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1. Introduction

Given a graph, we consider problems of adding a minimum number of edges to the graph,
such that the new graph satisfies a specific property. These problems are called graph
augmentation problems. The properties that are to be satisfied can concern the robustness,
reliability or connectivity of a graph. Graphs are popular theoretical models for different
real-world networks, for example, communication networks. Hence graph augmentation
problems can be used to model problems of efficiently making a network more robust.

An example of a graph augmentation problem is Connectivity Augmentation. Given
an unweighted and undirected graph G = (V,E), find a set F ⊆ V such that the augmen-
ted graph G′ = (V,E∪F ) is connected. This can be generalized to problems of augmenting
a graph, such that it is k-edge-connected or k-vertex-connected. For k = 2, Eswaran and
Tarjan have shown that edge- and vertex-connectivity augmentation can be solved in linear
time. They have also shown that 2-edge-connectivity and 2-vertex-connectivity augmenta-
tion is NP-hard in the weighted case[5]. For larger k, Watanabe and Nakamura have shown
that k-edge-connectivity augmentation can be solved in O(kmin{k, |V |}|V |4(k|V |+ |E|))
time [15] for k ≥ 2. This has been improved by Nagamochi and Ibaraki, who have shown
that a k-edge-connectivity augmentation can be found in O((|V ||E|+ |V |2 log |V |) log |V |)
time using the maximum adjacency ordering of the vertices [10]. These are results for
the unweighted and undirected case. If we furthermore want the augmented graph to be
planar, 2-vertex-connectivity and 2-edge-connectivity are NP-complete, even in the un-
weighted case, as was shown by Kant and Bodlaender [3] for 2-vertex-connectivity and
Rutter and Wolff [11] for 2-edge-connectivity.

After examining the work that has been done in the field of graph augmentation, we
consider a measurement, the coreness, for vertices of a graph. The k-core of a graph
consists of the vertices that are adjacent to at least k other vertices of the k-core. It can be
constructed by iteratively removing vertices with a degree less than k. We say a vertex has
coreness k if it is a vertex of the k-core. Hence the coreness of a vertex, i.e., the minimum
k-core to which the vertex belongs, can be seen as a robust variation of the degree. It can
be seen as a measurement of the ”importance” of a vertex. The core structure of a graph
is used in the analysis of communication networks, for example, peer-to-peer filesharing
networks like Gnutella [1]. A version of the core structure in a directed graph was used
by Subramanian et al. to determine the dense core of the internet, which proved to be a
reliable method [12]. Furthermore the core structure plays a role in the analysis of protein
networks [16], so there are also applications in the field of biology to be found. Görke[8]
described a core generator that can generate a graph that satisfies a predetermined core
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8 1. Introduction

structure, which can be used among other things to experimentally test graph algorithms.
With this in mind, it is of interest to augment a given graph such that it satisfies a specific
core structure. Afterwards it can be examined, which other properties of the augmented
graph have changed and in what ways it differs from the original graph.

In this work we will examine problems about augmenting the core structure of an unweigh-
ted and undirected graph. It can be seen, that the coreness of a vertex does not merely
depend on local properties, unlike the degree. An edge in a different part of the graph can
have influence on the coreness of a vertex. We will examine in which cases this will pose a
problem in deriving an efficient algorithm for the augmentation of the coreness of vertices.

The structure of this work is as follows. In Chapter 2 we give some basic definitions and
define the two problems Core Augmentation and Connectivity Augmentation.
In Chapter 3 we examine CoreAug, the problem that results from combining Core
Augmentation and Connectivity Augmentation. We will give an algorithm that
solves this problem in polynomial time. In Chapter 4 we consider the problem Fixed
Subset k-Core Augementation, in which a subset of vertices of a graph is given. The
graph is then to be augmented such that this subset is in the k-core. We show that this
problem is NP-hard for k = 3, but solvable in polynomial time for k ≤ 2.
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2. Preliminaries

In this chapter we give some basic definitions and examine the two problems Core Aug-
mentation and Connectivity Augmentation, which are the building blocks of the
problem we consider in the next chapter.

Let G = (V,E) a graph. Unless noted otherwise, graphs are always undirected and not
weighted. Let V (G) denote the set of vertices of G and let E(G) denote the set of edges
of G. The k-core of a graph G = (V,E) consists of the vertices that are connected to at
least k other vertices of the k-core. The k-core can be calculated by repeatedly removing
vertices v ∈ V with degG(v) < k until all vertices v ∈ V have degG(v) ≥ k. We denote the
minimum k for that v ∈ V is in the k-core of G by corenessG(v). A list of comma separated
edges and/or paths denotes a concatenation of said edges and/or paths to a new path. To
make the notation of graphs augmented by a set of edges F more clear we write G+F for
(V,E ∪F ) Let coreness(G) := minv∈V {coreness(v)}. We denote the connected component
in G including v by compG(v).

Problem 1 (Core Augmentation). Given a graph G = (V,E), and an integer k ∈ N,
find F ⊂ V 2, F ∩ E = ∅ with minimum cardinality such that coreness(G′) ≥ k for the

1-core

2-core

3-core

Figure 2.1: A graph with its core structure.
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10 2. Preliminaries

Figure 2.2: An example of a 3-core augmentation. Added edges are marked red.

graph G′ = G+ F

Let F be a solution to Core Augmentation. Observe that this problem can be simplified
by finding F such that for all v ∈ V : degG′(v) ≥ k holds, because we want every v ∈ V
to be in the k-core. If we only require a subset of V to be in the k-core we cannot use
a similar simplification. See Figure 2.1 for a graph with vertices that have a degree of 3
but are not in the 3-core. This allows us to reduce Core Augmentation to a degree-
constrained subgraph problem and use an existing algorithm to solve it. We denote the
often used number of additional incident edges required to bring a vertex v into the k-core
by reqG(v) = max{degG(v)− k, 0}.

Theorem 2.1. For a graph G = (V,E) Core Augmentation can be solved in
O(|V ||Ec|min{|Ec| log |V |, |V |2}) time, with Ec being the edges of the complementary
graph.

Proof. To solve Core Augmentation we reduce it to a maximum weight degree-
constrained subgraph problem (DCS), which is defined as follows. Given a weighted graph
Gg = (Vg, Eg) with integer bounds `(v) and u(v) for every vertex v ∈ Vg, find a subgraph
Hg with maximum weight such that `(v) ≤ degHg

(v) ≤ u(v) for each v ∈ Vg. This can be

solved in O(
∑

v∈Vg
(u(v)) min{|Eg| log |Vg|, |Vg|2}) time by an algorithm due to Gabow [7].

Let G = (V,E), k ∈ N denote the input for Core Augmentation. Let Gc = (V,Ec)
be the complement of G. Then F ⊆ Ec and for all v ∈ V at least reqG(v) edges in Ec

incident to v must be chosen. We choose `(v) = max{k− deg(v), 0} as a lower bound and
u(v) = |Ec| as a rough upper bound for each vertex. We set the weight of all edges to −1,
thus a solution with maximum weight uses the minimum number of edges. We can now
apply the algorithm for the maximum weight DCS problem given by Gabow to Gc with the
mentioned bounds and weights. We call the resulting subgraph S = (V,E∗) and the weight
of the solution wS . We use this solution for the degree-constrained subgraph problem to
construct a solution to Core Augmentation and show that this is a valid solution. Let
G′ = (V,E ∪ E∗). Note that S is a subgraph of the complement of G, so E ∩ E∗ = ∅. For
every vertex v ∈ V it holds that degG′(v) ≥ degG(v) + max{k − degG(v), 0} ≥ k, so every
vertex has degree at least k, and thus all vertices are in the k-core.

Now we show that G′ is an optimal solution to Core Augmentation by assuming that
G′ does not have minimum cardinality. We then obtain a contradiction by constructing
a maximum weight DCS solution to Gc with a heigher weight than the optimal solution

10
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S = (V,E∗). Assume that G′ is not of minimum size, i.e., there is a solution G∗ = (V,E ∪
F ′) with |F ′| < |E∗|. We construct a solution S∗ for the degree-constrained subgraph
problem for Gc. For every edge in F ′ we add the corresponding edge to E(S∗). It holds
that for all v ∈ V we have degS∗(v) ≥ max{k − degG(v), 0}, because there are at least
max{k−degG(v), 0} edges in F ′ incident to v. Let wS∗ be the weight of S∗. It follows that
wS∗ = −1|F ′| > −1|E∗| = wS , a contradiction. Hence G′ is of minimum size, and therefore
an optimal solution to Core Augmentation.

The time complexity is

O(
∑
v∈V

(u(v)) min{|Ec| log |V |, |V |2}) = O(|V ||Ec|min{|Ec| log |V |, |V |2})

So we can get a solution to Core Augmentation by calculating a solution to Maximum
Weight DCS. Another well-known augmentation problem concerns the connectivity of a
graph.

Problem 2 (Connectivity Augmentation). Given a graph G = (V,E) find Ec ⊆ V 2

with minimum cardinality such that G′ = (V,E ∪ Ec) is connected.

