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The Figure on the front page represents the Mutli-Level Technique. The
graph G0 is iteratively reduced in size up to G4. Then a bisection is computed
on G4 which in the Figure is represented by a dark line. This bisecion is then
iteratively projected back to G0 over G3, G2, and G1. In each projection the
bisection is re�ned. In the Figure these re�ned bisections are represented by
the gray lines.
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1 Introduction

Dividing a set of connected objects into parts of roughly equal size such that
objects in di�erent parts are weakly connected is a common task in compute
science. For example in parallel computing one wants to distribute tasks
to di�erent processors in such a way that the communication between tasks
computed in di�erent processors is minimized. The input to such a problem
can be seen as a graph where the vertices represent the tasks and the edges
represent the communication of the tasks. The distribution to k processors
is then represented as a division of the vertices into k parts of equal size
such that the number of edges crossing di�erent parts is minimized. The
minimization of the crossing edges then represents the minimization of the
communication between tasks computed in di�erent processors. The equal
size of the parts constraint then represents the equal distribution of tasks
to the processors. The division of the vertices into k parts of equal size is
called a k-partition and the corresponding problem is called k-Partitioning.
One approach to compute a 2i-partition is to �rst compute a 2-partition and
then on the given two partitions to compute again 2-partitions. This is done
several times until the graph is divided into 2i parts. A 2-partition is also
called a bisection.

A method to compute bisections is the Multi-Level Technique. The key
idea is to reduce the magnitude of the graph by collapsing vertices together
in order to reduce the solution space in such a way that only good solutions
remains. Furthermore, the reduction of the solution space allows for the use
of more expensive heuristics. The Multi-Level technique has shown good
results and can be considered state of the art. The Multi-Level technique
has several degrees of freedom like how you collapse the vertices or how you
compute the bisection on the graph with reduced magnitude. In this work
we analyse how these degrees of freedom a�ect the quality of the results. We
do this by providing new so called �expensive methods� for every degree of
freedom. The aim of the expensive methods are to better the output bisection
regardless to the runtime in the range of feasibility. That way the potential
of a degree of freedom may be revealed if an expensive method reaches to
better the output bisection.

In Section 2 we give the de�nition of theMinBisection problem � which
is the problem of computing the bisections mentioned above � and the re-
lated basic de�nitions. In Section 3 we give an overview of the previous work
of MinBisection including the Multi-Level Technique. In Section 4 we
present a Framework computing bisections based on the Multi-Level Tech-
nique. Finally in Section 5 we present the expensive methods for every degree
of freedom and discuss their experimental results in Section 6.
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2 De�nitions

Throughout the text G = (V,E, ω) denotes an undirected, weighted, simple
graph, where V denotes the set of vertices, E the set of edges, and ω a weight
function:

ω : V ∪ E → R+

Moreover we denote n = |V | and m = |E|. The degree of a vertex v is the
number of its neighbours:

deg(v) = |{{u, v} ∈ E}|

The weighted degree of a vertex v is the sum of the weights of the adjacent
edges:

deg_weighted(v) =
∑

{u,v}∈E

ω({u, v})

Cut A cut is a partition of V into two subsets C1 ⊂ V and C2 ⊂ V such
that C1 ∩C1 = � and C1 ∪C2 = V . Thus the cut is represented by the pair
{C1, C2}. We denote by E(C1, C2) the set of edges crossing the cut:

E(C1, C2) = {{u, v} ∈ E|u ∈ C1 ∧ v ∈ C2}

The cut weight is the sum of the weights of the edges �crossing� the cut:

ω({C1, C2}) =
∑

{u,v}∈E(C1,C2)

ω({u, v})

The Bisection problem A bisection in G is a cut where the two parti-
tions have same size: |C1| = dn/2e and |C2| = bn/2c. A bisection is called
minimum/maximum if the sum of the weights of the bisection edges is mini-
mum/maximum. MinBisection is the problem of �nding such a minimum
bisection.

Vertex gain Given a cut the gain of a vertex is equal to the number
of adjacent edges crossing the cut minus the number of adjacent edges not
crossing the cut. That means that moving the vertex to the other partition
leads to a decrease of the cut weight by the gain of the moved vertex. Note
that the gain of a vertex can be negative and consequently the cut weight
increases when such a vertex moves. Thus the vertex with the highest gain
is the vertex that when moved leads to the highest decrease / least increase
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of cut weight. The gain is the base of many greedy heuristics. Formally the
gain of a vertex v ∈ C1 is de�ned as follows:

gain(v) =
∑

{u,v}∈E∧u∈C2

ω(u)−
∑

{u,v}∈E∧u∈C1

ω(u)

The gain of a pair of vertices u and v is formally de�ned as follows:

gain({u, v}) = gain(u) + gain(v)− 2 · ω({u, v})

where the weight of u and v equals to zero when u and v are not connected
by an edge. The gain can be generalized to subsets U1 ⊂ C1 and U2 ⊂ C2 of
the graphs as follows:

gain(U1, U2) =
∑

v∈U1∪U2

gain(v)− 2 ·
∑

{u,v}∈E∧u∈U1∧v∈U2

ω({u, v})

which is equal to the change of the cut weight when U1 and U2 are swapped.
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3 Previous work

As stated in the introduction the computation of bisections is a common task.
Thus a lot of research has been done leading to many �ndings in theory and
practice. In this section we give an overview of what is currently known about
the complexity of MinBisection and common heuristics to solve them.

