neighbor by iterating through all
possible neighbors in the adjacency matrix, or we have to carry along a list of neighbors
for each vertex. We decided to use the first method, avoiding the overhead of keeping track
of the current neighbors. Sadly, it adds a linear factor to our run-time, but our resulting
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Algorithm 5: improved fuse subblocks method A

Data : set of set of vertices subblocks, minimal cut size c, set of edges E
Result: set of edges E, such that MinCut(G[

⋃
s∈subblocks s] + E)

while |subblocks| > 1 do1

pick two random elements a, b of subblocks;2

A← set of c unique edges between vertices in a and vertices in b, chosen3

uniformly at random;
E ← E ∪A;4

foreach e ∈ A do5

if a circle involving e exists then6

e′ ← edge e′ ∈ A chosen at random, such that a circle containing e and e′7

exists;
f ← edge in E incident to e and e′′;8

A← A \ {e, e′′};9

E ← E \ {f};10

else11

construct a triangle using e and an edge f ∈ a incident to e chosen at12

random;
e′ ← third edge of the constructed triangle, which is incident to e and f ;13

A← A \ {e};14

E ← (E ∪ {e′}) \ {f};15

end16

end17

subblocks ←
(
subblocks ∪ {a ∪ b}

)
\ {a, b};18

end19

implementation still performs very well. However, if we aim to generate even larger graphs
with several million vertices, we could gain a substantial speedup by implementing another
data structure that keeps track of the neighbors of a vertex.

During the generation of test data we reevaluate our previous decision to store the graph
structure in an adjacency matrix. When generating large thin graphs with few blocks
our implementation of Algorithm 1 preforms very poorly. It takes long to allocate such
a large adjacency matrix and also to choose a random neighbor of a vertex. So we now
migrate to another data structure to store the graph (see 3.2). This time we chose an
adjacency list along with an array tracking the degrees of the vertices. We implement
the adjacency list as an array of linked lists, which provides looking up edges {u, v} in
O(max(deg(u),deg(v))) which is in O(c), inserting edges in O(1) and deleting edges in
O(c). We can still use all methods we developed using an adjacency matrix, since we only
change the underlying data structure. The subblocks can still be stored in the adjacency
matrix of its block, and we still profit from the fact that we fuse neighboring subblocks
during the block-building phase.

Resources and Run-Time Using an Adjacency List

Using an adjacency list, we reduced the memory requirements from O(n
2

k ) to O(m·nk ).
The impact on the run-time is also huge, especially for thin graphs. We summarize the
differences compared to Section 3.3.

To initialize a block, we now have to initialize the adjacency list instead of the adjacency
matrix. This runs in O(nk ) for each block. Additionally, we have to initialize the array,
in which we want to store the degrees of the vertices, this also runs in O(nk ). Everything
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else works the same way as before, thus the initialization for all k blocks runs in O(n).
Generating the 2c graphs still runs in O( c·nk ) for each block.

As before, the generation of the binary tree to obtain the fusion order runs in O( c·nk ). In
each of the n

c·k fusion steps the generation of the c edges runs expected in O(c2), since we
have to assure uniqueness for each of the c edges we insert, as we did before. Furthermore
the improvements of Algorithm 5 run in O(c2) to detect and delete circles and also O(c2)
to insert the triangles. This sums up to O( c·nk ) to build one block.

Therefore, the generation of the k blocks has an expected run-time in O(c · n), and the
generation of the edges between the blocks still runs in O(c2 · k2). Thus our improved
Algorithm has an average run-time in O(k · c · n).

Most of the memory required by our implementation is used to store the adjacency list.
Since we can generate the k blocks sequentially and independent only one block has to be
stored in the main memory at a time. Such a block has a size of n

k and the average degree
of a vertex is in O(c). Thus the adjacency list memory usage is in O(n·ck ).
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6. Implementation

In this chapter we will present details about the implementation of Algorithm 1. We
implement Algorithm 1 and the improvements of Algorithm 5 in the C programming
language using no external libraries. Next, we present the command line options needed
by our implementation.

6.1 Input

The input needed by the implementation are the number of vertices n, the number of
partitions k and the lower bound for the minimal cut size c. Further we supply a file name
for the output file and the type of the output file.

To program is run by ./gnm n k c OUTPUT_MODE FILENAME where:

• n is the number of vertices of the generated graph,

• k is the number of partitions of the generated graph,

• c is the minimal cut size of the blocks,

• OUTPUT MODE is a bit mask with the following options:

– 1: generate a .metis output file containing the graph in the metis format.

– 2: generate a .tgf output file containing the graph in the trivial graph format.

– 4: generate a .agr output file containing the graph in the agreed non-binary
format

– 8: generate a .clu output file containing the clustering data of the partition.