Let c be the number of connected components in G. Connectivity Augmentation can
easily be solved in linear time by finding all connected components and connect them,
using c− 1 edges.
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3. Core and Connectivity Augmentation

As shown in the previous section, the augmentation problems Core Augmentation and
Connectivity Augmentation can be easily solved seperately. If we solve these problems
one by one, the number of added edges is generally not minimal though. An example for
this can be seen in Figure 3.1. The graph consists of two paths of three vertices. It can be
augmented into the 2-core by adding two edges, either making two cycles of three vertices
or one big cycle of six vertices. The latter also connects the graph while the former does
not. Hence some more work is necessary to solve both problems optimally at the same
time. In this section we will devise an algorithm to do exactly that.

(a) A simple Graph (b) an optimal 2-core augmenta-
tion for this graph

(c) a connectivity augmentation
for the 2-core augmented graph

(d) An optimal augmentation
that assures both coreness and
connectivity

Figure 3.1: A simple example of core and connectivity augmentation

Problem 3 (ConnCore). Given a graph G = (V,E), k ∈ N find F ⊆
(
V
2

)
, F ∩ E = ∅

with minimum cardinality such that G + F is connected and all vertices v ∈ V have
coreness(v) ≥ k in the graph G+ F .

Problem ConnCore describes the problem of solving Core Augmentation and
Connectivity Augmentation at the same time. It makes sense to differentiate bet-
ween the connected components of the graph that need edges to lift its vertices into the
k-core and and the connected components in which the vertices already have sufficient
coreness.

13



14 3. Core and Connectivity Augmentation

Definition 1. Given a graph G = (V,E) and a number k ∈ N, a connected component C of
G is called a satellite when corenessG(v) ≥ k for every vertex v ∈ C. The graph excluding
satellites is called centre. For a given set of edges F we call the satellites that are in G+F
connected to a connected component of the centre bound satellites and those satellites that
are not connected to connected components of the centre as unbound satellites.

For the remainder of this section we can assume without loss of generality that every
graph has a centre; for a graph without a centre ConnCore is equivalent to the problem
Connectivity Augmentation, because nothing is to be done to achieve the coreness of
the vertices. We formulate an algorithm to find a set of edges F of minimum size that solves
ConnCore. The idea is to first solve Core Augmentation, i.e., use Theorem 2.1, and
then rewire some of the new edges to ensure connectivity. Every rewiring step is desigend
such that it reduces the number of connected components. If we get to the situation that
we cannot apply one of our rewiring steps and the graph is not yet connected, additional
edges are needed to ensure connectivity. This means that we first reduce the number of
connected components as much as possible without increasing the number of edges and
connect the graph afterwards.

Let F be an optimal solution to Core Augmentation and let G′ := G + F be the
graph corresponding to this solution. The added edges in F have important attributes: We
differentiate edges by the number of incidences that are needed to ensure coreness. We call
an edge {u, v} essential if degG′(u) = degG′(v) = k. An edge {u, v} with degG′(u) = k and
degG′(v) > k is called half-essential and an edge {u, v} with degG′(u) > k and degG′(v) > k
is called non-essential. This distinction is made because half-essential edges can be rewired
in more circumstances than essential edges. Non-essential edges are superflous, i.e., they are
not part of an optimal solution as we see in Lemma 3.1. A vertex v ∈ V with degG′(v) > k
is called over-saturated. Note that we only regard over-saturated edges incident to half-
essential edges. Furthermore, it is important whether an edge in F is a bridge in G′

or not because we can remove non-bridges without disconnecting previously connected
components. The following lemma gives information about the distribution of half-essential
and non-essential edges. We say a connected component C includes an edge e if e ∈ C.

Lemma 3.1. Given a graph G = (V,E) and a solution F of minimum size to Core
Augmentation it holds that

1. there is at most one connected component in G′ = G+F that includes half-essential
edges e ∈ F and

2. there are no non-essential edges in F .

Proof. Let G = (V,E) and G′ = G+ F the solution to Core Augmentation with G as
input.

For 1. assume that there are two half-essential edges e1 = {u, v}, e2 = {x, y} ∈ F in
different connected components of G′. Assume without loss of generality that degG′(v) > k
and degG′(y) > k. After removing e1 and e2 and adding {u, x} the degrees of all vertices
except v and y remain the same. And it holds that degG′(v) ≥ k and degG′(y) ≥ k.
Therefore F ′ = (F \ {{u, v}, {x, u}}) ∪ {{u, x}} is a smaller solution contradicting the
minimality of F .

For 2. assume that there were a non-essential edge {u, v}, but then F ′ = F \ {{u, v}}
would be a solution to Core Augmentation with |F ′| < |F |. Therefore a solution with
{u, v} is not of minimum size.

14



3.1. Our rewiring operations 15

The runtime for the algorithm solving Core Augmentation described in the previous
section is quite large, because we choose u(v) = |Ec| as an upper bound for every vertex
v ∈ V . We can achieve a smaller runtime by adjusting the upper bounds for the underlying
degree constraint subgraph problem. Let G = (V,E) be the graph to be augmented into
the k-core. A graph needs at least k+ 1 vertices to be in the k-core. Hence, we can assume
that G has at least k + 1 vertices. We choose an arbitrary set W ⊂ V of k + 1 vertices.
For every vertex w ∈ W we choose the upper bound u(w) = |Ec|. For every other vertex
v ∈ V \W we choose the upper bound u(w) = k. We can transform every solution of the
original problem to a solution of the changed problem with these new upper bounds. Let F
be the solution to the original algorithm with the old upper bounds. First note, that there
are no non-essential edges as seen in Lemma 3.1. For every half-essential edge {u, v} we
examine whether the over-saturated vertex u is in W . If it is not, we can exchange the edge
with {v, x}, with x ∈W . This works always because v has k neighbours in V and k− 1 in
W because u ∈ V \W . Hence, at least one vertex of W is not yet a neighbour of v. If the
over-saturated u is in W , nothing is to be done, because both u and v do not violate the
new upper bounds. After every half-essential edge is exchanged in this way, every vertex in
V \W has k neighbours in G+F and every vertex w ∈W has at least k and at most |Ec|
neighbours. So there is a solution for the changed problem which also augments G into
the k-core and has the same number of added edges as an optimal solution to the original
problem. This reduces the runtime for the algorithm to O(k|V |min{|Ec| log(|V |), |V |2}).

Observation 1. Core Augmentation can be solved in O(k|V |min{|Ec| log(|V |), |V |2})
time.

3.1 Our rewiring operations

We use four different rewiring operations to transform an arbitrary solution of Core Aug-
mentation into a solution that minimizes the number of connected components while still
being a valid solution. This is the first step to get a solution to ConnCore. The operati-
ons are illustrated in Figure 3.2 and explained in Algorithm 1, 2, 3, 4 and 5, respectively.
Descriptions of the rewire operations and lemmas describing their consequences follow.

RewireA needs a non-bridge {u, v} and another edge {x, y} in different connected com-
ponents and connects these two components by removing {u, v} and {x, y} and adding
{u, x} and {v, y}, see Alg. 1. This operation does not change the degrees of the involved
vertices as is stated in the following lemma.

Lemma 3.2. Let G = (V,E) be a graph and let F be a solution to Core Augmentation
with edges {u, v} , {x, y} ∈ F with {u, v} being a non-bridge. Let G′ = G+ F denote the
graph for solution F . Let Fr = F \ {{u, v}, {x, y}} ∪ {{u, x}, {v, y}} be a new solution to
Core Augmentation and Gr = G+ Fr be the graph corresponding to this new solution
resulting from applying RewireA to G′ . It holds that

1. degG′(v) = degGr
(v) for all v ∈ V and

2. Gr has one connected component less than G′.

Proof. To see 1. note that for every vertex v ∈ V \ {u, v, x, y} the incident edges do
not change, and moreover each of the vertices in {u, v, x, y} swaps one incident edge for
another.

For 2. There is a path p in G′ connecting u and v that uses neither {u, v} nor {x, y}. This
path also exists in Gr. The vertices x and y in Gr are connected by the path {x, u}p{v, y}.
So in a path in G′, {u, v} can be replaced by p and {x, y} can be replaced by {x, u}p{v, y}.
Therefore, every vertex pair connected in G′ is also connected in Gr and compGr

(u) =
compGr

(x) because of the added edges.

15



16 3. Core and Connectivity Augmentation

Algorithm 1 RewireA(G, e1, e2)

Input: A graph G = (V,E), two edges e1 = {u, v} and e2 = {x, y} with compG(u) 6=
compG(x) and one edge being a non-bridge

Output: A Graph Gr = (V,Er)

1: Gr = G
2: remove {u, v} and {x, y} from Gr

3: add {u, x} and {v, y} to Gr

4: return Gr

RewireB takes a half-essential non-bridge {u, v} with v being the oversaturated vertex,
and another connected component C and changes {u, v} to {u, x} with x ∈ C, see Alg. 2.
The following lemma states that RewireB produces a valid Core Augmentation solu-
tion, and creates no new non-bridges.