3.1 Complexity

MinBisection is NP-hard and there exists a polynomial approximation
algorithm that approximates the cut weight by a factor of O(log2n) [26]. The
corresponding problem MaxBisection is also NP-hard and there exists a
randomized polynomial approximation algorithm that approximates the cut
weight by a factor of .699 [27]. On planar graphs MaxBisection is NP-
hard and has a PTAS [19]. MinBisection's NP-hardness remains an open
question [20] and there exists a polynomial approximation algorithm that
approximates the cut weight by a factor of O(logn) [26] on planar graphs.
Since MinBisection is NP-hard an exact solution is often out of question.
Instead heuristics are usually used. The next section gives an overview of
the most popular approaches and heuristics for MinBisection.

3.2 Heuristics

Many ways to compute a bisection have been developed. In this section we
discuss popular approaches; the re�nement approach based on improving an
existing bisection, the greedy growing approach based on growing regions of
the graph, the spectral approach based on spectral analysis and geometric
approaches based on geometric information on the graph.

3.2.1 Re�nement Heuristics

Re�nement heuristics are heuristics that takes as input a bisection and out-
put a bisection. KL de�ned by Kernighan and Lin [23] is an old and standard
re�nement heuristic. It starts with an initial bisection and is based on swap-
ping vertices. At the beginning all vertices are unlocked. A pair of vertices
u and v is chosen so that:

• u and v are unlocked

• u and v are in di�erent partitions

• gain({u, v}) is maximum among all pairs satisfying the previous two
conditions
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Then the vertices of the chosen pair are swapped, that is moved to the other
partition, and locked. The whole process is repeated until all vertices are
locked. The running time of this heuristic is O(|V |3) [14].

Several improvements of the KL heuristic have been developed. Fiduccia
and Mattheyes [15] (FM) presented a variant with time complexity O(|E|).
The di�erence to KL is that in each step the FM heuristic moves a single
vertex whereas KL selects a pair of vertices and swaps them. The single
vertex is alternatingly chosen from both partitions to maintain balance. The
O(|E|) complexity is achieved by sorting the vertex by gain with bucket sort.

Since the running time of the FM variant is linear, it is usually run a
couple of times. There are two ways of doing this. First by running FM
iteratively, that is running FM on the output bisection of a previous FM
run. This is done until no new bisection is generated. Second by giving
di�erent input bisections to FM, which is very useful since FM is strongly
sensitive to its initial seed.

Karypis and Kumar [22] argue that due to the nature of re�nement heuris-
tics, most of the swapped vertices occur along the boundary of the cut. Thus
the consideration of vertices that are far from the cut is a waste of compu-
tation. Based on this statement they present a new heuristic, Boundary KL
(BKL). BKL is equal to FM except that only vertices at the boundary are
taken in consideration for moving. This considerably reduces the running
time. Furthermore, instead of letting BKL terminate exactly when all ver-
tices have been moved, BKL also terminates when after c moves the cut did
not decrease, where c is a constant. The consequent decrease of the runtime
was reported to be signi�cant.

A way to obtain more explorative behaviour is to bind the �uphill moves�
� moves that increase the edge cut � with an arbitrary value called �tem-
perature�. This value in�uences the probability that uphill moves occurs;
the higher the temperature the higher is the probability that an uphill move
occurs. These heuristics are called Simulated Annealing heuristics. Another
approach is to change the locking behavior of the vertices. This means that
instead of locking a vertex forever, the vertex is locked only for a period of
time. The results of this heuristic are shown to be better than their imple-
mentation of the FM heuristic.

3.2.2 Graph Growing Partitioning Algorithms (GGP)

Graph Growing Partitioning Algorithms consists in growing one part of the
partition from a seed � namely a vertex or a subgraph � until half of the
vertices are reached. Sometimes, instead of one seed, two seeds � repre-
senting the halves of the Cut � are provided and then grown. A simple
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implementation of GGP starts from a vertex and grows a region around it in
a breadth-�rst fashion until half of the vertices are included [12, 17, 16]. Re-
placing the breadth-�rst fashion growing with a greedy fashion growing like
KL, namely by adding �rst vertices that decrease most / increase least the
edge cut, leads to better results [22]. This heuristic is called Greedy Graph
Growing Partitioning (GGGP).

Like KL the output bisection of growing heuristics is strongly a�ected by
the input seed. Thus, like KL, the growing heuristics are usually run several
times with di�erent input seeds. Usually, in order to improve the resulting
bisection, a re�nement heuristic is applied to the output.

3.2.3 Spectral Heuristics

Spectral heuristics make use of spectral analysis in order to �nd highly con-
nected parts. First, the Laplacian matrix of G is computed. The entries of
the Laplacian matrix are de�ned as follows:

`ij =


−1 if i 6= j and ei,j ∈ E
0 if i 6= j and ei,j /∈ E
deg(vi) if i = j

Second, the second-smallest eigenvalue λ2 and its corresponding eigenvector
are computed. This eigenvalue is called the algebraic connectivity and its
corresponding eigenvector is called the Fiedler Vector. The Fiedler Vector
divides the vertices in a �sensible� way. Why it does this is not at all obvious
and will not be presented in this text. Spectral heuristics have shown good
results but are expensive and in large graphs spectral analysis is not feasible.
Instead the magnitude of the graph is �rst reduced to �nally compute the
spectral analysis. The reduction of the graph size is usually done by using
the �Multi-Level Technique� presented in the next Section.