• FILENAME is the name of the output file.
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7. Results

In this chapter we present the output of our implementation of Algorithm 1 using Algo-
rithm 5 for phase 2. The computer on which we run our implementation has two Intel
Xeon E5430 (2.66 GHz) Quad-Core processors and 32 GB RAM. We generate several
graphs in order to visualize the output, present the performance and finally to test against
METIS[5] and KaPPa[4]. First, introduce the programs we use.

yEd

To visualize the generated graph we use the yEd Graph Editor ([11]). Furthermore to visu-
alize the partitions we use a clustering extension for yEd, which layouts a graph according
to an additional input file.

METIS and KaPPa

Due to its purpose we want to test our generated graph with a graph partitioning program.
Since its one of the most common graph partitioner we test our graphs with METIS. We
also text generated graphs with KaPPa which is a more advanced graph partitioner, which
provides smaller edge cuts in most cases, but also requires more time to compute the
partitions.

7.1 Example Output

If we generate a small graph using ./gnm 10 2 3 10 example1, which means we generate
a graph with 10 vertices, 2 blocks, and a minimal cut size of the blocks of at least 3. We
visualize it using yEd, this results in the following image:
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In this picture the blocks are colored red and blue. We see that each vertex has a degree
of at least 3 and between the blocks are 3 edges.

The difference between the generated partition and the partition obtained from METIS
has been visualized in the next example. First we see the log of the command line followed
by the results created by yEd (Figures 7.1 and 7.2):

$ time ./gnm 5000 8 10 15 5000_8_10

generated graph with edge cut of 40

real 0m0.216s

user 0m0.180s

sys 0m0.007s

$ kMETIS 5000_8_10.METIS 8

**********************************************************************

METIS 4.0.3 Copyright 1998, Regents of the University of Minnesota

Graph Information ---------------------------------------------------

Name: 5000_8_10.METIS, #Vertices: 5000, #Edges: 28560, #Parts: 8

K-way Partitioning... -----------------------------------------------

8-way Edge-Cut: 293, Balance: 1.03

Timing Information --------------------------------------------------

I/O: 0.010

Partitioning: 0.000 (KMETIS time)

Total: 0.010

**********************************************************************

In Figure 7.1 and 7.2 we can see the 8 blocks represented by the large circles, since we
use a circular layout with yEd. The subblocks are the small dots inside the circles. We
can see the big difference of the number of edges between the blocks. In Figure 7.1, which
visualizes the 8-partition of our implementation there are 40 edges between the 8 blocks
and in Figure 7.2, that is the 8-partition calculated by METIS, we can see 293 edges.
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Figure 7.1: The generated graph clustered by the generated partition

Figure 7.2: The generated graph clustered by METIS

7.2 Run-Time

The following two pictures illustrate the run-time of our implementation for the parameters
n = {100, 1000, 10000, 100000}, k = {2, 4, 8, 16, 32, 64} and c = {20,

√
n}. We run all valid

combinations of the parameters 10 times. Figure 7.3 and 7.4 show the average time is
takes to generate an instance. Notice that both axes have a logarithmic scale.

In the first chart we show the average time using a minimal cut size of 20 in the second
chart we use a minimal cut size of

√
n.

n c 2 4 8 16 32 64

100 20 0.004 - - - - -
1000 20 0.013 0.011 0.011 0.012 -
10000 20 0.095 0.095 0.099 0.103 0.114 0.139
100000 20 1.142 1.104 1.081 1.046 1.293 1.379

n c 2 4 8 16 32 64

100 10 0.003 0.003 - - -
1000 31 0.017 0.017 0.016 0.018 - -
10000 100 0.72 0.7 0.684 0.696 0.765 -
100000 316 56.06 56.31 56.721 57.439 59.112 59.151
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Figure 7.3: c = 20
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Figure 7.4: c =
√
n

In Figure 7.3 and 7.4 we see the linearity of the run-time.

7.3 Testing against METIS

To compare our calculated partitions against the partitions generated by METIS we gener-
ated several sets of 100 graphs, using varying parameters for each set. All valid combination
of the following parameters have been used:
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• n = 100, 1000, 10000, 100000

• c = 10, 20,
√
n

• k = 2, 4, 8, 16, 32, 64

Then we run METIS on the generated graphs, providing the number of their blocks. In
the following tables we compared the results of METIS and the optimal partitions we
calculated. The values in the columns labeled opt contain the edge cut |Ep| provided by
our implementation, the rows max, min and avr withhold the values of the maximal edge
cut, the minimal edge cut and the average edge cut calculated by METIS. The columns
labeled with % represent the success rate of METIS, which means in how many of the 100
test cases METIS was able to find an optimal partition.