Lemma 3.3. Let G = (V,E) be a graph and let F be a solution to Core Augmentation
and G′ = G+F be the corresponding graph. Let F include a half-essential non-bridge {u, v},
with v being the over-saturated vertex, and let x be a vertex with compG′(x) 6= compG′(u).
Let Fr = (F \ {{u, v}}) ∪ {{u, x}} be a new solution to Core Augmentation resulting
from applying RewireB to G′. Let Gr = G + Fr be the graph corresponding to this new
solution. It holds that

1. degGr
(v) ≥ k for all v ∈ V ,

2. Gr has fewer connected components than G′ and

3. the newly added edge {u, x} is a bridge.

Proof. To see 1., note that for every vertex v ∈ V \ {u, v, x} the incident edges do not
change. The over-saturated vertex u loses an incident edge, so degGr

(u) ≥ k + 1 − 1 = k
because degG(u) > k. Vertex v swaps an incident edge for another. Vertex x gains an
incident edge. So the rewired solution remains a valid solution.

For 2. there is a path p in G connecting u and v that does not use the edge {u, v}. So
in a path in G, {u, v} can be replaced by p to get a path in Gr. The connected com-
ponents compG(u) and compG(v) are connected in Gr by {v, x} while the other connected
components remain as in G′.

To see 3., note that the vertices u and x are in different connected components in G′, so
{u, x} is the only path connecting u and x in Gr.

Algorithm 2 RewireB(G, e, C ⊂ V )

Input: A graph G = (V,E), a half-essential non-bridge edge e = {u, v} and a connected
component C with compG(u) 6= C

Output: A Graph Gr = (V,Er)

1: Gr = G
2: remove {u, v} from Gr

3: x = an arbitray vertex in C
4: add {u, x} to Gr

5: return Gr

RewireC uses a half-essential bridge {r, s} with s being the over-saturated vertex, a non-
bridge {u, v} ∈ compG+F\{r,s}(r), an edge {x, y} ∈ compG+F\{r,s}(s) and a connected

16



3.1. Our rewiring operations 17

component C 6= compG(r) of G. The components C and compG(r) become connected by
removing {u, v}, {r, s} and {x, y} and adding {u, x}, {v, y} and {r, z}, where z denotes an
arbitrary vertex of C, see Alg. 3. The following Lemma shows that this works as intended
and does produce a solution with fewer connected components.

Lemma 3.4. Let G = (V,E) be a graph and let F be a solution to Core Augmen-
tation and G′ = G + F be the corresponding graph. Let F include a half-essential ed-
ge {r, s} with s being the over-saturated vertex, a non-bridge {u, v} ∈ compG′\{r,s}(r),
an edge {x, y} ∈ compG′\{r,s}(s) and a vertex z with compG′(z) 6= compG′(u). Let
Fr = (F \{{r, s}, {u, v}, {x, y}})∪{{u, x}, {v, y}, {r, z}} be a new solution to Core Aug-
mentation resulting from applying RewireC to G′. Let Gr = G+Fr be the graph corre-
sponding to this new solution. It holds that

1. degGr
(v) ≥ k for all v ∈ V ,

2. Gr has fewer connected components than G′,

3. if neither {u, v} nor {x, y} is half-essential, the added edges {u, x} and {v, y} are
both not half-essential, and

4. the edge {r, z} is a bridge.

Proof. To see 1., note that for every vertex v ∈ V \ {r, s, u, v, x, y, z} the incident edges
do not change. Vertex s loses an incident edge, so degGr

(s) = degG′(s) − 1 ≥ k because
degG′(s) > k. Each vertex in {s, u, v, x, y} swaps an incident edge for another. Vertex z
gains an incident edge.

To see 2., note that there are paths p1, p2 and p3 in G′, connecting u with v, u with r
and s with x respectively in G. Each of these paths can be chosen such that they do not
use the edges {u, v}, {r, s} and {x, y}. So in a path in G′, {u, v} can be replaced by p1;
{r, s} can be replaced by p2, {u, x}, p3 and {x, y} can be replaced by {x, u}p1{v, y} to get
a path in Gr. Hence, vertices connected by a path in G′ are also connected by a path in
Gr, i.e., a connected component in G′ is also a connected component in Gr. It holds that
compG(u) and compG(z) are connected in Gr by {r, z}.

For 3. assume that one of the edges {u, x} and {v, y} in Gr is half-essential. Then at least
one of the vertices in {u, v, x, y} is over-saturated. These vertices have the same degree in
G′ and Gr. Hence one of these vertices is also over-saturated in G′ and one of the edges
{u, v} and {x, y} is half-essential in G′.

To see 4., note that the vertices r and z are chosen to be in different connected components
of G′, so {r, z} is a bridge.

Algorithm 3 RewireC(G, e1, e2, e3, C ⊂ V )

Input: A graph G = (V,E); three edges e1 = {u, v}, e2 = {x, y} and e3 = {r, s}
with {u, v} being a non-bridge, {r, s} being a half-essential bridge with s being
over-saturated, compG\{r,s}(u) 6= compG\{r,s}(x), and a connected component C 6=
compG(x)

Output: A Graph Gr = (V,Er)

1: Gr = G
2: remove {u, v}, {x, y} and {r, s} from Gr

3: z = an arbitray vertex in C
4: add {u, x}, {v, y} and {r, z} to Gr

5: return Gr

17



18 3. Core and Connectivity Augmentation

RewireC’ uses a half-essential bridge {r, s} with s being the over-saturated vertex, a
non-bridge {u, v} ∈ compG\{r,s}(r), an edge {x, y} ∈ compG\{r,s}(s) and a connected
component C 6= compG(r) of G. The components C and compG(r) become connected by
removing {u, v}, {r, s} and {x, y} and adding {u, x}, {v, y} and {s, z}, where z denotes
an arbitrary vertex of C, see Alg. 4. The following Lemma shows that this works as
intended and does produce a solution with fewer connected components. This rewiring
operation is similar to RewireC. The difference is the over-saturated vertex in the half-
essential edge {r, s} and the added edge {r, z} in RewireC is exchanged for {s, z}. In the
remainder of this work we will not differentiate between RewireC and RewireC’ and
consider RewireC and RewireC’ as one rewire operation in which the position of the
over-saturated vertex in {r, s} is flexible.

Lemma 3.5. Let G = (V,E) be a graph and let F be a solution to Core Augmentation
and G′ = G + F be the corresponding graph. Let F include a half-essential edge {r, s}
with r being the over-saturated vertex, a non-bridge {u, v} ∈ compG′\{r,s}(r), an edge
{x, y} ∈ compG′\{r,s}(s) and a vertex z with compG′(z) 6= compG′(u). Let Fr = (F \
{{r, s}, {u, v}, {x, y}})∪{{u, x}, {v, y}, {s, z}} be a new solution to Core Augmentation
resulting from applying RewireC’ to G′. Let Gr = G+ Fr be the graph corresponding to
this new solution. It holds that

1. degGr
(v) ≥ k for all v ∈ V ,

2. Gr has fewer connected components than G′,

3. if neither {u, v} nor {x, y} is a half-essential, the added edges {u, x} and {v, y} are
both not half-essential, and

4. the edge {r, z} is a bridge.

Proof. To see 1., note that for every vertex v ∈ V \ {r, s, u, v, x, y, z} the incident edges
do not change. Vertex r loses an incident edge, so degGr

(r) = degG′(r) − 1 ≥ k because
degG′(r) > k. Each vertex in {r, u, v, x, y} swaps an incident edge for another. Vertex z
gains an incident edge.

To see 2., note that there are paths p1, p2 and p3 in G′, connecting u with v, u with r
and s with x respectively in G. Each of these paths can be chosen such that they do not
use the edges {u, v}, {r, s} and {x, y}. So in a path in G′, {u, v} can be replaced by p1;
{r, s} can be replaced by p2, {u, x}, p3 and {x, y} can be replaced by {x, u}p1{v, y} to get
a path in Gr. Hence, vertices connected by a path in G′ are also connected by a path in
Gr, i.e., a connected component in G′ is also a connected component in Gr. It holds that
compG(u) and compG(z) are connected in Gr by {s, z}.

For 3. assume that one of the edges {u, x} and vy in Gr is half-essential. Then at least
one of the vertices in {u, v, x, y} is over-saturated. These vertices have the same degree in
G′ and Gr. Hence one of these vertices is also over-saturated in G′ and one of the edges
{u, v} and {x, y} is half-essential in G′.

To see 4., note that the vertices r and z are chosen to be in different connected components
of G′, so {s, z} is a bridge.

RewireD uses a half-essential bridge {x, y}, with x being the over-saturated vertex and a
non-bridge {u, v} on the over-saturated side of {x, y} to connect the connected component
containing {x, y} and {u, v} to another connected component C of G. This is achieved by
removing {x, y} and {u, v} and adding {u, z} and {v, y}. This operation does not invalidate
a solution and reduces the number of connected components, as is shown in the following
lemma.