3.2.4 Geometric Heuristics

Geometric heuristics make use � when available � of geometric information
of the graph, like e.g., vertex coordinates. They tend to be fast and �nd good
partitions even if not as good as spectral heuristics. If no coordinates are
available it may be possible to compute suitable coordinates in a preprocess-
ing step. However, in many problem areas no coordinates are given and the
computation of coordinates, e.g., using the algorithm of Chan, Gilbert, and
Teng [10], is much more expensive than the geometric heuristic itself. Thus
on graph without coordinates geometric heuristics are too expensive.
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3.2.5 Other

Dang, Ma, and Liang [11] recently published a heuristic based on approximat-
ing the solution of a linearly constrained continuous optimization problem
that is equivalent to bisection. The authors claim better results than the
heuristic presented by Karypis and Kumar [22], which is a heuristic used by
METIS which is a Software Package. However, the claim is based on ex-
periments with random graphs only. Especially, no graphs from applications
or previous benchmark graphs are used. Moreover, they only compare to
a re-implementation of the METIS heuristic without specifying how it was
implemented.

3.3 The Multi-Level Technique

In one phrase theMulti-Level technique is the idea of reducing the magnitude
of a graph by merging vertices together, compute a bisection on this reduced
graph, and �nally project this bisection on the original graph. This section
presents the Multi-Level Technique, which consists of three phases.

In the �rst phase � called coarsing � the magnitude of the graph is reduced
by merging vertices. The merging of vertices is done iteratively: of a graph
a new coarser graph is created and of this new coarser graph an even more
coarse graph is created. This is done until a certain small magnitude is
reached. Thus graphs with di�erent magnitudes are induced.

In the second phase � called intial bisection phase � a bisection of the
graph with the smallest magnitude � the coarsest graph � is computed.

In the third and last phase � called uncoarsing � the computed bisection
is iteratively projected back to the original graph. In each iteration a re�ne-
ment heuristic is applied. The merging of vertices induces a map between
vertices of a graph and vertices of its coarser graph which is used for the back
projection. A rebalancing to insure the size of the bisection may be needed
since vertices not belonging to the same partition may be merged together.

The Multi-Level Technique has shown to signi�cantly improve the results,
both in terms of quality and running time. Especially when used on heuristics
considering the graph only locally, as the Multi-Level Technique constitutes a
more global view on the graph. Figure 1 gives an overview of the Multi-Level
Technique.
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Figure 1: Overview of the Multi-Level Technique
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3.4 Software Packages

As one can expect, since partitioning is quite important, a lot of Software
Packages for partitioning are available. A list of softwares producing par-
titions can be found on the o�cial website of the Software Package JOS-
TLE [1]. The best known ones are presented in this section; Chaco, PARTY,
and METIS. All three make use of the Multi-Level Technique.

3.4.1 Chaco

Chaco [8] implements several approaches. One of them uses the Multi-Level
Technique which is the authors' method of choice for large graphs.

Their Multi-Level implementation [7] uses a random maximal matching
for coarsing: vertices are visited in random order, and if not already matched,
the visited vertex is matched with a random unmatched neighbour. The
initial partition of the coarsest graph is computed by a spectral partitioner.
For the re�nement in the uncoarsing phase the FM variant of KL is used.

3.4.2 PARTY

Like Chaco, the PARTY [24] partitioning library provides a variety of meth-
ods. The methods are separated into two parts: the global methods and
the local methods. As the names already indicate, the global methods con-
sider the graph as a whole while the local methods consider local properties
like neighborhoods. Once a global and a local method is chosen, the global
method is run and the given partition is re�ned by the local method.

A speci�c combination [9] has shown to give good results: a linear time
1/2-Approximation algorithm for Maximum Weighted Matching as global
method and a heuristic called Helpful-Sets as local method. In fact this
combination uses the Multi-Level technique: the global method is used as
coarsing, the local method is used as re�ner and the initial partition is com-
puted with spectral methods. The Helpful-Sets heuristic is similar to the KL
heuristic expect that it considers not only single vertices, but also whole sets
of vertices.

3.4.3 METIS

METIS [22] is the leading Software Package for solving partitioning, amongst
others using recursive bisection. It contains leading bisection heuristics. The
recursive bisection heuristic of METIS is based on the Multi-Level technique.

In METIS, coarsing is done by the Heavy Edge Matching (HEM) heuris-
tic. HEM �nds a maximal matching by visiting randomly an unmatched
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vertex and matches it to the neighbour that is connected by the heaviest
edge and unmatched. If there is more than one such neighbour, the neigh-
bour to be matched is randomly chosen. The second phase is done by the
previously presented heuristic GGGP. The resulting bisection is than re�ned
by the previously presented heuristic BKL. The re�nement in the uncoarsing
phase is also done by BKL. On graphs with a small magnitude BKL is itera-
tively applied until no new bisection is generated, whereas on graphs with a
large magnitude BKL is run only once. The motivation comes from the fact
that the input bisection is already a good bisection so that on large graphs
it is not worth to run BKL more than once.
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4 The Framework

As one can observe, the Multi-Level Technique is quite modular. For ex-
ample, METIS uses the HEM algorithm for the coarsing step, the GGGP
algorithm for the initial bisection, and the BKL algorithm for the re�nement
in the uncoarsing step. This work is based on the observation that these
three algorithms can be seen as variable and that they can be changed inde-
pendently to the rest of the overall METIS algorithm. Thus METIS de�nes
a scheme where every of the three Multi-Level steps can be varied. More gen-
erally speaking, the Multi-Level Technique can be seen as frame or skeleton
that describes how di�erent strategies for Bisection can be combined. The
skeleton provides a plan and leaves several degrees of freedom that have a
�xed meaning but can vary. This observation leads us to implement a Multi-
Level framework in order to be able to easily combine di�erent strategies
for an easy development of better heuristics. In fact, the skeleton de�ned is
always the same for each implementation of the Multi-Level Technique. The
aim of this work is to write this skeleton freeing one to write its own skeleton.
This enables us to easily try several di�erent strategies and their combina-
tions. This section gives the mentioned strategies and then describe in detail
how they are used by the framework in order to solve MinBisection.