k = 2 k = 4

n c opt max min avr % opt max min avr %

100 10 10 26 10 10 95

100 20 20 48 20 20 99 20 112 20 21 98

1000 10 10 81 10 42 19 20 199 20 51 25

1000 20 20 426 20 104 32 40 412 40 66 57

1000 31 31 1066 31 93 50 62 183 62 76 80

10000 10 10 55 10 29 1 20 223 29 108 0

10000 20 20 308 45 77 0 40 934 75 307 0

10000 100 100 5230 242 369 0 200 22985 387 2886 0

100000 10 10 67 21 35 0 20 183 54 102 0

100000 20 20 149 46 87 0 40 766 149 253 0

100000 316 316 3308 786 1962 0 632 5855 2396 4324 0

k = 8 k = 16

n c opt max min avr % opt max min avr %

1000 10 40 277 40 66 36 80 315 80 112 28

1000 20 80 160 80 87 84 160 237 160 169 65

1000 31 124 185 124 125 97 248 367 248 255 88

10000 10 40 541 112 236 0 80 950 199 487 0

10000 20 80 1704 210 594 0 160 2267 456 1366 0

10000 100 400 1479 400 793 23 800 1583 800 872 76

100000 10 40 529 158 254 0 80 1325 349 617 0

100000 20 80 1770 305 668 0 160 4021 811 1573 0

100000 316 1264 64924 4336 13443 0 2528 310924 7194 34186 0

k = 32 k = 64

n c opt max min avr % opt max min avr %

1000 10 160 402 160 198 13

10000 10 160 1671 329 884 0 320 2054 660 1191 0

10000 20 320 2984 341 1533 0 640 4048 640 1489 3

10000 100 1600 1600 1600 1600 100

100000 10 160 2058 796 1230 0 320 3273 1643 2334 0

100000 20 320 6497 1946 3344 0 640 10126 3864 6632 0

100000 316 5056 15127 5056 9589 1 10112 12316 10112 10439 8

We can see that METIS struggles with our graphs if the number of vertices reaches 10000,
but manages to produce good partitions on smaller graphs with less than 1000 vertices.
Also, the discrepancy of the edge cut for graphs generated with the same parameters can
be large.
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32 7. Results

7.4 Testing against KaPPa

The output data of Section 7.3 we test with KaPPa. We use the algorithms kaffpaeco and
kaffpastrong of KaPPa. Since kaffpaeco profits from the our continuous vertex labels it
was able to calculate almost every optimal partition of the test data. A permutation of the
vertex labels could be implemented in a future work to receive more significant conclusion.
Therefore we present the result of kaffpastrong in the following chart. For graphs with less
than 10000 vertices KaPPa was able to calculate the optimal partition, hence they don’t
appear in the chart.

k = 2 k = 4

n c opt max min avr % opt max min avr %

10000 20 20 20 20 20 100 40 113 40 81 7

10000 100 100 252 100 171 51 200 669 200 368 31

100000 10 10 10 10 10 100 20 37 20 21 95

100000 20 20 49 20 21 95 40 92 40 49 73

100000 316 316 2700 781 1594 0 632 6165 3311 4554 0

k = 8 k = 16

n c opt max min avr % opt max min avr %

10000 10 40 94 40 62 16 80 258 162 214 0

10000 20 80 416 212 416 0 160 662 390 548 0

10000 100 400 1169 400 595 32 800 993 800 804 98

100000 10 40 83 40 52 42 80 188 80 151 1

100000 20 80 261 20 168 3 160 645 347 544 0

100000 316 1264 10624 6842 9058 0 2528 21350 16321 19327 0

k = 32 k = 64

n c opt max min avr % opt max min avr %

10000 10 160 528 292 440 0 data was not provided

10000 20 320 1079 597 863 0 data was not provided

10000 100 1600 1600 1600 1600 100

100000 10 160 468 300 394 0 320 1081 786 926 0

100000 20 320 1673 1186 1368 0 640 3120 2512 2871 0

100000 316 5056 18583 11335 14943 0 10112 172951 10112 17518 27

We can see that KaPPa provides especially for k = 2 and k = 4 much better results
than METIS, also for k = 8 KaPPa finds optimal partitions in several cases. In many
cases KaPPa calculates partitions with a smaller edge cut than METIS does. But for
large graphs with 100000 vertices and more than 8 blocks KaPPa fails to calculate optimal
partitions.
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8. Conclusion

We developed an algorithm whose run-time is linear in the number of edges, which gener-
ates a graph and an optimal partition of this graph. The graphs we are able to generate
are random, but we cannot cover every possible graph. Our algorithm provides a skeletal
structure to build a graph with guarantees on its optimal partition costs. However, even
those graphs we are able to generate already provide a challenge for the well known parti-
tioner METIS[5], at least if we consider large graphs with more than 10000 vertices. Also
KaPPa[4] fails most the time with respect to graphs containing 100000.

Our implementation of the graph generator performs and scales very well. Even on a
normal laptop we are able to generate graphs with 100000 vertices and several million
edges in under a minute.

Future Work

Many enhancements can be done to vary the types of graphs that can be generated. The
simplest way to achieve this would be to insert a random amount of edges chosen randomly
into the blocks we create during the generation of a graph. Furthermore, the structure of
the graphs we generate is very special in the sense that the blocks of the partition are very
dense compared to the cut. Another future goal could be to be able to generate graphs,
which are more similar to real world data.
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