18



3.1. Our rewiring operations 19

Algorithm 4 RewireC’(G, e1, e2, e3, C ⊂ V )

Input: A graph G = (V,E); three edges e1 = {u, v}, e2 = {x, y} and e3 = {r, s}
with {u, v} being a non-bridge, {r, s} being a half-essential bridge with r being
over-saturated, compG\{r,s}(u) 6= compG\{r,s}(x), and a connected component C 6=
compG(x)

Output: A Graph Gr = (V,Er)

1: Gr = G
2: remove {u, v}, {x, y} and {r, s} from Gr

3: z = an arbitray vertex in C
4: add {u, x}, {v, y} and {s, z} to Gr

5: return Gr

Lemma 3.6. Let G = (V,E) be a graph and let F be a solution to Core Augmentation
and G′ = G + F be the corresponding graph. Let F include a half-essential bridge {x, y},
with x being the over-saturated vertex, a non-bridge {u, v} ∈ compG′\{x,y}(x). Let z be a
vertex with compG′(z) 6= comp′G(u). Let G′ = G + F denote the graph for solution F .
Let Fr = (F \ {{u, v}, {x, y}}) ∪ {{u, z}, {v, y}} be a new solution resulting from applying
RewireD to G′. The corresponding graph to this new solution is denoted by Gr = G+Fr.
It holds that

1. degGr
(v) ≥ k for all v ∈ V ,

2. Gr has fewer connected components than G′ and

3. the added edges {u, z} and {v, y} are both bridges.

Proof. 1. For 1. note that for every vertex v ∈ V \ {u, v, x, y, z} the incident edges do
not change. Vertex x loses an incident edge, so degGr

(x) = degG(x)−1 ≥ k, because
degG(x) > k. Each vertex in {u, v, y} swaps an incident edge for another. Vertex z
gains an incident edge.

To see 2., note that in G′ there is a path p connecting u and v that does not use
{u, v} because {u, v} is a non-bridge. So in a path in G′, {u, v} can be replaced by
p to obtain a path between thes same vertices in Gr. So vertices connected in G′ are
also connected in Gr. Moreover, it holds that compG(u) and compG(z) are connected
in Gr by {u, z} .

For 3. note that the edge {u, z} is a bridge because u and z are in different connected
components in G and there is no other edge added that connects these components.
The edge {v, y} is a bridge because v and y are in different components in (V,E \
{{x, y}}) and there is no other edge added connecting these components.

So we get to the conclusion that our four defined rewiring operations do not invalidate a
solution. This is noted in the following corollary

Corollary 3.7. A solution F that was derived from a valid solution of Core Augmen-
tation by applying one of our four rewiring operations is a valid solution.

RewireA does not alter the degrees of the vertices, while RewireB, RewireC and
RewireD reduce the degrees of an over-saturated vertex by one.
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20 3. Core and Connectivity Augmentation

Algorithm 5 RewireD(G, e1, e2, C ⊂ V )

Input: A graph G = (V,E); two edges e1 = {u, v} and e2 = {x, y} with {u, v} being a
non bridge and a connected component C 6= compG(u) = compG(x)

Output: A Graph Gr = (V,Er)

1: Gr = G
2: remove {u, v} and {x, y} from Gr

3: z = an arbitray vertex in C
4: add {u, z} and {v, y} to Gr

5: return Gr

3.2 Iterative rewiring

To transform an arbitrary solution F to a solution with a minimum number of connected
components, we perform four steps using the four rewiring operations from above itera-
tively. There are two possible situations that can occur after every rewiring operation. The
first is, that there is only one connected component left. The other one appears, if there
are no non-bridges left in F . In both cases none of our four rewiring operations can be
applied. If we reach one of these conditions or have completed all four steps, we are done
with rewiring. We will show that this reduction of connected components is optimal, i.e.,
that we need to add more edges to a minimal solution to Core Augmentation to get a
minimal solution to ConnCore in the last two cases.

The following four steps are used to gradually reduce the number of connected components.
We do this by first connecting the components in the centre, i.e., the connected components
of the graph G+ F that include edges of F , and then try to connect the satellites to the
remainder of the graph. To achieve the former we use RewireA and for the latter we use
RewireB, RewireC and RewireD.

1. Apply RewireA to G′ and edges in F as often as we can. If we cannot apply
RewireA anymore and G′ consists of more than one connected component and
there are still non-bridges in F left, all edges in F are in the same component of G′.
Otherwise we could apply RewireA once more. In this case we continue with the
next step.

Note that no rewiring operation seperates connected components, therefore we get
the following observation.
Observation 2. In all steps after step 1 there is only one connected component
containing edges in F , if there are still non-bridges in F .

We denote this component by M . For every connected component C 6= M it holds
that C is a component in G with degG(v) ≥ k for all v ∈ C, i.e., C is a satellite.

2. Apply RewireB to G′ and edges in F as often as we can. If we cannot apply
RewireB anymore and there is more than one connected component, then there are
no half-essential non-bridges left. Otherwise we could apply RewireB once more.
In this case we continue with the next step.

3. Apply RewireC to G′ and edges in F as often as we can. If we cannot apply
RewireC anymore and there is more than one connected component, then there
is only one component compG′\{u,v}(x), x ∈ {u, v} with edges in F for every half-
essential bridge {u, v}

4. Apply RewireD to G′ and edges in F as often as we can. If we cannot apply
RewireD anymore and there is more than one connected component left, then
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Figure 3.2: The rewiring operations - a black dot denotes a vertex in G′, a green dot
denotes a vertex v ∈ G′ with degG′(v) > k, a red line denotes an edge e ∈ F ,
a dashed line denotes a path between vertices without using edges represented
by red lines

it holds that for every half-essential bridge {u, v} with u being the over-saturated
vertex, there are no edges of F in compG′\{u,v}(u).

Note that no rewiring operation after step 2 creates a new non-essential half-bridge. Hence,
RewireB cannot be applied after step 2 is done. A theorem proving that this algorithm
works as intended follows.

Theorem 3.8. Let G = (V,E) be a graph and F a solution to Core Augmentation. Af-
ter altering F with the four steps, F is a solution to Core Augmentation that minimizes
the number of connected components in G′ = G+ F .
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22 3. Core and Connectivity Augmentation

There are three cases to be considered, in particular, these are the two stopping criteria
from above and a final, third case where neither applies. We have to show that in all
cases the solution derived by the four step algorithm minimizes the number of connected
components. To prove Theorem 3.8, we first show a number of lemmata, dealing with these
cases seperately. In the first case there is only one connected component left. In the second
case there is no non-bridge left. In the third case the rewiring steps are completed and the
first two cases did not occur.

Case 1: One connected component

We get to the situation that there is only one connected component left. Because no
rewire operation invalidates a valid solution to Core Augmentation (see Corollary 3.7)
the following observation holds.

Observation 3. Given a graph G = (V,E), let F be a solution to Core Augmentati-
on. If G′ = G + F has only one connected component, then F minimizes the number of
connected components.

Case 2: No non-bridges left

We get to a situation where there is more than one connected component left and there
are no non-bridges in F left. To show that such a solution has a minimum number of
connected components, we state a lower bound on the number of connected components
in a graph with |F | added edges and then show that our solution achieves this lower bound.
Let G = (V,E) be a graph with c connected components. We consider a set of edges Enew

added to G to build a new graph G′ = G + Enew. To get a lower bound on the number
c′ of connected components in G′, we add the new edges individually. If we add an edge
e = {u, v} to G there are two cases to be considered. In the first case u and v are in
the same connected component in G, and consequently e is not a bridge. The number of
connected components c′′ in G′′ = G + e is the same as in G. In the second case u and v
are in different connected components of G and e is a bridge. The connected components
of G including u and v are connected in the new graph G′′ by this new edge e, while the
other components of G remain the same in G′′. Therefore, the number of components is
reduced by 1, when we add a bridge to the graph. So if we add a set of new edges Enew

to a graph, the lower bound for the number of connected components of the graph G′

is c − |Enew|. More precisely, the number of connected components in G′ is c − b, with
b being the number of edges that are bridges at the moment of insertion in Enew by the
argument above. Therefore, in this case the solution F minimizes the number of connected
components of G′ = G + F because all edges in F are bridges in G′. This proves the
following lemma

Lemma 3.9. Given a graph G = (V,E), let F be a solution to Core Augmentation.
If all edges of F are bridges in the graph G′ = G + F , then F minimizes the number of
connected components.

Case 3: All four steps are executed

There is more than one connected component in G′ = G+F and there are non-bridges in
F . In this case all four steps are completed and G′ has a specific form. Namely all edges
in F are in the same connected component of G′, there are no half-essential non-bridges
left and for all half-essential bridges {u, v} with u being the over-saturated vertex, it holds
that there are no edges of F in compG′\{u,v}(u), i.e., compG(u) is a satellite.