4.1 Degrees of freedom of the Multi-Level Technique

We �rst give an overview of the degrees of freedom of the Multi-Level Tech-
nique in the following table. Then we discuss how they interact together in
the Multi-Level context.

Strategy name Input Output
The Merger graph G=(V,E) map from V to V

The strived magnitude none constant c
The Initial Bisector graph G bisection B

The Bisector cut C bisection B
The Re�ner bisection B bisection B

The merger is used to generate coarser graphs. A coarser graph is given
by a map from V to a subset of V as follows: all vertices mapped to the same
vertex are merged into one vertex, namely the vertex where all vertices are
mapped to. This vertex can in turn be merged with other vertices if it is not
mapped to itself.

The initial bisector is used to compute the �rst initial bisection on the
coarsest graph.
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The bisector is used in the uncoarsing phase. When the bisection is
projected back from a coarse graph to a �ner graph the resulting cut is not
necessarily a bisection. Thus the bisector is used to balance the resulted cut
to a bisection.

The re�ner is used also in the uncoarsing phase. It is used to improve
every bisection given by the bisector.

The strived magnitude is � as the name already suggests � the desired
magnitude of the coarsest graph. That is, when the coarsing phase creates a
graph with a number of vertices equal to or less than the strived magnitude
the coarsing phase stops and no new coarser graph is created.

The framework de�nes suitable interfaces for all strategies and provides a
skeleton that can combine provided strategies to an algorithm. The technical
details of this step is described in the next section.

4.2 The Framework

Like the strategies intuitively suggest, the framework is based on a class
for each strategy; the classes �Merger�, �Re�ner�, �Bisector�, and �Bisection�.
Where the Initial Bisector is called Bisection for convenience reasons. In fact,
these classes are interfaces. Concrete strategies can then be implemented by
implementing these interfaces. The interfaces ensures the availability of the
expected functions described in the previous section.

Graphs and cuts are represented by classes; the �Graph� and �Cut� classes.
The Graph class is based on the Boost Graph Library [2]. The aim is to
provide a graph class providing a simple interface where the interface of the
Boost Graph Library is quite heavy. The class Cut is based on the class
Graph and represents the cut as a map mapping every vertex to a boolean
value. The class Cut provides basic functionality like a function to get the
weight of the cut or a function to check whether the cut is a bisection or not
as well as the computation of the gain for a given vertex, which is needed for
the re�nement functions.

The only thing left is to orchestrate the functionality of the strategy
classes in order to provide a bisection from a graph, based on the Multi-Level
Technique. That is provided by the Multi-Level skeleton. The skeleton is
implemented in the class �Solver�. The Solver constructor takes the di�erent
strategies as arguments, that is an object for each strategy class and the
strived magnitude. The Solver provides a function that computes a bisection
from a graph using the strategy objects. What this function exactly does is
now presented.
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4.2.1 Coarsing Phase

The �rst phase consists in creating iteratively coarser graphs until the strived
magnitude is reached. That is from the graph G a new coarser graph G1 is
created and from the graph G1 a new coarser graph G2 is created and so on.
Thus a sequence of graphs G = G0, G1, ..., Gk is created where Gk is the only
graph whose magnitude is lower than the strived magnitude. A new graph is
created based on a run of the provided merger strategy with the �ne graph
� from which the coarser graph will be created � as input: all vertices that
are mapped to the same vertex in the returned map are merged together.
The �ne graph, the coarse graph, the map from vertices of the �ne graph to
the coarse graph, and the map of the vertices of the coarse graph to the �ne
graph are stored in a coarser object.

At the end of this phase we have h coarser objects where h is the number
of coarsing levels, i.e., the number of coarse graphs. Thus with the original
graph we have h+1 graphs. The value of h is determined by the merger and
the strived magnitude; the more vertices the merger bundles together the
faster the strived magnitude is reached and the fewer coarse graphs will be
created.

4.2.2 Intial Bisection Phase

The second phase consists in creating the initial bisection on the coarsest
graph. This is done by running the initial bisector with the coarsest graph
as input.

4.2.3 Uncoarsing Phase

The third phase consists in projecting the initial bisection of the coarsest
graph to the original graph. This is done by using the maps stored in the
coarser objects created in the �rst phase. Since the back projecting of a
bisection on a �ner graph is not necessarily a bisection it needs to be balanced.
This is done by running the provided bisector. Then the provided re�ner is
run.
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5 Our Multi-Level strategies

As stated before our framework gives us the possibility to easily try out new
ideas. The following strategies arise from our focus to increase the quality
of the result no matter the runtime. For the coarsing phase we propose
alternate matchings heuristics and the ORCA clustering algorithm. For the
initial bisection phase we implement the computation of an optimal solution
by an ILP representation of the MinBisection problem using the Gurobi
solver. In the re�nement phase we suggest a variant of the BKL algorithm.