To show that F is an optimal solution, we quantify the degree of ”over-saturatedness”
of a solution of Core Augmentation to show that a solution with fewer connected
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3.2. Iterative rewiring 23

components has a higher degree of ”over-saturatedness” and therefore more edges than F .
Let i(v, F ) be the number of edges incident to v in F . The excess ex(F ) of a solution F
of Core Augmentation is ex(F ) =

∑
v∈V (i(v, F ) − req(v)). Note that the excess is at

least the number over-saturated vertices of a solution, because i(v, F ) > req(v) holds for
these vertices.

After we rewired the edges in the four steps, all half-essential edges are used to connect
satellites to other connected components, with the over-saturated vertex in the satellite.
So for every vertex v the incident edges in F are either needed to increase the degree of v,
or v is in a satellite and the only incident edge in F is half-essential. So i(v, F )−req(v) = 0
if v is not in a satellite and i(v, F )− req(v) = 1 if v is in a satellite. Hence, in G′ = G+F
the excess is equal to the number of half-essential edges and equal to the number of bound
satellites.

Lemma 3.10. Given two different optimal solutions F and F ′ of Core Augmentation,
the excess of these solutions is equal.

Proof. Because both solutions F and F ′ are optimal it holds that |F | = |F ′|. Hence, the
excesses of these solutions are also equal.

ex(F ) =
∑
v∈V

(i(v, F )− req(v))

=
∑
v∈V

i(v, F ) +
∑
v∈V
−req(v)

=
∑
v∈V

i(v, F ′) +
∑
v∈V
−req(v)

=
∑
v∈V

(i(v, F ′)− req(v)) = ex(F ′)

Let F ′ be an optimal solution to Core Augmentation that mimimizes the number of
connected components. We show, that the number of connected components in G∗ = G+F ′

is the same as in G′ = G+F . The graph G∗ = (V,E∪F ′) cannot have an edge connecting
two satellites by Lemma 3.1, since such an edge would be a non-essential edge. So every
bound satellite is connected to a component of the centre, i.e., the non-satellite part of the
graph. Therefore, we can calculate the number of components of a solution by adding the
number of components in the centre and the unbound satellites. The solution F ′ cannot
connect more satellites to the rest of the graph than F . Otherwise, the excess of F ′ would
be higher than the excess of F , because there is at least one over-saturated edge for every
bound satellite. Let s be the number of satellites in G and let b be the number of bound
satellites in solution F and b′ be the number of bound satellites in solution F ′. Furthermore,
let c denote the number of connected components in the centre of G∗. Because b ≥ b′ and
1 ≤ c holds, we have components(G′) = s − b + 1 ≤ s − b′ + c = components(G∗).
The optimal solution F ′ minimizes the number of connected components, so we also have
components(G′) ≥ components(G∗), and therefore components(G′) = components(G∗).
The following lemma holds.

Lemma 3.11. Given a graph G = (V,E), let F be a solution to Core Augmentation.
After changing F with the four steps algorithm and neither Case 1 nor Case 2 occurs, the
new solution F minimizes the number of connected components.
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24 3. Core and Connectivity Augmentation

We see that the four steps transform a solution of Core Augmentation to a solution that
minimizes the number of connected components. In all three possible end cases, the solu-
tion minimizes the number of connected components, by Observation 3 and Lemmata 3.9
and 3.11, and thus is a minimal solution to Core Augmentation.

3.3 Making the graph connected

As shown in the previous section, we can construct a solution to CoreAugmenation
that minimizes the number of connected components in the resulting graph. We can use
this solution to construct a minimum solution to ConnCore that simultaneously brings
every vertex into the k-core and connects the graph. If the constructed solution F to Core
Augmentation is already connected, there is nothing to do. If this is not the case, we need
to add edges to reduce the number of connected components to 1. If there are non-bridges
in F , we can use a simple operation to reduce the number of connected components by
two with one added edge. If there are no non-bridges in F , we have to use one edge to
connect one other connected component to another, reducing the number of connected
components by one.

Given a graph G = (V,E), a solution F to Core Augmentation and G′ = G + F
let {u, v} ∈ F be a non-bridge in G′. We can remove {u, v} from F and add two half-
essential bridges {u, x} and {v, y} to F with x and y being vertices of distinct connected
components other than compG′(u). We call this operation RewireE. The solution is still
a valid one because no degree of the vertices of G′ is reduced. Furthermore, the added
edges {u, x} and {v, y} both are bridges, because u and x, respectively v and y were in
different connected components before RewireE. This allows us to to reduce the number
of connected components by two, using only one additional edge.

With this in mind we formulate an algorithm to fully connect a graph. As long as there
are more than two connected components in G′ and non-bridges in F , apply RewireE
like above. After this we add one edge for every remaining satellite to connect this satellite
to the remainder of the graph. This will be referred to as the connecting algorithm.

This connects the graph optimally, i.e., the least number of extra edges is used, as is shown
in the following lemma.

Lemma 3.12. Given a graph G = (V,E) and a solution to Core Augmentation that
minimizes the number of connected components of the corresponding graph G′ = G + F .
The solution of ConnCore obtained by applying the connecting algorithm is of minimum
size.

Proof. Let G = (V,E) be a graph and let F be a solution to Core Augmentation that
minimizes the number of connected components. We assume that G+F is not connected.
Otherwise the minimal solution to Core Augmentation is already a minimal solution
to ConnCore. Let Fr be the solution to ConnCore obtained by the algorithm given
above. We assume without loss of generality, that F is not empty, i.e., there is a centre.
Otherwise ConnCore would degrade into a simple connectivity problem.

We will examine two cases. The first case is that there are only bridges in Fr. In the
second case, there are non-bridges in Fr. Let c be the number of connected components
in G. To connect the c connected components of G with a minimal number of edges we
have to add c− 1 bridges. Hence, if our solution Fr consists solely of bridges, this solution
is optimal.

In the second case there are non-bridges in Fr. If the four step algorithm to solve Core
Augmentation stops, because there are only bridges in F left, the solution Fr of the
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connecting algorithm consists solely of bridges, because only bridges are added to F .
Hence we can assume without loss of generality, that the four step algorithm did not end
prematurely, i.e., that all four rewiring steps were used if there are non-bridges in Fr.
Because of this, every non-bridge in F is essential, otherwise RewireB could have been
applied. Let s be the number of unbound satellites in G+F . There are at least s incidences
needed to connect these unbound satellites to the remainder of the graph. The connection
algorithm removes non-bridges from F as long as there are at least two unbound satellites
left and adds two bridges for every removed non-bridge. If we use up all non-bridges in F
to do this, Fr consists solely of bridges but we assumed that Fr includes non-bridges
and the case of Fr consisting only of bridges was our first case. Hence we can assume
without loss of generality, that there are enough non-bridges in F to apply RewireE until
the graph is connected. So bs/2c edges are removed and s edges are added. Hence, Fr

has s−s/2 = s/2 more edges, i.e., s more incidences, than F if s is even. If s is uneven, Fr

has s− (s− 1)/2 = (s+ 1)/2 more edges, i.e., s+ 1 more incidences, than F . Because at
least s incidences were needed to connect the unbound satellites to the remainder of the
graph, this is optimal.

To summarize the results of this section we will give a short version of the algorithm
that solves ConnCore for a graph G = (V,E). First, calculate a solution for Core
Augmentation using Theorem 2.1. Second, reduce the number of connected components
by altering this solution with the four step algorithm. Third, connect the remainder of the
graph by altering the solution using the connecting algorithm.

3.4 Runtime

In this section we examine the time complexity of solving ConnCore for a
graph G by the method above. We get a solution to Core Augmentation
in O(k|V |min{|Ec| log(|V |), |V |2}) time by Observation 1. The next part consists of
rewiring to reduce the number of connected components. Because every rewiring opera-
tion reduces the number of connected components, there are at most c ≤ |V | rewiring
operations needed, with c being the number of connected components. To apply a rewiring
operation, we need to find edges of F that have specific properties, i.e., whether it is es-
sential or not and if it is a bridge. The degree of each vertex can be maintained. Hence, we
can see in constant time if a vertex is over-saturated, i.e., if incident edges are either half-
essential or essential. Note that, whereas the rewiring operations do not change bridges into
non-bridges, the converse is generally not true. As an example consider a Graph G with a
solution F for Core Augmentation. Let G consist of three connected components A, B
and C. In A there are two vertices x and y with degG(x) = degG(y) = k − 1. In B there
is one vertex z with degG(z) = k − 1. Every other vertex has a degree of at least k. Let r
be an arbitrary vertex of B. Then, F = {{x, z}, {y, r}} is a solution with a half-essential
and an essential non-bridge. RewireB can be applied to connect C to the remainder
of the graph. After this rewiring F consists of two bridges, i.e., the former non-bridge
{x, z} is a bridge although it was not directly involved in a rewire operation. To see if an
edge is a bridge, we use the dynamic connectivity data structure given by Holm and De
Lichtenberg[9]. It uses O(log2 n) time per insertion or deletion of an edge to the graph
and O(log n/ log log n) time per query to see if two vertices belong to the same connected
component. This allows us to test whether {u, v} is a bridge by deleting {u, v} from the
graph, querying if u and v are still connected and readding {u, v} to the graph.

To examine the running time of the iterative rewiring, we first show how it can be im-
plemented and then examine the runtime of such an implementation. To efficiently apply
RewireA, we use two lists per connected component of G + F . In one list we store the
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bridges of F and in the other list we store the potential non-bridges of F . The lists can be
constructed in O(|V |+ |E|) time, using algorithm due to Tarjan.[13] To apply RewireA
we need a potential non-bridge e from one connected component and an arbitrary edge f
from another connected component. The potential non-bridge e has to be tested by the
method above if it is really a non-bridge. This needs O(log2 n) time. If e is a bridge, we
add it to the list of bridges of the same component and pop another edge from the list with
potential non-bridges and repeat the testing. We also test whether f is a bridge or not. If f
is a bridge, the edges that are created by RewireA are bridges. If f is not a bridge, these
new edges are non-bridges. The edges created by RewireA are inserted to the appropiate
lists. When RewireA is completed, we concatenate the involved lists, i.e. we merge the
lists for potential non-bridges and the lists for bridges. Every test if a potential non-bridge
e is a a non-bridge either removes e from the list of potential non-bridges or leads to an
application of RewireA. So there are at most O(|V |+ |E|) tests needed. The runtime for
applying RewireA iteratively is therefore O((|V |+ |E|) log2 |V |).

To apply RewireB we need a half-essential non-bridge and a vertex of an unbound sa-
tellite. As in RewireA we maintain lists of potential non-bridges and of bridges. Because
after iteratively applying RewireA all edges of F are in a single connected component,
we only need two lists. We get the non-bridge as above in RewireA. To get the vertices of
the other connected components, we save a list with one vertex per connected component
that does not have an edge of F in it. In an individual RewireB we get the head of said
list, apply RewireB and delete the used vertex from the list. Analogous to RewireA the
runtime of iteratively applying RewireB is O((|V |+ |E|) log2 |V |).

To apply RewireC we need three edges and a vertex of an unbound satellite. One of
the edges is a half-essential bridge {r, s}. The other edges are in compG+F−{r,s}(r) and
compG+F−{r,s}(s) respectively. One of these two edges is a non-bridge. The needed vertex
can be found by building a list with one vertex per connected component that does not
have an edge of F in it. If a vertex of this list is used in a RewireC we remove it from
the list. To find such a triple of edges, we temporarily remove the half-essential bridges
of F from the graph and build lists of potential non-bridges and bridges per connected
component as in RewireA. More formally let H ⊂ F be the set of half-essential bridges of
F . Then there are two lists for every connected component in G+F−H. After the lists are
built we readd the half-essential bridges to the graph. Now we can search for a pair of edges
of F , with one edge being a non-bridge, in different connected components in G+ F −H
like in RewireA. Because every edge of F is in the same connected component of G+F ,
these two edges {u, v} and {x, y} are connected in G+F by an edge of H. If we find such
a half-essential bridge {r, s} it holds that {u, v} ∈ compG+F (r) and {x, y} ∈ compG+F (s).
To find such a half-essential bridge, we remove a half-essential bridge temporarily and test
if u and x are connected. This has to be done at most c− 1 ≤ |V | times.

Now we can apply RewireC. Iteratively applying RewireC is similar to iteratively ap-
plying RewireA with the additional searching for an appropiate half-essential bridge. So
the runtime for iteratively applying RewireC is O(|V |(|V |+ |E|) log2 |V |).

For RewireD we need a half-essential bridge and a non-bridge. Because all edges of F
are in the same connected component and for every half-essential bridge {u, v} there is
only one connected component out of compG+F−{u,v}(u) and compG+F−{u,v}(v) with edges
of F we just need to find a non-bridge and a half-essential bridge where the non-bridge
is in compG+F (u) with u being the over-saturated edge of the half-essential bridge. We
again maintain a list of potential non-bridges of F and a list of half-essential bridges of
F . The non-bridge can be found as in RewireA and for the half-essential bridge, we
iterate through the list until we find a half-essential bridge {u, v} with u being the over-
saturated vertex and the non-bridge in compG+F (u). To test for a half-essential bridge
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{u, v} with over-saturated vertex u if the non-bridge is in compG+F (u) we temporarily
remove {u, v} and test if u and a vertex of the non-bridge are connected. If this is the case
we can apply RewireD. If this is not the case, we can remove the half-essential bridge
from the list, because there is only one connected component out of compG+F−{u,v}(u)
and compG+F−{u,v}(v) with edges of F , {u, v} cannot be used in RewireD. So after every
test there is one less half-essential bridge in the list. Therefore there are at most |V | tests
needed. Hence the runtime of iteratively applying RewireD is O((|V |+ |E|) log2 |V |).

These observations lead to the following theorem.

Theorem 3.13. ConnCore can be solved in O(k|V |min{|Ec| log(|V |), |V |2}) time.
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4. Core Augmentation for Subsets

After we have examined the problem of getting all vertices of a graph into the k-core,
we now consider a problem regarding a subset of all vertices in a graph. This problem is
Fixed Subset k-Core Augmentation of augmenting a graph G = (V,E), such that a
given subset W ⊆ V is in the k-core. We show that this is NP-hard for k ≥ 3 and solvable
in polynomial time for k ≤ 2.

Problem 4 (Fixed Subset k-Core Augmentation). Given a graph G = (V,E), a
subset W ⊆ V of vertices and a natural number k, find F ⊆ V 2 of minimum size such that
for each v ∈W it holds that corenessG+F (v) ≥ k.

We generally cannot simplify this problem to a degree problem like Core Augmenta-
tion. We will show that this problem is NP-hard, and in fact W[2]-hard, for k ≥ 3 by
reducing Dominating Set to Fixed Subset k-Core Augmentation. Furthermore Fi-
xed Subset k-Core Augmentation is not approximable within a factor of (1− ε) ln |V |
for any ε > 0 unless NP ⊂ DTIME. In the case of k ≤ 2 we show, that Fixed Subset
k-Core Augmentation can be solved in polynomial time.

4.1 Augmenting to the 3-core

In this section we reduce Dominating Set to Fixed Subset 3-Core Augmentation.

Problem 5 (Dominating Set). Given a graph G = (V,E) find a subset D ⊂ V such
that every vertex v ∈ V is either in D or adjacent to a vertex in D.

Let G = (V,E) be an arbitrary instance of Dominating Set. To reduce Dominating
Set to Fixed Subset k-Core Augmentation we construct an instance G′ = (V ′, E′) of
Fixed Subset k-Core Augmentation and show that a solution to G′ implies a solution
to G. The reduction works by constructing two gadgets for every vertex in V . One is used
to mark vertices as a part of the corresponding dominating set and the other is used to
check if the vertex is marked or adjacent to a marked vertex. We denote the former by
marking gadget and the latter by checking gadget. We construct an instance of Fixed
Subset Core Augmentation by linking the marking gadget of a vertex to the checking
gadgets of every adjacent vertex including itself. The gadgets are constructed such that a
checking gadget is in the k-core if and only if a linked marking gadget has an added edge
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...

...

Figure 4.1: One marking gadget (red) connected with multiple checking gadgets (blue);
the circled vertices are in the subset of vertices to be in the 3-core

Figure 4.2: An example for a reduction from Dominating Set to Subset Core Aug-
mentation. (a) A graph as an input to Dominating Set. (b) A graph as an
input to Subset Core Augmentation. Blue vertices represent checking gad-
gets, red vertices represent marking gadgets and an edge represent four edges
as illustrated in Figure 4.1.

e ∈ F in a solution F to Fixed Subset k-Core Augmentation or if F can be rewired
to be such a solution.

The marking gadget for a vertex v is a path of 3(deg(v) + 1) vertices. To be more precise,
it consists of the vertices ai, bi, ci for i ∈ {0..deg(v)} for every vertex v ∈ V . The edges are
{ai, bi}, {bi, ci} for i ∈ {0, . . . ,deg(v)} and {ci, ai+1} for i ∈ {0, . . . ,deg(v)−1}. The vertices
a0 and cdeg(v) are called ends of the marking gadget. The checking gadget is a single vertex
z. To connect a marking gadget of a vertex v with the checking gadgets of the adjacent
vertices, the adjacent vertices are numbered 1 to a. Let zi denote the single vertex of the
checking gadget of the vertex with number i. The edges used to connect the marking gadget
with the checking gadgets are {ai, zi}, {bi, zi} and {ci, zi} for i ∈ {1, . . . , a}. Furthermore,
the marking gadget of v is connected to the checking gadget of v by the edges {a0, z0},
{b0, z0} and {c0, z0}, where z0 denotes the vertex of the checking gadget of v. We call the
resulting graph G′ = (V ′, E′). The subset W ′ ⊂ V ′ of vertices to be augmented to the k-
core consists of the vertices of all checking gadgets. In the remainder of this section we will
refer to the marking gadgets that are connected to a checking gadget by the three edges
in the construction above as marking gadgets linked to the checking gadget. A marking
gadget linked to multiple checking gadgets can be seen in Figure 4.1. An example for the
new graph G′ as input to Fixed Subset 3-Core Augmentation corresponding to a
graph G as input to Dominating Set can be seen in Figure 4.2.