5.1 Coarsing

In order to have a better understanding of the Multi-Level technique we state
what we consider the aims of coarsing. There are two aims of coarsing and
thus of the Multi-Level Technique:

1. Reduce size.

2. Merge parts that will probably not be cut in bisection.

By the reduction of the graph size expensive heuristics can be run. In order
to merge parts that will probably not be cut in bisection we merge vertices
in such a manner that

• The number of edges between these merged vertices is high.

• The variance of the weight of a cut with a certain size in these merged
vertices is low.

These two conditions imply that a cut of the merged vertices is heavy-weight.
Thus a bisection rather won't cut these merged vertices. That way, irrelevant
possibilities are taken apart. Overall, it is a way of computing bisections
considering the graph globally without being too expensive.

Thus a good clustering algorithm used as merger should lead to a good
coarsing phase since the aim of coarsing is to �nd dense regions. Thus we feel
that using a good clustering algorithm may provide good results. Because of
good results both in terms of speed and quality we decided to use the ORCA
algorithm [25].

5.1.1 ORCA

The idea of ORCA is to work in a local way where most other clustering
algorithms work in a global way. This is promising since the distance of two
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vertices belonging to the same cluster is most likely small and local algorithms
tend to be faster than global ones.

The algorithm consists of the following steps. At the beginning all vertices
having degree one or less are removed, these vertices are later assigned to the
cluster of their neighbour or stay as singletons if they have degree 0. Then,
dense regions are found using a local search approach. The process of �nding
dense regions is repeated until it is not possible to �nd dense regions anymore.
The detected dense regions are then contracted to what the authors calls a
�super vertex�. Out of these super vertices a new Graph is created. The
whole process is repeated on this new Graph. Thus the whole process is
iteratively repeated several times.

According to the authors [13] ORCA is the current best clustering al-
gorithm in terms of scalability. In terms of quality it competes with other
state-of-the-art algorithms, and between them, no general assertion which
one to prefer can be made. However, the algorithm presented by Blondel, et
al. [6] is faster.

Another coarsing strategy is to use a matching in order to merge pairs of
vertices together. This approach is widely used because it is fast to implement
and has shown to lead to good results in the Multi-Level context.

5.1.2 Matching based coarsing

Most of the time a matching is found greedily based on a rating of the edges.
This technique is composed of two components:

1. The edge rating.

Based on local criteria every edge is given a certain value; its rating.
This value de�nes which edges should preferably be matched �rst or
more precisely, its two endpoints should preferably be matched �rst.
The edge rating induces an order on the edges. Given this order it
is still not de�ned how to match these edges. In fact, matching in a
greedy fashion using this order leads to suboptimal matchings and does
not take care of global criteria like the balance in terms of vertex weight
of the induced graph. This leads us to the next point.

2. A strategy that based on edge ratings decides which vertices should be
matched.

Intuitively, one could try to optimize the matching and for example
compute a maximum weighted matching, where the weights are given
by the edge rating. An approximation, GPA, running in O(|E|· log |E|)
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time has been implemented by Holtgrewe [18]. It shows as expected
some increase in terms of quality. However, this approach does not
consider global criteria like balance. A widely used heuristic is to visit
the vertices and match an unmatched neighbour connected by the edge
with the highest edge rating. These heuristics have shown good results
because the induced coarse graphs are more likely to be balanced. How
the vertices are visited is based on a vertex rating or they are visited
randomly. Like the edge rating, the vertex rating is based on local
criteria like the degree of the vertex.

As stated before the ratings are based on certain criteria, which we present
next.

• For Edges:

� weight of the edge

� weight of the adjacent vertices

� degree of the adjacent vertices

� weighted degree of the adjacent vertices

� number of common neighbours of the adjacent vertices

• For Vertices:

� degree of the vertex

� weight of the vertex

We now present the edge ratings that we evaluated. If not speci�ed
otherwise the matching is computed in a greedy fashion as follows:

1. the edge rating de�nes an edge order in descending order. If more than
one edge rating is provided the next edge rating is used to break ties of
the previous edge rating. This also applies for the vertex rating expect
that the order is ascending.

2. if no vertex rating is provided the edges are passed in the order given
by the edge rating. If a visited edge connects two unmatched vertices,
they are matched.

3. if a vertex rating is provided the vertices are passed in the order given
by the vertex rating. For every visited vertex its neighbours are visited
in the order given by the edge rating. If both, visited vertex and visited
neighbour, are unmatched they are matched.
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We now present a variety of edge ratings we �nd interesting. Some of
them, e.g., the one behind METIS, are well known standard ratings. We also
propose new ratings.

A simple quality index to know if a merger is good is the sum of the
weights of the edges of the resulting coarsest graph. In fact the lower this
sum the more a edge-cut tend to be light-weight. Thus, intuitively one would
want to match �rst the edges with the highest weight. However, this leads to
unbalanced clusters in terms of size. Thus instead of the weight, the weight
density is used.

• density:
uv 7→ density(uv)

where

density(uv) =
ω(uv)

ω(u)·ω(v)

The idea of using the edge density has also been experimented by Holt-
grewe [18] but using slightly di�erent edge ratings. The following two ratings
are based on those from Holtgrewe.

• density_2:

uv 7→ ω(uv)

ω(u) + ω(v)

• density_3:

uv 7→ ω(uv)

(ω(u) + ω(v))2

The following edge rating was found by Holtgrewe [18]. The author ex-
perimentally shows that this edge rating provides good results.