To prove the correctness of the reduction, we will first show how a solution to the Domi-
nating Set instance G can be derived in linear time from a solution to the Fixed Subset
3-Core Augmentation instance G′ that has a special property. Second, we will show
that every minimal solution of G can be transformed to such a solution without losing
minimality.
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Lemma 4.1. Given an instance G = (V,E) of Dominating Set, let G′ = (V ′, E′) be an
instance of Fixed Subset 3-Core Augmentation constructed as above. It holds that
F is a solution to G′ of a size less than d if and only if it induces an solution D of G of
a size less than d.

Proof. First we will show how a solution to G can be easily derived from a special solution
to G′. Let F be a solution to G′ with the property that every edge e ∈ F of the solution is an
edge between the ends of a marking gadget. We call these marking gadgets saved marking
gadgets. The vertices of each saved marking gadget of a vertex v ∈ V and all checking
gadgets linked to it are in the 3-core, because the induced subgraph of these vertices in
G+F is 3-regular. The vertices of each marking gadget without an edge between the ends
are only in the 2-core. A checking gadget without a linked saved marking gadget is in the
2-core but not in the 3-core, because all adjacent vertices are also in the 2-core and not
in the 3-core. Recall, that the instance G′ is constructed such that the vertices we have
to augment into the 3-core are the vertices of the checking gadgets. Hence, every checking
gadget of a vertex v ∈ V is linked to at least one saved marking gadget. Let D ⊆ V be the
set of vertices in G corresponding to the saved marking gadgets in G′ + F . Because every
checking gadget of a vertex v ∈ V is linked to a saved marking gadget of a vertex w ∈ D
and the gadgets in G′ are linked if and only if v and w are adjacent or the same vertex,
for every vertex v ∈ V \D it holds that it is adjacent to a vertex in D. So D is a solution
to Dominating Set by definition. Note that this also works in the other direction, i.e.,
given a dominating set D, we construct F by chosing an edge between the ends of the
marking gadget of each vertex w ∈ D of a dominating set D of G. In both directions the
size of the solutions stay the same. Hence, |D| = |F |.

Next, we show how an arbitrary minimal solution to G′ can be transformed into a solution
of the aforementioned specific form without increasing its size, i.e., the edges of the solution
are edges between the ends of a marking gadget. We will temporarily allow loops and
parallel edges in this construction. Let F be an arbitary solution to G′. We assume without
loss of generality that vertices incident to edges of F are in the 3-core of G′+F . Otherwise
edges of F incident to vertices that are not in the 3-core would be superflous, i.e., they are
ignored in the calculation of the 3-core.

We first change the solution such that all vertices of marking gadget that are incident
to edges of the solution are ends of a marking gadget. We first analyse the amount of
incidences in a marking gadget. If only one vertex of a marking gadget is incident to
exactly one edge of F and no other vertex of the marking gadget is incident to edges of F ,
the marking gadget is in the 2-core but not in the 3-core and e is superfluous. Hence we
can assume that there are either zero or at least two incidences to edges of F in a marking
gadget. We now consider a marking gadget with at least two incidences to edges of F . Let
r and s be the two ends of the marking gadget. Let I ⊆ F be the edges of F that are
incident to vertices of the marking gadget. We choose an arbitrary edge {u, v} of I with
u being a vertex of the marking gadget and replace it by {r, v}. Every other edge {x, y}
of I with x being a vertex of the marking gadget is replaced by {s, y}. If a replacement
produces a loop {r, r} or {s, s}, we replace this loop by {r, s}. After these replacements,
the marking gadget is in the 3-core and no incidences outside of the marking gadget are
changed. Hence this replacement does not invalidate the solution. We call the new solution
that results from exchanging edges for all marking gadgets in this way F1. In this changed
solution F1 there are either no vertices in a marking gadget incident to edges of F1 or both
ends are incident to edges of F . Hence, either a whole marking gadget is in the 3-core or
it is not in the 3-core at all.

Now we exchange the edges of F1 incident to marking gadgets such that there are only
edges incident to both ends of a single marking gadget left, i.e., we create saved marking
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gadgets to get a solution of the special form from above. Let r and s be two vertices
incident to edges {r, u} and {s, v} in F1 of a not already saved marking gadget. Due to the
steps above r and s are the ends of the marking gadget. We replace these edges by {r, s}
and {u, v}. Note that this replacement may produce a loop {u, u}. If this is the case and
u is a vertex of another marking gadget, we exchange this loop for an edge between the
ends of the marking gadget containing u. If u is a vertex of a checking gadget we choose
an arbitrary linked marking gadget and replace the loop by an edge between the ends of
the chosen marking gadget. This ensures that all involved vertices r, s and u = v remain
in the 3-core in the changed solution. If u 6= v, these vertices also remain in the 3-core,
which can be seen by examining a subgraph where every vertex as a degree of at least 3
and that contains r, s, u and v. Such a subgraph exists, because these vertices are in the
3-core. The replacement does not change the degrees of the vertices in this subgraph. So
the involved vertices remain in the 3-core after the replacement. This replacement saves
at least one marking gadget with the edge {r, s}. We do this iteratively until all marking
gadgets with incident edges of the solution are saved marking gadgets. This new solution
is called F2. Note that there may be left-over augmented edges that are incident to ends
of the same marking gadget, e.g., if there are more than two incidences to augmented
edges in a marking gadget. Then such an edge is an edge between two saved marking
gadgets. Hence it is superfluous and not part of a minimal solution. Furthermore, if these
replacements produce parallel edges, the original solution uses more edges than needed,
i.e., it is not minimal.

Now we replace edges between marking gadgets and checking gadgets from the soluti-
on such that there are only edges between marking gadgets, respectivley edges between
checking gadgets, left in the solution. Let e = {u, v} ∈ F2 be an edge of the solution
between a vertex u of marking gadget M and a vertex v of a checking gadget C. Due to
the construction above, each marking gadget is either saved or has no incidences to edges
of the solution. Hence the marking gadget M is saved and does not need the incidence of e
and we replace e by an edge between the ends of an arbitrary marking gadget linked to C.
Applying this replacements iteratively results in a new solution F3. It holds that there are
no edges between checking gadgets and marking gadgets in F3. All marking gadgets that
have incident edges of F3 are saved marking gadgets.

Furthermore, we show that there are no edges of F3 between vertices of checking gadgets
in a minimal solution F3. Let {u, v} be an edge of F3 between vertices of two checking
gadgets. If both checking gadgets are linked to a marking gadget in the 3-core, the edge
{u, v} is superflous, i.e., not part of a minimal solution. If only one checking gadget is
linked to a marking gadget in the 3-core, we can replace {u, v} by an edge between the
ends of the marking gadget that is not yet in the 3-core. So we can assume without loss of
generality, that all checking gagdets incident to edges of F3 between two checking gadgets
are not linked to marking gadgets in the 3-core. Let P ⊂W be the vertices of the checking
gadgets without linked marking gadgets in the 3-core. There are at least |P | · 32 edges
needed to bring all vertices in P into the 3-core. This is worse than just selecting a linked
marking gadget for every vertex in P and add an edge between the ends, which only needs
|P | edges. So we can replace edges of F3 between vertices of checking gadgets by edges
between ends of marking gadgets to construct a new Solution F4. Every edge in this new
solution F4 is an edge between two ends of marking gadgets.

So we have transformed an arbitrary minimal solution F to a solution F4 of our special
form, containing only edges that are needed to save a marking gadget. This solution F3

corresponds directly to a solution to G of size F4, our initial instance of Dominating Set,
as seen above.

We have reduced Fixed Subset 3-Core Augmentation to Dominating Set in po-
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lynomial time. Note that the dominating set constructed by this reduction is not larger
than the given solution of Fixed Subset 3-Core Augmentation. Hence the appro-
ximation constraints of Dominating Set are carried over to Fixed Subset 3-Core
Augmentation. Dominating Set is NP-hard and futhermore W[2]-hard[4]. Further-
more, it is NP-hard to approximate within a factor of (1 − ε) lnn for any ε > 0 unless
NP ⊂ DTIME(|V |log log |V |) [2] [6]. Therefore Fixed Subset 3-Core Augmentation is
NP-hard and in fact W[2]-hard. This result is recorded in the following theorem.

Theorem 4.2. Fixed Subset 3-core Augmentation is W[2]-hard and NP-hard to
approximate within a factor of log n.

4.2 Augmentation of subsets for k < 3

In the previous section we have examined the problem of bringing a given subset into the
k-core with k ≥ 3. Now we look upon the cases k = 1 and k = 2.