• inner_out:

uv 7→ ω(uv)∑
ux∈E ω(ux) +

∑
vx∈E ω(vx)− 2·ω(uv)

Instead of considering the weight of the edges we think that it is more
intuitive to use the weight density discussed before. In fact lets consider
the following example: two edges {u, v} and {w, z} with same weight. If
ω(u) + ω(v) < ω(w) + ω(z) then it would be more intuitive to match {u, v}
rather than {w, z}. In fact {u, v} represent a more dense region which is
correspondingly more likely to not be crossed by a bisection. Thus we prefer
{u, v} over {w, z}.
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• inner_out_density:

uv 7→
density(uv)∑

ux∈E density(ux) +
∑

vx∈E density(vx)− 2· density(uv)

Alternativelly one could only consider the weighted degree of one of the
two adjacent vertices. In fact if a vertex is strongly connected to one of
its neighbours and weakly connected to the other neighbours, it should be
matched with the strongly connected neighbour. This is what is aimed with
the following rating.

• out_side_density:

uv 7→ density(uv)

1 + min(out(u), out(v))

where
out(v) =

∑
vx∈E

density(vx)− density(uv)

The following rating is the rating used in METIS. The authors states that
the sorting of the vertices by degree tends to lead larger matchings [21]. This
may be due to the fact that matching a vertex inhibit all adjacent edges to
be the source of a match. Thus the higher the degree the higher the amount
of edges that become unusable for further matchings.

• shem_metis:

v 7→ min(deg(v), 0.7·average_degree)

uv 7→ ω(uv)

where
average_degree = 2 ·

∑
uv∈E

ω(uv)

We also evaluate a known simpler variant:

• shem:
v 7→ deg(v)

uv 7→ ω(uv)
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An idea would be to consider the vertex rating in descending order in
order to match �rst vertices that are more likely to be in a cluster since in
clusters the average degree is high. However, always matching the vertex
with the highest degree leads to a new vertex with an even higher degree.
The degree is then so high that matching this high degree vertex leads to
inhibit a lot of edges to be the source of a merging. This in turn results to
matchings with only a few matched pairs of vertices. Thus we only consider
the ascending order.

The idea behind the following rating is that the density should always
be taken in consideration rather than the weight. In fact as already stated
before we want to connect two components that are highly connected but
highly connected relative to the size of the components.

• shem_density

v 7→ min(deg(v), 0.7·average_degree)

uv 7→ ω(uv)

ω(u)·ω(v)

where
average_degree = 2 ·

∑
uv∈E

ω(uv)

The idea of following rating is to combine the shem rating with the out
ratings.

• shem_out
v 7→ min(deg(v), 0.7·average_degree)

uv 7→ ω(uv)∑
ux∈E ω(ux) +

∑
vx∈E ω(vx)− 2·ω(uv)

where
average_degree = 2 ·

∑
uv∈E

ω(uv)

The idea behind following rating is to consider the degree in a weighted
manner in order to be more precise; instead of summing the number of ad-
jacent edges we sum the weights of the adjacent edges.

• shem_weight

v 7→
∑
vx∈E

ω(vx)

uv 7→ ω(uv)
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The experimental resutls of the edge ratings and ORCA are given in
the next section. We also implemented a maximum match merger based on
Edmonds's algorithm. However, since we used the BGL implementation of
Edmond's algorithm the algorithm consider the edges unweighted. Thus we
did not evaluated this merger.

5.2 Re�nement

For the re�nement phase we implemented the known strategies BKL, KL and
FM. We also propose and implemented a new heuristic, which we call deep
BKL. The idea behind deep BKL is to expand BKL by consider more than
the two vertices with the best gain for the swapping step. A simple way to
implement this idea is to consider a certain amount of veritces that have the
best gains. Deep BKL is de�ned as follows. Its input is a bisection. At the
beginning all vertices are unlocked. It computes and maintains two priority
queues for each partition of the bisection representing all unlocked vertices
adjacent to the bisection ordered by their gain. Of each priority queue it
takes the �rst 20 vertices, hence the 20 vertices with the highest gain. Out
of the resulting 40 vertices it computes the pair of vertices with the highest
gain. This pair is then swapped and locked. The whole process is repetitively
run until there is no more unlocked boundary vertices. Finally deep BKL
outputs the resulting bisection.

5.3 Initial Bisection

We provide two possibilities to compute an initial bisection. First by running
the pmetis programm provided by METIS. Second by running an ILP that
computes an optimal initial bisection using the Gurobi Optimizer [3]. Gurobi
solves integer linear optimization problems (ILP). Our ILP representation of
MinBisection is based on the representation of a crossing edge ij by a
variable ei,j. This variable is equal to 1 when the edge that it represents is
crossing the cut, otherwise it is equal to 0. The belonging of each vertex i to
a partition is represented by the variable xi which is a binary variable. Our
ILP representation of MinBisection is formally de�ned as follows.

Minimize ∑
i,j∈{0..n}

ei,j · ω(i, j)

Subject to
ei,j − xi + xj ≥ 0 ∀i, j ∈ {0..n}
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ei,j + xi − xj ≥ 0 ∀i, j ∈ {0..n}∑
i∈{0..n}

ω(i) · xi ≤ cupper

∑
i∈{0..n}

ω(i) · xi ≥ clower

where all variables are binary integers taking 0 or 1 as value and

cupper = d(
∑
v∈V

ω(v))/2e+ max_weight

clower = b(
∑
v∈V

ω(v))/2c −max_weight

where max_weight is the maximal vertex weight.
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6 Experimental Evaluation

In this section we present the experimental evaluation of our strategies. We
�rst present the setup of our experiments, then we present which experiments
has been run and their results, and �nally we give an interpretation of the
results.

6.1 Setup

A main application of todays parallel computers is the simulation of tech-
nical and physical systems (i.e. structural mechanics, �uid dynamics, etc.).
Typically, these systems are modeled by partial di�erential equations (PDE)
which are solved with the �nite element method (FEM) or �nite di�erence
methods [4]. One major step of parallelizing such problems is the partition-
ing of the solution domain or discretization graph and the mapping of the
partitions to the processors of the parallel machine. We evaluated our heuris-
tics on graphs arising from such parallelization tasks. The o�cial website of
JOSTLE [5] lists a lot of such graphs. We choose small graphs in order to
be able to compute bisections using expensive heuristics. The chosen graphs
sizes roughly range from 5 000 to 40 000 vertices, from 10 000 to 150 000
edges, and from 1.5 to 4 average degree. They are summarized in Table 1.

Since some heuristics are random the results are random too. In order to
have stable results the heuristics are run 10 times and then repetitively run
until the average of the given results are considered stable. We consider a
number of runs stable when the average result of the �rst half of the runs is
equal to the average result of the second half, given a certain tolerance. We
set this tolerance to 1%.

Furthermore, we use the pmetis routine of METIS. If not mentioned oth-
erwise we use a greedy bisector based on the vertices' gain in order to balance
a cut to a bisection. That is the vertices in the bigger partition with the high-
est gain are moved to the smaller partition. If not mentioned otherwise we
use a strived magnitude of 100 vertices.

In the next section we present the experiment runs made in order to
evaluate the potential in terms of quality for each degree of freedom.

6.2 Experiments

The degree of freedom of the Multi-Level Technique suggests the interroga-
tion of how many potential increase in quality lie in each degree of freedom.
Therefore, we implemented heuristics that intuitively should increase the
quality of results without considering the possible increase of runtime. We
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graph n m
3elt 4 720 13 722
3elt_dual 9 000 13 278
whitaker3 9 800 28 989
crack 10 240 30 380
4elt 15 606 45 878
whitaker3_dual 19 190 28 581
crack_dual 20 141 30 043
4elt_dual 30 269 44 929
shock.9 36 476 71 290
pwt 36 519 144 794

Table 1: Graphs taken from the JOSLTE website [5] used for experiments.

call these heuristics the expensive heuristics. In order to compare results
we set our base heuristic solving MinBisection to the heuristic used in
METIS. That is the SHEM heuristic as merger for the uncoarsing phase, the
pmetis routine for the initial bisection, the BKL heuristic as re�ner for the
uncoarsing phase, and 100 as strived magnitude. As the name suggests, the
base heuristic is used as reference and every component of it representing
a degree of freedom will be individually switched to an expensive heuristic.
Thus we see whether the expensive heuristics induce any improvement and
in case they do how big it is.

In the coarsing phase we consider the previously described heuristic ORCA
and the rating based heuristics. Table 2 shows the results of the base heuris-
tic with alternate ratings. Figure 3 shows the result of following experiment:
we run exactly one coarsing step with either the ORCA heuristic or our im-
plementation of the SHEM heuristic. Then the pmetis routine of METIS is
run. The resulting one uncoarsing step left to do is done with our imple-
mentation of the BKL heuristic. We run only one coarsing step with ORCA
because runing more than one step with ORCA has shown to lead to worse
results. That way we evaluate the maximal potential given by ORCA hence
the potential of this degree of freedom.

In the initial bisection phase we consider the previously described ILP,
which �nds an optimal bisection. Figure 2 shows the result of the base
heuristic by running the ILP heuristic instead of the pmetis routine for the
initial bisection.

In the uncoarsing phase we consider the heuristic Deep BKL. Figure 2
shows the results of the base heuristic by running the Deep BKL heuristic
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Figure 2: Bisection weights achieved by switching single components of the
base heuristic.

instead of the BKL heuristic.
Finally we evaluate the e�ect of the striving magnitude on the output

quality. Figure 4 shows the results of the base heuristic with alternate strived
magnitudes and with our implementation of the GGGP heuristic as initial
bisection.

As last test we try a �best-of� algorithm, where for each degree of freedom
we use the strategy that performed best in the previous experiments, namely
the base heuristic with ILP for the initial bisection and deep BKL as re�ner.
Figure 2 shows the results of the combination of the best strategies.

6.3 Evaluation

Figure 2 shows that the ILP and deep BKL strategies systematically make
an improvement over the base heuristics. The average improvement over the
base heuristic is 9.2% for ILP with a peek of 16% for the shock.9 graph,
11.2% for deep BKL with a peek of 20.1% also for the shock.9 graph. This
improvement reveals potential in both the re�nement phase and the initial
bisection phase. For half of the graphs the best-of algorithm outperforms the
pmetis routine with an average improvement of 2.04%. Considering the gap