Augmenting graphs to bring a fixed subset into the 1-core is easy. Let G = (V,E) be
the input graph and let W ⊆ V be the subset of vertices that is to be augmented into
the 1-core. Note that the only vertices not in the 1-core are the vertices with a degree
of zero. Let F denote the set of augmented edges. For a vertex w ∈ W it holds that, if
degG(w) ≥ 1 it needs no additional incidences in F because it is already in the 1-core. We
assume without loss of generality, that W only includes vertices that are not already in
the 1-core. If degG(w) = 0, the vertex w needs one incidence in F . So a solution F needs
at least d|W |/2e edges. Hence we we can construct a minimal solution F by iteratively
choosing two vertices v, w ∈W with degG(v) = degG(w) = 0 and adding an edge between
these vertices. If there is still a vertex u with a degree of zero, we add another edge incident
to u. This results in the following theorem.

Theorem 4.3. Fixed Subset 1-Core Augmentation can be solved in linear time.

Augmenting graphs to bring a fixed subset into the 2-core can be reduced to a simple
degree-problem like CoreAugmention. Let G = (V,E) be a graph and let W ⊆ V be a
subset of vertices. We assume without loss of generality that W consists only of vertices
that are not already in the 2-core. The idea is to transform this graph into a forest with
the leafs being either vertices of W or contracted biconnected components. To do this we
contract the biconnected components into single vertices and then delete leaves iteratively,
until all leaves are vertices of W . Afterwards we find a matching on the leaves of W of
the forest and connect matched leaves to construct the solution F to Fixed Subset 2-
Core Augmentation. However, this does not work in certain cases when the connected
components get to small, because we lose the information that a connected component
of size three can be brought into the 2-core by a single edge. We solve these small cases
independently from the remainder of the graph.

We now explain this algorithm in detail. Consider a connected component containing
three vertices with at least one vertex v ∈ W . This component can be augmented by a
single edge, making it a cycle, thereby bringing the connected component into the 2-core.
Otherwise two edges are needed to lift the connected component into the 2-core. In both
cases there are two incidences needed to bring the vertices of the connected component
into the 2-core. Hence the single edge used is optimal because it uses the least amount of
incidences.

Now we consider the connected components with two or less vertices that include at least
one vertex v ∈W . Let n be the number of such components. To bring each of these vertices
into the 2-core, two incidences are needed. If there are at least two such vertices, we can
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connect these building a cycle using n added edges. Because 2n incidences are needed,
these edges are used optimally. This does not work if there is only one such connected
component. If this is the case we first complete the remainder of the augmentation and
then replace one edge {u, v} of the solution by two edges {u, x} and {v, y} with x and y
being two vertices of said connected component. Note that the connected component can
consist of a single vertex. In this case x is the same vertex as y. If there is no augmented
edge, i.e., the remainder of the graph is already in the 2-core, we add two edges to bring
the connected component into the 2-core. This uses the least amount of incidences. Hence
it is optimal.

We now consider the graph without connected components containing three or less ver-
tices. We furthermore ignore connected components without vertices in W . We contract
each biconnected component to a single vertex and mark it as being a previously biconnec-
ted component. After the biconnected components are contracted, we have a forest. We
iteratively delete each leaf that is neither in W nor marked in the step above, in a connect
component of at least four vertices with its neighbour. If this produces connected com-
ponents consisting of three vertices, there are two cases whether there are marked vertices
in the connected component. If there are no marked vertices, we treat the component like
in the special case above, i.e., we add an edge to the solution to make a 3-cycle out of
the connected component. If there are marked vertices in the connected component we
furthermore delete the leaves that are neither in W nor marked. Note that his produces
connected components with a minimum size of two, because there is at least one marked
vertex and one vertex of W in the component. The graph that is constructed by this con-
tractions and deletions is called G′ Let W ′ ⊆ V be the set of vertices that are in W and
leaves of the forest.

After this iterative deletions of leaves is done we have the following situation. The graph
G′ is a forest with its leaves being either vertices of W or contracted vertices that were
biconnected components in the original graph. We now find a matching on the vertices of
W ′ and connect matched leaves to construct a solution F ′. Note that no vertex of W ′ is
incident to another vertex of W ′. Hence we can find the needed matching greedily, similar
to the case of k = 1 above. If there is a single unmatched vertex v of W ′ we add an edge
between v and an arbitrary other leaf that is no neighbour of v or an arbitrary marked
vertex if there is no such leaf. Note that an augmenting edge between a leaf of W and a
marked vertex is only needed if this leaf is the only vertex in W and that this edge might
be a parallel edge. We also add the augmenting edges of the smaller special cases to the
solution F ′. The only vertices v in G′ + F ′ with deg(v) < 2 are marked vertices.

We transfer this solution to the original graph G. If there is an edge {u, v} of F ′ incident to
a marked vertex u we choose an arbitrary vertex x of the original biconnected component
to get an augmenting edge {u, x} for the original graph. Every other edge {u, v} between
unmarked vertices remains the same in the solution for the original graph. We call this
solution F . It can be easily seen that this is a valid solution to Fixed Subset 2-Core
Augmentation by iteratively removing the vertices with a degree one to calculate the
2-core of G + F . The remaining 2-core is G′ with the difference that the biconnected
components are not contracted. Hence all vertices of G′ are in the 2-core.

To show that this solution is of minimum size we count the incidences that are needed for
a solution. Let F ∗ be an arbitrary solution. For every vertex v in W it holds that it is on a
path between two vertices that are either in the 2-core in G or incident to an edge of F ∗,
respectively. If this is not the case, v is not in the 2-core in G+F ∗. Note that this path can
be of length zero. This holds in particular for vertices in W ′. Every vertex v of W ′ is part
of an induced subtree that consists of itself and vertices that were deleted in the algorithm
above. Let Wv be the set of vertices that consists of v and the vertices that induce a subtree

34



4.2. Augmentation of subsets for k < 3 35

of maximum size without using vertices of G′, i.e., we only use vertices that were deleted
in the algorithm above. Because of the observation above at least one vertex of Wv has
to be incident to an edge of F ∗. Every vertex v of W ′ has its distinct subtree Wv, i.e, for
u, v ∈ W ′, u 6= v it holds that Wu ∩Wv = ∅. Hence for every vertex of W ′ at least one
incidence is needed in a solution to Fixed Subset 2-Core Augmentation. So we need
at least d|W ′|/2e edges in a solution. We furthermore need the edges for the special cases
of connected component of size three or less. The solution F that is constructed by our
algorithm uses this minimum amount of edges.

We now examine the runtime of the algorithm. We can find and contract the biconnected
components of G in linear time, using an algorithm due to Tarjan [14]. We can find and
delete a leaf in linear time. We can delete the leaves in linear time. We can find the matching
in linear time similar to the algorithm for the case of k = 1. Overall the algorithm needs
O(|V |) time. This leads to the following theorem.

Theorem 4.4. Fixed Subset 2-Core Augmentation can be solved in O(|V |) time.
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5. Conclusion

The core structure of a graph is an interessting measurement that is used in the analysis
of many different networks. We examined how we can change the core structure of a given
graph by adding edges. This can be used to make certain vertices more ”important” than
others. In this work we have studied two problems regarding the augmentation of the core
structure of a graph.

The first problem Core Augmentation of lifting all vertices of a graph into the k-core
was solved simply by finding a degree constrained subgraph on the complement. The more
complicated case ConnCore was to find a minimum augmentation that solves CoreAug
while also ensuring that the augmented graph is connected. It proved to be feasible to start
with an arbitrary solution to Core Augmentation and then optimise this solution with
different rewire operations piece by piece to ensure the connectivity. Each of the rewiring
operations reduces the number of connected components while not invalidating a solution.
We have shown that this produces an optimal solution to ConnCore

This could be done, because the problem could be reduced to a local degree problem.
If every vertex has a degree greater than or equal k, every vertex is in the k-core. If
we consider only subsets of vertices that are to be lifted into the k-core, these vertices
obviously have to have a degree greater than or equal k, but it is difficult to say which
other vertices have to be in the k-core, i.e., where we have to insert augmenting edges that
are not incident to vertices of the given subset, such that the set of augmenting edges is
minimal. Hence, the main difference between lifting all vertices into the k-core versus a
subset of vertices is that the non-locality of the coreness of a vertex plays a huge role in
the latter. It does not suffice to just consider the vertices of the subset and small changes
in other parts of the graph can change the coreness of a vertex.

The second problem Fixed Subset k-Core Augmentation regarding only subsets of
vertices that are to be lifted into the k-core is NP-hard for k >= 3. This was proven by
a reduction from Dominating Set. Furthermore, the reduction has shown that Fixed
Subset 3-Core Augmentation is W[2]-hard with respect to the size of the solution and
hard to approximate within a factor of log n. Fixed Subset k-Core Augmentation is
solvable in linear time for k ≤ 3.

The interessting question remains what happens if we have constraints for the subset of
vertices that we want to lift into the k-core. For example the problem of lifting a single
vertex into the k-core. Other interessting problems regard a maximum number of edges we
can use for augmentation and optimise the core structure as much as possible. For example:
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What is the maximum coreness we can lift a vertex v into, using only ` additional edges.
And what happens, if we want to augment planar graphs such that they stay planar and
satisfy different core properties?
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