24



3e
lt

3e
lt
_
d
u
al

4e
lt

4e
lt
_
d
u
al

cr
ac
k

cr
ac
k
_
d
u
al

p
w
t

sh
o
ck
.9

w
h
it
ak
er
3

w
h
it
ak
er
3_

d
u
al

d
en
si
ty

10
8

53
19
2

91
2
1
4

94
40
5

16
3

14
3

75
d
en
si
ty
_
2

10
9

57
18
1

91
21
6

94
40
8

1
6
1

14
2

75
d
en
si
ty
_
3

10
7

55
17
9

94
21
8

94
41
2

16
8

14
4

75
sh
em

11
4

59
18
2

92
22
4

93
41
0

16
8

14
6

7
4

sh
em

_
m
et
is

10
8

56
1
7
3

89
21
7

94
40
9

16
9

14
7

75
sh
em

_
d
en
si
ty

11
1

56
18
5

96
22
1

95
41
2

16
5

14
5

7
4

sh
em

_
w
ei
gh
t

11
3

61
18
9

93
21
6

96
41
1

16
7

1
4
1

77
sh
em

_
ou
t

1
0
2

55
18
0

93
21
6

9
1

40
6

16
7

14
3

7
4

in
n
er
_
ou
t

10
5

55
17
6

8
6

22
2

9
1

40
6

16
5

14
7

76
in
n
er
_
ou
t_

d
en
si
ty

10
7

5
1

18
5

90
21
6

95
3
9
9

16
8

14
3

78
ou
t_

si
d
e_

d
en
si
ty

10
5

55
1
7
3

95
21
8

94
41
7

16
3

14
3

7
4

p
m
et
is

92
49

14
2

92
20
3

89
37
1

14
2

12
8

74

T
ab
le
2:

B
is
ec
ti
on

w
ei
gh
ts

ac
h
ie
ve
d
b
y
u
si
n
g
th
e
d
i�
er
en
t
ra
ti
n
gs
.

25



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

3elt
3elt dual

4elt
4elt dual

crack
crack dual

pwt
shock.9

whitaker3

whitaker3 dual

B
is

ec
tio

n 
w

ei
gh

t

Graph

pmetis
shem metis

orca

Figure 3: Bisection weights achieved by running one coarsing step with
ORCA or shem_metis as merger.

between the base heuristic and the pmetis routine that originally aimed to
be equal, this is not negligible.

Figure 3 shows that the average bisection weight that ORCA outputs
is 0.7% worse than the pmetis routine. The Figure also shows an average
improvement of 7.9% of ORCA over shem_metis. This is also not negligible
considering that this improvement is obtained from only one step of coarsing.
Furthermore, other than deep BKL and ILP, ORCA runs fast. Unfortunately,
our experiments have shown that ORCA's performance decreases after one
step of coarsing. However, the results shows that there also lies potential in
using a clustering algorithm in the coarsing phase and more generally that
there is potential in the coarsing phase.

In comparison to deep BKL, ILP and ORCA, Table 2 shows that altering
the ratings does not seem to a�ect much the output. Even little improvement
is shown for example by shem_metis over shem. In particular, no rating
sticks out and no rating can be designated as the best as can be seen in
Table 2. However, it seems that the out variants of the ratings are superior.

Altering the strived magnitude (results are listed in Figure 4) also does
not seem to a�ect the ouput much. However, it seems that starting from 500
the quality of the results begins to decrease and at 1000 the quality of the
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Figure 4: Bisection weights achieved by running the base heuristic with dif-
ferent strived magnitudes.

results are systematically worse than other strived magnitudes.
In order to give an idea of the runtime of our strategies we give a com-

parison of the runtime to the base heuristic for the shock.9 graph. But we
emphasize that our focus is quality and not running time. On the shock.9
graph the base heuristic with ILP as initial bisection runs a factor 2 slower
than the base heuristic, the base heuristic with deep BKL as re�ner a factor
20 slower, the best-of algorithm a factor 22 slower, and the base heuristic a
factor 4 slower than the pmetis routine. Table 3 shows the runtime of the
di�erent strategies.

The next section gives an interpretation of the results given in this section.

27



graph pmetis base ILP deep BKL ILP + deep BKL
3elt 56 92 688 9122 10362

3elt_dual 60 121 767 8409 9135
4elt 146 298 814 14059 15066

4elt_dual 155 411 1104 13249 14394
crack 157 330 2174 11533 12858

crack_dual 181 430 2271 10417 11935
pwt 530 1112 1158 21770 25277

shock.9 213 808 1700 16606 18172
whitaker3 101 363 893 10184 10096

whitaker3_dual 109 435 1166 10415 10574

Table 3: runtime in milliseconds

7 Conclusion

The Multi-Level Technique has several degrees of freedom. In order to easily
implement new strategies for these degrees of freedom and in order to eas-
ily combine these strategies we implemented a framework implementing the
skeleton of the Multi-Level Technique.

Upon this framework we implemented and evaluated new alternative
strategies with the aim to see how much potential lies in each degree of
freedom where we favor quality of the result over running time. For the
coarsing phase we proposed the idea to use the ORCA algorithm, a cluster-
ing algorithm working in a local way, by merging vertices in a same cluster
together. For the coarsing phase we also evaluated new ratings for the rating
based matching algorithm. Concerning the initial bisection phase we im-
plemented the computation of an optimal initial bisection by using an ILP
representation of the MinBisection problem and using the Gurobi solver.
For the re�nement phase we proposed deep BKL, a variant of BKL based
on computing the pair of vertices to be swapped amongst more vertices than
BKL.

Except for the ratings that do not seem to a�ect much the output bisec-
tion and where no rating sticks out, all proposed strategies show considerable
improvements. These improvements suggest that all degrees of freedom have
potential to decrease the output bisection weight. Thus it suggests that
Multi-Level can be improved, at least in quality.

The next step would be to elaborate other new strategies in order to �nd
out what properties decreases the output bisection weight to �nally estimate
what can be reached by the Multi-Level Technique. Finally the framework
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and strategies runtime could be optimized to reach the runtime of the current
Software Packages while trying to maintain the improvements of quality.
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